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We propose an approximate solution of T-F equation, obtained by using the nonlinearities distribution homotopy perturbation
method (NDHPM). Besides, we show a table of comparison, between this proposed approximate solution and a numerical of T-F,
by establishing the accuracy of the results.

1. Introduction

The numerical simulation for the charge distribution and the
electric field inside an atom is a very difficult task, especially
for complex atoms. For these cases, the Thomas-Fermi (T-F)
equation can be employed in order to obtain highly accurate
approximate results. T-F method is based on the fact that
most of complex atoms, with a large number of electrons,
have relatively large quantum numbers, and therefore the
semiclassical approach can be employed. Then, it is possible
to apply the concept of cells in the phase space to the states of
individual electrons [1].

The Thomas-Fermi equation describes mathematically
an infinite atom, without border; however the model is not

applicable to both distances from the nucleus: too small and
too large. More precisely, its application domain is limited to
a range of distances 𝑅: large relative to the quantity 1/𝑍 and
small compared to 1, where 𝑍 is the atomic number of the
atom. However, for complex atoms, most of the electrons are
in that interval, for which the study of T-F equation becomes
important.

One of the important consequences of the Thomas-
Fermi theory follows from the above. The atom has an outer
boundary for values of 𝑅 ≅ 1; thus the theory predicts that
the dimensions of the atom are independent of𝑍, and for the
same reason the ionization energy of the outer electrons is
also independent of the atomic number [1].
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Problems like the one mentioned give rise to the search
of solutions to nonlinear differential equations but, unfortu-
nately, solving this kind of equations is a difficult task. As a
matter of fact, most of the time, only an approximate solution
to such problems can be got. In order to approach various
types of nonlinear differential equations, several methods
have been proposed such as those based on variational
approaches [2–4], tanh method [5], exp-function [6], Ado-
mian’s decomposition method [7–12], parameter expansion
[13], homotopy perturbation method [14–27], homotopy
analysis method [25, 28–32], and perturbation method [28,
33, 34], among others. Also, a few exact solutions to nonlinear
differential equations have been reported occasionally [35].

This study proposes a variation of the homotopy per-
turbation method (HPM), by using nonlinearities distribu-
tions [17], which allows finding an approximate solution of
Thomas-Fermi equation [23, 36–41]. On the other hand, it
will be seen that it is convenient to introduce an adjusting
parameter in order to enlarge the domain of convergence of
our approach.

This paper is organized as follows. In Section 2, we pro-
vide the basic concept of nonlinearities distributions homo-
topy perturbation method (NDHPM). Section 3 presents the
application of NDHPM to find an approximate solution of
Thomas-Fermi equation. Section 4 discusses the main results
obtained. Finally, a brief conclusion is given in Section 5.

2. Basic Idea of NDHPM

The standard homotopy perturbation method (HPM) was
proposed by Ji Huan He. It was introduced like a powerful
tool to approach various kinds of nonlinear problems. The
homotopy perturbation method can be considered as a
combination of the classical perturbation technique and the
homotopy (whose origin is in the topology), and it is not
restricted to small parameters as traditional perturbation
methods. For example, HPM method requires neither small
parameter nor linearization but only few iterations to obtain
accurate solutions.

To figure out howHPMmethodworks, consider a general
nonlinear equation in the form

𝐴(𝑢) − 𝑓(𝑟) = 0, 𝑟 ∈ Ω, (1)

with the following boundary conditions:

𝐵(𝑢,
𝜕𝑢

𝜕𝑛
) = 0, 𝑟 ∈ Γ, (2)

where 𝐴 is a general differential operator, 𝐵 is a boundary
operator, 𝑓(𝑟) a known analytical function, and Γ is the
domain boundary forΩ.𝐴 can be divided into two operators
𝐿 and 𝑁, where 𝐿 is linear and 𝑁 nonlinear; from this last
statement, (1) can be rewritten as

𝐿 (𝑢) + 𝑁 (𝑢) − 𝑓 (𝑟) = 0. (3)

Generally, a homotopy can be constructed in the form

𝐻(V, 𝑝) = (1 − 𝑝)[𝐿(V) − 𝐿(𝑢0)]

+ 𝑝[𝐿(V) + 𝑁(V) − 𝑓(𝑟)] = 0,

𝑝 ∈ [0, 1], 𝑟 ∈ Ω.

