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We expand the application of the enhanced multistage homotopy perturbation method (EMHPM) to solve delay differential
equations (DDEs) with constant and variable coefficients. This EMHPM is based on a sequence of subintervals that provide
approximate solutions that require less CPU time than those computed from the dde23 MATLAB numerical integration algorithm
solutions. To address the accuracy of our proposed approach,we examine the solutions of severalDDEs having constant and variable
coefficients, finding predictions with a good match relative to the corresponding numerical integration solutions.

1. Introduction

Delayed differential equations (DDEs) are used to describe
many physical phenomena of interest in biology, medicine,
chemistry, physics, engineering, and economics, among oth-
ers. Since the introduction of the first delayed models, many
publications have appeared as summarizing theorems and
homotopy methods of solution that deal with the stability
properties of delayed systems (see [1–3] and references cited
there in).

For instance, Shakeri andDehghan introduced an approach
to find the solution of delay differential equations by means
of the homotopy perturbation technique (HPM) with results
that agree well with exact solutions [1]. Wu in [2] used
the homotopy analysis method to obtain the approximate
solution of a strong nonlinear ENSOdelayed oscillatormodel
that provides good agreement when compared to its exact
solution under the condition of 𝐵 = 0. Alomari and
coworkers in [3] developed an algorithm to obtain approx-
imate analytical solutions for DDEs by using the homotopy
analysismethod (HAM) and themodified homotopy analysis
method (MHAM).They used their derived method to obtain

the approximate solution of various linear and nonlinear
DDEs with numerical predictions that agree well with the
numerical integration solutions, and they also proved that
their derived solutions converge to the exact ones. By apply-
ing the homotopy perturbation method (HPM), Biazar and
Behzad found approximate solutions of neutral differential
equations with proportional delays which describe well their
corresponding numerical integration solutions [4]. Recently,
Anakira and co-workers in [5] extended the applicability of
the so called optimal homotopy asymptoticmethod (OHAM)
that does not depend on small or large parameters, to find
the approximate analytic solution of DDEs. They used their
proposed approach to compare the derived approximate
solutions of several DDEswith their exact analytical solutions
with predictions that compare well with the exact ones.

On the other hand, Insperger and Stépán in [6] used the
semidiscretization method to determine the stability lobes of
DDEs that model the dynamics of cutting machine opera-
tions. Based on the properties of the Chebyshev polynomials,
Butcher and coworkers in [7] developed a methodology to
obtain the stability lobes of milling machine operations and
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they proved that this technique is faster than that of the
full and the semidiscretization methods since these solution
techniques approximate the original DDEs by a series of
ODEs [8].

Here in this paper, we develop a generalized procedure to
solve linear and nonlinear DDEs by introducing some mod-
ifications to the multistage homotopy perturbation method
(MHPM) derived by Hashim and Chowdhury to obtain
approximate solutions of ordinary differential equations [9].
The proposed enhanced multistage homotopy perturbation
method (EMHPM) is based on a sequence of subintervals
that allow us to find more accurate approximated solutions
under a numerical-analytical procedure that requires less
CPU time when compared to the numerical integration
solutions provided by the MATLAB dde23 algorithm written
by Shampine and Thompson in [10]. The EMHPM is based
on a homotopy function that could be divided into a linear
operator and a nonlinear operator to satisfy its assumed initial
solution. This split of the homotopy function allows us to
modify the nonlinear operator to guarantee, by using the
enhanced homotopy perturbation method, the stability of
the proposed approximate solutions of nonlinear differential
equations [11].

To clarify our proposed method, we briefly review in
Section 2 some basic concepts of the homotopy perturbation
method, and, then in Section 3, we introduce the EMHPM
to solve DDEs. The difference between the HPM and the
EMHPM is discussed in Section 4 by addressing the approx-
imate solutions of a nonlinear delayed differential equation
with variable coefficients. Finally, the general solution of
two DDEs that describe the dynamics of two engineering
problems, by using the EMHPM, is discussed in Section 5.