(4)

Or

𝐻(V, 𝑝) = 𝐿 (V) − 𝐿 (𝑢0) + 𝑝[𝐿(𝑢0) + 𝑁(V) − 𝑓(𝑟)] = 0,

𝑝 ∈ [0, 1], 𝑟 ∈ Ω,

(5)

where 𝑝 is a homotopy parameter, whose values are within
range of 0 and 1; 𝑢

0
is the first approximation for the solution

of (3) that satisfies the boundary conditions.
Assuming that solution for (4) or (5) can be written as a

power series of 𝑝,

V = V
0
+ V
1
𝑝 + V
2
𝑝
2
+ ⋅ ⋅ ⋅ . (6)

Substituting (6) into (5) and equating identical powers
of 𝑝 terms, there can be found values for the sequence
V
0
, V
1
, V
2
, . . ..

When 𝑝 → 1, it yields the approximate solution for (1)
in the form

V = V
0
+ V
1
+ V
2
+ V
3
+ ⋅ ⋅ ⋅ . (7)

Another way to build a homotopy, which is relevant for this
paper, it is by considering the following general equation:

𝐿 (V) + 𝑁 (V) = 0, (8)

where 𝐿(V) and 𝑁(V) are the linear and nonlinear operators,
respectively. It is desired that solution for 𝐿(V) = 0 describes,
accurately, the original nonlinear system.

By the homotopy technique, a formulation is constructed
as follows [16]:

(1 − 𝑝) 𝐿 (V) + 𝑝 [𝐿 (V) + 𝑁 (V)] = 0. (9)

Again, it is assumed that solution for (9) can be written in
the form (6); thus, taking the limit when 𝑝 → 1 results in
the approximate solution of (8).The convergence of solutions
obtained by HPMmethod is discussed in [20, 21, 25, 26].

A recent report [17] introduced a modified version of
homotopy perturbation method, which eases the solutions
searching process for (3). As first step, a homotopy of the
following form is introduced:

𝐻(V, 𝑝) = (1 − 𝑝)[𝐿(V) − 𝐿(𝑢
0
)]

+ 𝑝[𝐿(V) + 𝑁(V, 𝑝) − 𝑓(𝑟, 𝑝)] = 0.
(10)

It can be noticed that the homotopy function (10) is essentially
the same as (4), except for the nonlinear operator𝑁 and the
nonhomogeneous function 𝑓, which contain embedded the
homotopy parameter 𝑝. We propose first to subdivide𝑁 and
𝑓 into a series of terms andmultiply 𝑝𝑖 by the most nonlinear
terms, where 𝑖 is an integer number greater or equal to zero.
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The 𝑖 power is selected according to how much displacement
is desired in the interactions for the corresponding nonlinear
term of 𝑁 or 𝑓. The introduction of that parameter within
the differential equation is a strategy to redistribute the
nonlinearities between the successive iterations of the HPM
method, and thus it increases the probabilities of finding the
sought solution.The rest of the method is exactly the same as
the standard procedure for the HPM.Therefore, we establish
that

V = V
0
+ V
1
𝑝 + V
2
𝑝
2
+ ⋅ ⋅ ⋅ . (11)

When 𝑝 → 1, it results in the approximate solution for (3)
in the form

V = V
0
+ V
1
+ V
2
+ V
3
+ ⋅ ⋅ ⋅ . (12)

An advantage of this procedure is that, given the distribution
of nonlinearities, from the differential equation, over the
successive iterations of (11), less complex analytic approxima-
tions may be obtained than those generated by the original
standard HPM.

Finally, convergence of solutions obtained by NDHPM
method is discussed in [17].

3. Approximate Solution of
Thomas-Fermi Equation

In order to facilitate understanding of the NDHPM method,
we will solve approximately the equation

𝑦

=
𝑦
3/2

𝑥1/2
, 𝑦 (0) = 1, 𝑦


(0) = −𝐿, (13)

where prime denotes differentiation with respect to 𝑥.
𝑦(𝑥) is a function related to the electrostatic potential

inside the atom, 𝑥 is a variable proportional to distance from
the nucleus (𝑟), and the most accurate value of 𝑦(0) is 𝐿 =

1.588071022611375313 [36].
The above equation is a modified version of the original

problem of Thomas-Fermi, where (13) is subject to the
boundary conditions 𝑦(0) = 1, 𝑦(∞) = 0 [28, 41] although
there are other conditions that can be applied [40].

Following references [16, 24] instead of defining a linear
and nonlinear part in the above equation, we add and subtract
𝛼𝑦

+𝛽𝑦 as it is shown, in order to add a term to linear operator

to facilitate the search for convergent solutions; thus (13) can
be rewritten as

𝑦

+ 𝛼𝑦

+ 𝛽𝑦 − [

𝑦
3/2

𝑥1/2
+ 𝛼𝑦

+ 𝛽𝑦] = 0, (14)

where 𝛼 and 𝛽 are constant parameters to determine.
The linear part is identified as

𝐿(𝑦) = 𝑦

+ 𝛼𝑦

+ 𝛽𝑦, (15)

and the nonlinear is

𝑁(𝑦) = −[
𝑦
3/2

𝑥1/2
+ 𝛼𝑦

+ 𝛽𝑦]. (16)

In order to simplify the calculations, we will redistribute the
nonlinear term by using NDHPMmethod, starting from (9),
in the form

𝑦

+ 𝛼𝑦

+ 𝛽𝑦 − 𝑝[

𝑦
3/2

𝑥1/2
+ 𝑝𝛼𝑦


+ 𝑝𝛽𝑦] = 0, (17)

by substituting

𝑦 = 𝑦
0
+ 𝑦
1
𝑝 + 𝑦
2
𝑝
2
+ ⋅ ⋅ ⋅ (18)

into (17), and equating terms having identical powers of 𝑝we
obtain

𝑦


0
+ 𝛼𝑦


0
+ 𝛽𝑦
0
= 0, 𝑦

0
(0) = 1, 𝑦



0
(0) = −𝐿, (19)

𝑦


1
+ 𝛼𝑦


1
+ 𝛽𝑦
1
−
𝑦
3/2

0

𝑥1/2
= 0, 𝑦

1 (0) = 0, 𝑦


1
(0) = 0,

.

.

.

(20)

In this paper we study the first order approximation, (19)-
(20). We will see that the nonlinear term of 𝑁(𝑦) (see (16))
contains the sufficient information to obtain a good analytical
approximation for (13).

The solution of (19) that satisfies the initial conditions is
given by

𝑦
0
=
𝐵 − 𝐿

𝐵 − 𝐴
𝑒
−𝐴𝑥

+
𝐿 − 𝐴

𝐵 − 𝐴
𝑒
−𝐵𝑥

, (21)

where 𝐴 and 𝐵 are constants related to 𝛼 and 𝛽.
By substituting (21) into (20) we obtain

𝑦


1
+ 𝛼𝑦


1
+ 𝛽𝑦
1
−

1

𝑥1/2
(
𝐵 − 𝐿

𝐵 − 𝐴
𝑒
−𝐴𝑥

+
𝐿 − 𝐴

𝐵 − 𝐴
𝑒
−𝐵𝑥

)

3/2

= 0.

(22)

In order to simplify (22) and obtain a handy approximation
for (13), we will assume that there is an adequate choice of 𝐴
and 𝐵 (𝐴 ≪ 𝐵) such that 𝑒−𝐴𝑥 ≫ 𝑒

−𝐵𝑥, valid for 0 < 𝑥 < ∞;
in such a way we can rewrite (22) approximately as

𝑦


1
+ 𝛼𝑦


1
+ 𝛽𝑦
1
=
𝑘
3/2

1
𝑒
−3𝐴𝑥/2

𝑥1/2
(1 +

3𝑘
2

2𝑘
1

𝑒
−(𝐵−𝐴)𝑥

), (23)

where we have defined

𝑘
1
=
𝐵 − 𝐿

𝐵 − 𝐴
, 𝑘

2
=
𝐿 − 𝐴

𝐵 − 𝐴
. (24)

This assumption is justified later.
To solve (23), we employ the method of variation of

parameters [42] which requires evaluating the following
integrals:

𝑢
1
= −∫

𝑓(𝑥)𝑒
−𝐵𝑥

𝑑𝑥

𝑊
, 𝑢

2
= ∫

𝑓(𝑥)𝑒
−𝐴𝑥

𝑑𝑥

𝑊
, (25)
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where 𝑦
𝐻1

= 𝑒
−𝐴𝑥 and 𝑦

𝐻2
= 𝑒
−𝐵𝑥 are the solutions of the

homogeneous differential equation

𝑦


1
+ 𝛼𝑦


1
+ 𝛽𝑦
1
= 0, (26)

𝑊 is theWronskian of these two functions, which is given by

𝑊(𝑦
1
, 𝑦
2
) = (𝐴 − 𝐵)𝑒

−(𝐴+𝐵)𝑥
(𝐴 ̸= 𝐵), (27)

and 𝑓(𝑥) is the right-hand side of (23).
Substituting 𝑓(𝑥) and (27) into (25) leads to

𝑢
1
= −

1

𝐴 − 𝐵
(𝑘
3/2

1
lim
𝜀→0

∫

𝑥

𝜀

𝑒
−𝐴𝑦/2

𝑑𝑦

√𝑦

+
3

2
𝑘
2
𝑘
1/2

1
lim
𝜀→0

∫

𝑥

𝜀

𝑒
−(𝐵−𝐴/2)𝑦

𝑑𝑦

√𝑦
),

𝑢
2
=

1

𝐴 − 𝐵
(𝑘
3/2

1
lim
𝜀→0

∫

𝑥

𝜀

𝑒
−(3𝐴/2−𝐵)𝑦

𝑑𝑦

√𝑦

+
3

2
𝑘
2
𝑘
1/2

1
lim
𝜀→0

∫

𝑥

𝜀

𝑒
−𝐴𝑦/2

𝑑𝑦

√𝑦
).

(28)

By substituting 𝑦 = 𝑢2, the above equations take the form

𝑢
1
= −

1

𝐴 − 𝐵
(2𝑘
3/2

1
lim
𝜀→0

∫

√𝑥

𝜀

𝑒
−𝑢
2
𝐴/2

𝑑𝑢

+ 3𝑘
2
𝑘
1/2

1
lim
𝜀→0

∫

√𝑥

𝜀

𝑒
−(𝐵−𝐴/2)𝑢

2

𝑑𝑢),

(29)

𝑢
2
=

1

𝐴 − 𝐵
(2𝑘
3/2

1
lim
𝜀→0

∫

√𝑥

𝜀

𝑒
(𝐵−3𝐴/2)𝑢

2

𝑑𝑢

+ 3𝑘
2
𝑘
1/2

1
lim
𝜀→0

∫

√𝑥

𝜀

𝑒
−𝐴𝑢
2
/2
𝑑𝑢).

(30)

Therefore, the solution of (23) is written according to the
method of variation of parameters as [42]

𝑦
1
= 𝑓𝑒
−𝐴𝑥

+ 𝑔𝑒
−𝐵𝑥

+ 𝑢
1
𝑒
−𝐴𝑥

+ 𝑢
2
𝑒
−𝐵𝑥

, (31)

where 𝑓 and 𝑔 are constants and 𝑢
1
and 𝑢

2
are given by (29)

and (30), respectively.
Applying the initial condition 𝑦

1
(0) = 0 to (31) leads to

𝑦
1
(0) = 𝑓 + 𝑔 −

1

𝐴 − 𝐵
(2𝑘
3/2

1
lim
𝜀→0
𝑥→0

∫

√𝑥

𝜀

𝑒
−𝐴𝑢
2
/2
𝑑𝑢

+ 3𝑘
2
𝑘
1/2

1
lim
𝜀→0
𝑥→0

∫

√𝑥

𝜀

𝑒
−(𝐵−𝐴/2)𝑢

2

𝑑𝑢)

+
1

𝐴 − 𝐵
(2𝑘
3/2

1
lim
𝜀→0
𝑥→0

∫

√𝑥

𝜀

𝑒
(𝐵−3𝐴/2)𝑢

2

𝑑𝑢

+ 3𝑘
2
𝑘
1/2

1
lim
𝜀→0
𝑥→0

∫

√𝑥

𝜀

𝑒
−𝐴𝑢
2
/2
𝑑𝑢) = 0.