2. Homotopy Perturbation Method

The homotopy perturbation method (HPM) is a coupling
of the traditional perturbation method and homotopy in
topology which eliminates the limitation of the small param-
eter assumed in the perturbation methods [12]. Under this
approach, a nonlinear problem can be transformed into an
infinite number of simple problems without the restriction
of having small nonlinear parameter values. This homotopy
perturbationmethod takes themain advantages of traditional
perturbation methods together with homotopy analysis [13–
15].

To illustrate the basic ideas of the HPM, let us consider
the following nonlinear differential equation:

𝐴 (𝑢) − 𝑓 (𝑟) = 0, 𝑟 ∈ Ω (1)

with boundary conditions

𝐵(𝑢,
𝜕𝑢

𝜕𝑛
) = 0, 𝑟 ∈ Γ, (2)

where 𝐴 is a general differential operator, 𝐵 is a boundary
operator, 𝑓(𝑟) is a known analytic function, and Γ is the
boundary of the domainΩ.

The operator 𝐴 can generally be divided into two parts: 𝐿
and𝑁, where 𝐿 involves the linear terms and𝑁 the nonlinear
ones. Equation (1) therefore can be rewritten as follows:

𝐿 (𝑢) + 𝑁 (𝑢) − 𝑓 (𝑟) = 0. (3)

By the homotopy perturbation technique, we construct a homo-
topy V(𝑟, 𝑝) : Ω × [0, 1] → R that satisfies

𝐻(V, 𝑝) = 𝐿 (V) − 𝐿 (𝑢0) + 𝑝𝐿 (𝑢0) + 𝑝 [𝑁 (V) − 𝑓 (𝑟)] = 0,
(4)

where 𝑝 ∈ [0, 1] is an embedding parameter and 𝑢
0
is

an initial approximation of (1) which satisfies the boundary
conditions (2). Thus, from (4), we have

𝐻(V, 0) = 𝐿 (V) − 𝐿 (𝑢
0
) = 0,

𝐻 (V, 1) = 𝐴 (V) − 𝑓 (𝑟) = 0.
(5)

The changing process of 𝑝 from zero to unity is just that
of V(𝑟, 𝑝) from 𝑢

0
(𝑟) to 𝑢(𝑟). In topology, this is called

deformation, and 𝐿(V) − 𝐿(𝑢
0
) and 𝐴(V) − 𝑓(𝑟) are called

homotopic.
He in [12] uses the embedding parameter 𝑝 as the small

parameter and assumed that the solution of (4) can be written
as a power series of 𝑝 in the form

V = V
0
+ 𝑝V
1
+ 𝑝
2V
2
+ ⋅ ⋅ ⋅ . (6)

By setting 𝑝 = 1, He obtained the approximate solution of (1)
as

𝑢 = lim
𝑝→1

= V
0
+ V
1
+ V
2
+ ⋅ ⋅ ⋅ . (7)

Then, this method was applied to obtain the approximate
solution of some nonlinear ordinary differential equations
valid not only for small, but also for large nonlinear parameter
values.

We next will introduce an approach based on homotopy
methods, to obtain the solution of DDEs with constant and
variable coefficients.

3. The EMHPM Methodology to Solve DDEs

TheHPM is an asymptotic method that depends on the aux-
iliary linear operator form and the initial guess of the initial
conditions. Therefore, the convergence of the approximate
solution cannot be guaranteed in some cases [16]. Hashim
and Chowdhury showed in [9] that the solutions obtained by
the standard HPM were not valid for large time span unless
more terms are calculated. Thus, they proposed a multistage
homotopy perturbation method (MHPM) which treated the
HPMalgorithm in a sequence of subintervals in an attempt to
improve the accuracy of the approximate solutions of linear
and nonlinear ordinary differential equations (ODEs).

However, when the MHPM is applied to obtain the
approximate solutions of ODEs which contain coefficients
as a function of time, this method cannot provide accurate
solutions when Δ𝑡 → 0. In this work, we introduce some



Abstract and Applied Analysis 3

modifications to the MHPM and focus on the derivation of
approximate solutions of DDEs equations with variable coef-
ficient terms. This new approach is based on the enhanced
multistage homotopy perturbationmethod (EMHPM) intro-
duced in [17] to obtain the solution of nonlinear ordinary
differential equations.

The EMHPM is an algorithm which approximates the
HPM solution by subintervals, utilizing the following trans-
formation rule: 𝑢(𝑡) → 𝑢

𝑖
(𝑇), where 𝑢

𝑖
satisfies the initial

condition 𝑢
𝑖
(0) = 𝑢

𝑖−1
(𝑡
𝑖−1
), 𝑇 is a shifted time scale used

to determine the approximate solution in each subinterval,
and 𝑢

𝑖
(𝑇) represents the approximate solution in the 𝑖th

subinterval. In this case, the initial suggested solution in the
𝑖th subinterval is given by 𝑢

𝑖0
(𝑇) = 𝑢

𝑖−1
(𝑡
𝑖−1
), where 𝑡

𝑖−1

represents the time at the end of the previous subinterval
(i.e., the value of the approximate solution at the end of the
previous subinterval represents the initial conditions of the
next subinterval under consideration).

To apply the homotopy technique to solve delay differen-
tial equations, we also assume the following.

(1) The linear operator𝐿(𝑢
𝑖
) represents𝐿(𝑢

𝑖
) = (𝑑/𝑑𝑇)𝑢

𝑖
,

where the assumed approximate solution 𝑢
𝑖0
(𝑇) is

set equal to the initial condition 𝑢
𝑖−1
(𝑡
𝑖−1
); that is,

𝑢
𝑖0
= 𝑢
𝑖−1
(𝑡
𝑖−1
). To simplify the notation, we let 𝑢

𝑖−1
≡

𝑢
𝑖−1
(𝑡
𝑖−1
).

(2) The transformation 𝑇 = 𝑡 − 𝑡
𝑖−1

on 0 < 𝑇 ≤ 𝑡
𝑖
− 𝑡
𝑖−1

holds in the homotopy 𝑖-subinterval. Thus, higher
order equations are integratedwith respect to𝑇, while
the terms related to the independent variable 𝑡 are
assumed to remain constant.

Therefore, we may conclude that the 𝑚 order approximate
solution, by applying the EMHPM, can be written as

𝑢
𝑖
(𝑇, 𝑢
𝑖−1
) =

𝑚

∑

𝑘=0

𝑈
𝑖𝑘
(𝑇, 𝑢
𝑖−1
) , (8)

where the solution 𝑢
𝑖
(𝑇, 𝑢
𝑖−1
) is valid only in the 𝑖th subin-

terval [𝑡
𝑖−1
, 𝑡
𝑖
]. Hence, the solution 𝑢(𝑡) on the 𝑖th subinterval

(𝑡
𝑖−1
, 𝑡
𝑖
] can be written as

𝑢 (𝑡) ≈ 𝑢
𝑖
(𝑡 − 𝑡
𝑖−1
) (9)

with initial condition 𝑢
𝑖−1
(𝑡
𝑖−1
), and 𝑖 = 1, 2, . . . , 𝑗. Thus, the

approximate solution of 𝑢 at the time 𝑡
𝑖
is given by

𝑢
𝑖
(𝑡 − 𝑡
𝑖−1
)
󵄨󵄨󵄨󵄨𝑡=𝑡𝑖
= 𝑢
𝑖+1
(𝑡 − 𝑡
𝑖
)
󵄨󵄨󵄨󵄨𝑡=𝑡𝑖
= 𝑢
𝑖+1
(0) = 𝑢

𝑖
. (10)

In summary, the solution 𝑢(𝑡) for an open-closed interval
(𝑡
0
, 𝑡
1
] is divided into 𝑗 subintervals that, in general, are

not equally spaced: [𝑡
0
, 𝑡
1
], [𝑡
1
, 𝑡
2
], . . . , [𝑡

𝑗−1
, 𝑡
𝑗
]. Thus, the

approximated solution of 𝑢(𝑡) for the span time interval is
obtained by coupling the 𝑢

𝑖
(𝑡) solutions.