(32)

Equation (32) is simplified to

𝑓 + 𝑔 = 0. (33)

On the other hand, to apply the condition 𝑦


1
(0) = 0, we

differentiate (31) to obtain

𝑦


1
= −𝐴𝑓𝑒

−𝐴𝑥
− 𝐵𝑔𝑒

−𝐵𝑥

−
𝑒
−𝐴𝑥

𝐴 − 𝐵
(𝑘
3/2

1

𝑒
−𝐴𝑥/2

√𝑥
+
3𝑘
2
𝑘
1/2

1
𝑒
−(𝐵−𝐴/2)𝑥

2√𝑥
)

+
𝑒
−𝐵𝑥

𝐴 − 𝐵
(𝑘
3/2

1

𝑒
−(3𝐴/2−𝐵)𝑥

√𝑥
+
3𝑘
2
𝑘
1/2

1
𝑒
−𝐴/2𝑥

2√𝑥
)

− 𝐴𝑒
−𝐴𝑥

𝑢
1
− 𝐵𝑒
−𝐵𝑥

𝑢
2
.

(34)

After performing algebraic simplifications to (34), we obtain

𝑦


1
= −𝐴𝑓𝑒

−𝐴𝑥
− 𝐵𝑔𝑒

−𝐵𝑥
− 𝐴𝑒
−𝐴𝑥

𝑢
1
− 𝐵𝑒
−𝐵𝑥

𝑢
2
. (35)

Applying the condition 𝑦


1
(0) = 0 to (35) the following is

obtained:

𝐴𝑓 + 𝐵𝑔 = 0, (36)

since lim
𝑥→0

𝑢
1
= 0 and lim

𝑥→0
𝑢
2
= 0 (see (29) and (30)).

From (33) and (36) we obtain 𝑓 = 0 and 𝑔 = 0 since
𝐴 ̸= 𝐵; therefore (31) becomes

𝑦
1
= 𝑢
1
𝑒
−𝐴𝑥

+ 𝑢
2
𝑒
−𝐵𝑥

. (37)

By substituting (21) and (37) into (12), we obtain the following
first order approximation for the solution of (13):

𝑦 = 𝑘
1
𝑒
−𝐴𝑥

+ 𝑘
2
𝑒
−𝐵𝑥

+ 𝑢
1
𝑒
−𝐴𝑥

+ 𝑢
2
𝑒
−𝐵𝑥

. (38)

We will show later that it is possible to achieve a good fit and
enlarge the domain of convergence for (38) (keeping at the
same time the handy character of the proposed solution), by
introducing in (38) an adjusting parameter (consistent with
the initial conditions), as it is shown in

𝑦 = 𝑘
1
𝑒
−𝐴𝑥

+ 𝑘
2
𝑒
−𝐵𝑥

+ 𝛿𝑢
1
𝑒
−𝐴𝑥

+ 𝛿𝑢
2
𝑒
−𝐵𝑥

. (39)

The inclusion of parameter, 𝛿, is motivated because the
solution 𝑦

0
(𝑥) for the homogeneous equation (19) is undeter-

mined by a constant factor 𝛼 (without considering the initial
values) and from the following argument.

Let 𝑌
0
(𝑥) = 𝛼𝑦

0
(𝑥), since 𝑌

0
(0) = 𝛼, 𝑦

0
(0) = −𝐿𝛼; the

first order solution for a function, say 𝑌(𝑥), which defines
a slightly different problem from the original, is given by
𝑌(𝑥) = 𝑌

0
(𝑥) + 𝑌

1
(𝑥) or 𝑌(𝑥) = 𝛼𝑦

0
(𝑥) + 𝑌

1
(𝑥), where

𝑦
0
(0) = 1, 𝑦

0
(0) = −𝐿, 𝑌

1
(0) = 0, and 𝑌



1
(0) = 0. Thus,

after dividing by 𝛼, 𝑦(𝑥) = 𝑦
0
(𝑥) + 𝛿𝑦

1
(𝑥) is obtained (where

𝛿 = 𝑓(𝛼)/𝛼, 𝑦(𝑥) = 𝑌(𝑥)/𝛼, and we have supposed that
for some problems 𝑌

1
(𝑥) = 𝑓(𝛼)𝑦

1
(𝑥). As a matter of fact,

following (21)–(30)we conclude that for this case𝑓(𝛼) = 𝛼3/2;
therefore 𝛿 = 𝛼1/2).