4. Approximate Solutions of Some DDEs by
Applying the EMHPM

In this sectionwe focus on the solution ofDDEswith constant
and variable coefficients and examine the applicability of the
EMHPM to find the corresponding approximate solutions.

4.1. Delay Differential Equations with Constant Coefficients.
First, let us consider the simplest DDE of the form

𝑥̇ (𝑡) + 𝑥 (𝑡 − 𝜏) = 0 (11)

with initial condition 𝑥(0) = 𝑐. Here, the independent vari-
able 𝑥 is a scalar 𝑥(𝑡) ∈ R, the dot stands for differentiation
with respect to time 𝑡, and 𝜏 is the time delay. To evaluate
(11) on 𝑎 ≤ 𝑡 ≤ 𝑏, the term 𝑥(𝑡 − 𝜏) must represent a known
function 𝑥(𝑡) on [𝑎 − 𝜏 ≤ 𝑡 ≤ 𝑎]. For instance, if 𝑎 = 0,
the solution of (11) can be obtained in the interval (0, 𝜏] by
assuming an initial function that satisfies the initial condition.
By using this solution, it becomes possible to obtain the
solution of (11) in the next 𝑖th interval [(𝑖 − 1)𝜏, 𝑖𝜏], 𝑖 =
2, 3, . . . , 𝑗, where 𝑗 is an integer number that can be chosen
as 2 ≤ 𝑗 ≤ ∞. With this approach, we can apply the HPM to
find the solution of (11) by assuming that the previous delayed
function is 𝑥𝜏0(𝑇) = 𝑐; thus the solution for the first interval
is given by 𝑥𝜏1(𝑇), valid on [0, 𝜏]. In terms of (4), we now
construct the homotopy of (11):

𝐻(𝑋
𝜏1 , 𝑝) =

𝑑

𝑑𝑇
𝑋
𝜏1 + 𝑝𝑥

𝜏0 = 0. (12)

We next substitute the first order expansion𝑋𝜏1 = 𝑋𝜏1
0
+𝑝𝑋
𝜏1

1

in (12) and balance the terms with identical power of 𝑝 to
obtain the following set of linear differential equations:

𝑝
0: 𝑑
𝑑𝑇
𝑋
𝜏1

0
= 0 𝑋

𝜏1

0
(0) = 𝑐 = 𝑋

𝜏0
(𝜏) ,

𝑝
1: 𝑑
𝑑𝑇
𝑋
𝜏1

1
= −𝑋
𝜏0 𝑋

𝜏1

1
(0) = 0.

(13)

Integration of (13) yields

𝑋
𝜏1

0
= 𝑐,

𝑋
𝜏1

1
= − 𝑐𝑇.

(14)

Hence, the first order solution of (12) is given by

𝑥
𝜏1
(𝑇) = 𝑐 − 𝑐𝑇. (15)

Notice that (15) represents the exact solution of (11) on the
first interval. By following the same procedure, it is easy to
show that the exact solution of (11), for the second and third
intervals, is given, respectively, as

𝑥
𝜏2
(𝑇) = 𝑐 − 𝑐𝜏 − 𝑐𝑇 +

1

2
𝑐𝑇
2
,

𝑥
𝜏3
(𝑇) = 𝑐 − 2𝑐𝜏 +

1

2
𝑐𝜏
2
− (𝑐 − 𝑐𝜏) 𝑇 +

1

2
𝑐𝑇
2
−
1

6
𝑐𝑇
3
.

(16)

Figure 1 shows the exact solution of (11) obtained by coupling
at each interval the solution obtained by following HPM
procedure for 𝑡 = 10𝜏.

It is easy to show that the solution of (11) by the EMHPM
coincides with the solution obtained by using the HPM since
(11) is a delay differential equation with constant coefficients.
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Figure 1: Exact solution of (11) obtained by using theHPMand 𝜏 = 1.