Journal of Applied Mathematics 5

Substituting (29) and (30) into (39) we obtain

𝑦 = 𝑘
1
𝑒
−𝐴𝑥

+ 𝑘
2
𝑒
−𝐵𝑥

−
𝛿𝑒
−𝐴𝑥

𝐴 − 𝐵
(2𝑘
3/2

1
lim
𝜀→0

∫

√𝑥

𝜀

𝑒
−𝐴𝑢
2
/2
𝑑𝑢

+ 3𝑘
2
𝑘
1/2

1
lim
𝜀→0

∫

√𝑥

𝜀

𝑒
−(𝐵−𝐴/2)𝑢

2

𝑑𝑢)

+
𝛿𝑒
−𝐵𝑥

𝐴 − 𝐵
(2𝑘
3/2

1
lim
𝜀→0

∫

√𝑥

𝜀

𝑒
(𝐵−3𝐴/2)𝑢

2

𝑑𝑢

+ 3𝑘
2
𝑘
1/2

1
lim
𝜀→0

∫

√𝑥

𝜀

𝑒
−𝐴𝑢
2
/2
𝑑𝑢).

(40)

In [14] a high accurate approximation of normal distribution
integral was reported, which let us write the above integrals
as

lim
𝜀→0

∫

√𝑥

𝜀

𝑒
−𝐴𝑢
2
/2
𝑑𝑢

=
1

2

√
2𝜋

𝐴
tanh(39

2

√
𝐴𝑥

2𝜋
−
111

2
tan−1( 35

111

√
𝐴𝑥

2𝜋
)),

lim
𝜀→0

∫

√𝑥

𝜀

𝑒
−(𝐵−𝐴/2)𝑢

2

𝑑𝑢

=
1

2

√
2𝜋

2𝐵 − 𝐴
tanh(39

2

√
(2𝐵 − 𝐴)𝑥

2𝜋

−
111

2
tan−1( 35

111

√
(2𝐵 − 𝐴)𝑥

2𝜋
)).

(41)

Note that

∫

√𝑥

0

𝑒
(𝐵−3𝐴/2)𝑢

2

𝑑𝑢 (42)

is not a Gaussian integral on the assumption that 𝑒−𝐴𝑥 ≫ 𝑒
−𝐵𝑥

for 0 < 𝑥 < ∞, since it implies that 𝐴 ≪ 𝐵.

Equations (41) allow us to write (40) as

𝑦 = 𝑘
1
𝑒
−𝐴𝑥

+ 𝑘
2
𝑒
−𝐵𝑥

−
𝛿𝑒
−𝐴𝑥

𝐴 − 𝐵

⋅ (𝑘
3/2

1
√
2𝜋

𝐴
tanh(39

2

√
𝐴𝑥

2𝜋

−
111

2
tan−1( 35

111

√
𝐴𝑥

2𝜋
))

+
3

2
𝑘
2
𝑘
1/2

1
√

2𝜋

2𝐵 − 𝐴

⋅ tanh(39

2

√
(2𝐵 − 𝐴)𝑥

2𝜋

−
111

2
tan−1( 35

111

√
(2𝐵 − 𝐴)𝑥

2𝜋
)))

+
𝛿𝑒
−𝐵𝑥

𝐴 − 𝐵
(2𝑘
3/2

1
lim
𝜀→0

∫

√𝑥

𝜀

𝑒
(𝐵−3𝐴/2)𝑢

2

𝑑𝑢

+
3

2
𝑘
2
𝑘
1/2

1
√
2𝜋

𝐴

⋅ tanh(39
2

√
𝐴𝑥

2𝜋
−
111

2
tan−1( 35

111

√
𝐴𝑥

2𝜋
))).

(43)

To transform (43) into an analytical expression, we evaluate
(42) keeping terms up to the ninth power, to obtain the
following compact fractional power function:

∫

√𝑥

0

𝑒
(𝐵−3𝐴/2)𝑢

2

𝑑𝑢

= √𝑥 +
1

3
(𝐵 − 3𝐴)𝑥

3/2
+

1

10
(𝐵 − 3𝐴)

2
𝑥
5/2

+
1

42
(𝐵 − 3𝐴)

3
𝑥
7/2

+
1

216
(𝐵 − 3𝐴)

4
𝑥
9/2
,

(44)

where the main contribution of this approximation to (43) is
in the range of 𝑥 ∈ (0, 1] because it is multiplied by a negative
exponential (see (43) and Section 4).
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Therefore, substituting (44) into (43), the following is
obtained:

𝑦 = 𝑘
1
𝑒
−𝐴𝑥

+ 𝑘
2
𝑒
−𝐵𝑥

−
𝛿𝑒
−𝐴𝑥

𝐴 − 𝐵

⋅ (𝑘
3/2

1
√
2𝜋

𝐴
tanh(39

2

√
𝐴𝑥

2𝜋

−
111

2
tan−1( 35

111

√
𝐴𝑥

2𝜋
))

+
3

2
𝑘
2
𝑘
1/2

1
√

2𝜋

2𝐵 − 𝐴

⋅ tanh(39

2

√
(2𝐵 − 𝐴)𝑥

2𝜋

−
111

2
tan−1( 35

111

√
(2𝐵 − 𝐴) 𝑥

2𝜋
)))

+
𝛿𝑒
−𝐵𝑥

𝐴 − 𝐵
(2𝑘
3/2

1
(√𝑥 +

(𝐵 − 3𝐴)𝑥
3/2

3
+
(𝐵 − 3𝐴)

2
𝑥
5/2

10

+
(𝐵 − 3𝐴)

3
𝑥
7/2

42
+
(𝐵 − 3𝐴)

4
𝑥
9/2

216
)

+
3

2
𝑘
2
𝑘
1/2

1
√
2𝜋

𝐴

⋅ tanh(39
2

√
𝐴𝑥

2𝜋
−
111

2
tan−1( 35

111

√
𝐴𝑥

2𝜋
))).

(45)

In order to obtain a good approximation from (45), we
optimize the values of the aforementioned parameters as
follows: 𝐴 = 0.398521712348839, 𝐵 = 6, and 𝛿 =

−0.623239813 using the procedure reported in [14, 17, 27]
(note that with these values, the assumption 𝐴 ≪ 𝐵 is
satisfied, besides the above results allow to know 𝛼 and 𝛽

whose values are not needed in the search for the solution
of the system (19) and (20)).

Figure 1 and Table 1 show the comparison between
approximate solution (45) and the exact solution. The accu-
racy of (45) is clear as an approximate solution for (13).

4. Discussion

Table 1 shows the comparison between numerical solution
given in [39] and approximations [15, 38] and (45). It is
clear that our approximation (45) is competitive, considering
that it is analytic and handy, unlike other approximations
which are expressed in terms of power series. In [37, 38,
41], T-F equation was solved by homotopy analysis method
(HAM). The approximation [38] corresponds to an 80th
order analytical approximation and therefore is impractical.
On the other hand in [37] the results are given in terms of

1
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Figure 1: Comparison of Thomas-Fermi’s numerical solution [39]
and approximation (45).

infinite series and show particularly the calculation of the
initial slope 𝑦(0). Moreover, in [41], an accurate approximate
solution was obtained, but it corresponds to the 40th order
approximation. In [23], (13) was solved by HPM and Padé
approximants; in this case a solution of 26 power series terms
is provided which is also not handy in practice. Reference
[15] presents an analytical approach, but it is not accurate.
In this study, we used homotopy perturbation method with
nonlinearities distributions to find an accurate solution for
(13) (see Figure 1 and Table 1). Although (43) is just almost
analytic (due to the presence of a non-Gaussian integral), it
can be estimated that contribution of (42) to the solution
(43) is well represented by (44) assuming the values are 𝐴 =

0.398521712348839, 𝐵 = 6, and 𝛿 = −0.623239813; thus we
obtained the analytical approximation (45).We just kept only
five terms in (44) in order to obtain a handy approximation.
Besides, the right-hand side of (44) adequately represents the
indicated non-Gaussian integral in the range 𝑥 ∈ [0, 1]. It
implies that the best contribution of the term proportional to
𝑒
−𝐵𝑥

∫
√𝑥

0
𝑒
(𝐵−3𝐴/2)𝑢

2

𝑑𝑢 in (43) is just beginning of the interval
considered, that is, in a part of the domain where the T-
F equation describes correctly the atom (see Section 1). For
values 𝑥 > 1, the above-mentioned term is dominated for
the exponential 𝑒−𝐵𝑥. In any case, the value of the integrals
of (40) can be evaluated by using numerical methods. An
interesting fact is that if more terms had been considered
in the development of (12), we would have obtained, as
a solution of (13), a series containing terms of hyperbolic
tangent functions to the form (41).

The strategy to redistribute the nonlinearities of T-F
equation, between the successive iterations of the HPM
method, was important to obtain an approximate solution of
(13) because it allows us to simplify the solution procedure
for the successive iterations of the HPM method. Besides,
we obtained a soluble coupled system of linear differential
equations (19) and (20). In this study, we introduced an
adjusting parameter in order to enlarge the domain of
convergence of our approach, with good results, by using only
the first order approximation (see Table 1 and Figure 1).



Journal of Applied Mathematics 7

Table 1: Numerical comparison of Thomas-Fermi’s numerical solution [39] and approximations [15, 38] and (45).

𝑥 Numerical [39] [38] (45) [15]
0.00 — 1.000000000 1.000000000 1.000000000
0.25 0.755880759 0.776191000 0.708502932 0.680650028
0.50 0.606700008 0.615917000 0.570491745 0.459455663
0.75 0.502964042 0.505380000 0.485018011 0.307042537
1.00 0.424333179 0.423772000 0.421167227 0.202655526
1.25 0.363227937 0.362935000 0.369542163 0.131667603
1.50 0.314660642 0.314490000 0.326298526 0.083800106
1.75 0.275233848 0.275154000 0.289315779 0.051853222
2.00 0.242678587 0.242718000 0.257253699 0.030801947
2.25 0.215439334 0.215630000 0.229210094 0.017153465
2.50 0.192406328 0.192795000 0.204540381 0.008491277
2.75 0.172758691 0.173364000 0.182755264 0.003152503
3.00 0.155871862 0.156719000 0.163464474 0
3.25 0.141260504 0.142371000 0.146346052 −0.001738122

3.50 0.128541381 0.129937000 0.131128799 −0.002581206

3.75 0.117408054 0.119108000 0.117581337 −0.002874924

4.00 0.107612958 0.109632000 0.105504623 −0.00284628

4.25 0.098954329 0.101303000 0.094726427 −0.002641801

4.50 0.091266456 0.093950400 0.085097045 −0.002353931

4.75 0.084412289 0.087432000 0.076485875 −0.002039168

5.00 0.078277758 0.081629600 0.068778618 −0.001730443

A relevant fact is that NDHPM requires little iterations
to obtain accurate solutions, if we have a first approximation
containing as much information as possible for a nonlinear
differential equation. For instance, in our case, (21) contains
the correct asymptotic character of the exact equation.

5. Conclusion

In this work, NDHPM was used to obtain an approximate
analytical solution for T-F equation. Our solution is novel
because it is expressed in terms of exponential and fractional
power functions and above all in terms of normal distribution
integrals. It is important to obtain an analytical expression
that provides a good description of the solution for the
nonlinear differential equations like (13). For instance, the
charge distribution and the electrostatic potential inside an
atom are adequately described by (43) and (45). It is worth
mentioning that, if the initial guess is suitably chosen, it is
possible to obtain by this method an accurate approximation
like (43), even using the first terms of (12). Finally, in contrast
to Runge-Kutta numerical solution, NDHPMmethod allows
to analyze quantitatively and qualitatively the solution.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors gratefully acknowledge the financial support
from the National Council for Science and Technology of
Mexico (CONACyT) through Grant CB-2010-01 #157024.
The authors would like to thank Rogelio-Alejandro Callejas-
Molina and Roberto Ruiz-Gomez for their contribution to
this project.

References

[1] L. Landau and E. M. Lifshitz,Mecánica Cuántica No Relativista,
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