4.2. Delay Differential Equations with Variable Coefficients.
We next show how the EMHPM approach can be applied to
obtain the approximate solution of nonlinear delay differen-
tial equation with variable coefficients. In this case, we obtain
the approximate solutions of a DDE of the form

𝑥̇ + 𝑥 (𝑡 − 𝜏) − cos (𝜋𝑡) 𝑥2 = 0, 𝜏 = 1, 𝑥 (0) = 𝑐 = 𝑥𝜏0 (𝜏)
(17)

in which the solution 𝑥𝜏0(𝑇) = 𝑐
1
holds on (−𝜏, 0]. In order to

find the solution 𝑥𝜏1 in the interval [0, 𝜏], we assume that the
homotopy representation of (17) can be given as

𝐻(𝑋
𝜏1 , 𝑝) =

𝑑

𝑑𝑇
𝑋
𝜏1 + 𝑝 [𝑥

𝜏0 − cos (𝜋𝑡) (𝑋𝜏1)2] = 0.
(18)

Notice that the variable 𝑋 depends on the time 𝑇 for which
0 ≤ 𝑇 ≤ 𝜏. If we now substitute the second order expansion
𝑋
𝜏1 = 𝑋

𝜏1

0
+ 𝑝𝑋
𝜏1

1
+ 𝑝
2
𝑋
𝜏1

2
in (18), and, after balancing the 𝑝

terms, we get that

𝑝
0: 𝑑
𝑑𝑇
𝑋
𝜏1

0
= 0, 𝑋

0 (𝑇 = 0) = 𝑐1 = 𝑋
𝜏0
(𝑇 = 𝜏) ,

𝑝
1: 𝑑
𝑑𝑇
𝑋
𝜏1

1
= −𝑥
𝜏0 + cos (𝜋𝑡) (𝑋𝜏1

0
)
2

= 0, 𝑋
1
(0) = 0,

𝑝
2: 𝑑
𝑑𝑇
𝑋
𝜏1

2
= 2 cos (𝜋𝑡)𝑋𝜏1

0
𝑋
𝜏1

1
, 𝑋
2
(0) = 0,

𝑝
3: 𝑑
𝑑𝑇
𝑋
𝜏1

3
= cos (𝜋𝑡) (2𝑋𝜏1

0
𝑋
𝜏1

2
+ (𝑋
𝜏1

1
)
2

) = 0, 𝑋
3 (0) = 0.

(19)

Equations (19) have the following solutions:

𝑋
𝜏1

0
= 𝑐
1
,

𝑋
𝜏1

1
= −𝑇 (𝑥

𝜏0 − 𝑐
2

1
cos𝜋𝑡) ,

𝑋
𝜏1

2
= −𝑐
1
𝑇
2
(cos𝜋𝑡) (𝑥𝜏0 − 𝑐2

1
cos𝜋𝑡) ,

𝑋
𝜏1

3
=
1

3
𝑇
3
(cos𝜋𝑡) [3𝑐4

1
cos2𝜋𝑡 − 4𝑐2

1
𝑥
𝜏0 + (𝑥

𝜏0)
2
] .

(20)

Thus, the approximate solution of (17) by using the EMHPM
is given by

𝑥
𝜏1
(𝑇) ≈ 𝑋

𝜏1

0
+ 𝑋
𝜏1

1
+ 𝑋
𝜏1

2
+ 𝑋
𝜏1

3
. (21)

In this case, the exact solution of 𝑥𝜏1(𝑇) is unknown. To
obtain 𝑥𝜏2 , we compute again the approximate solution of
𝑥
𝜏1(𝑇) by applying our EMHPM and the value of the delayed

time is assumed to remain constant in each subinterval. To
determine 𝑥𝜏2 , we next use the homotopy representation of
(17) for the interval (𝜏, 2𝜏]:

𝐻(𝑋
𝜏2 , 𝑝) =

𝑑

𝑑𝑇
𝑋
𝜏2 + 𝑝 [𝑥

𝜏1 − cos (𝜋𝑡) (𝑋𝜏2)2] = 0.
(22)

Substituting the second order expansion in (22), we get

𝑋
𝜏2

0
= 𝑐
2

𝑋
𝜏2

1
= −𝑇 (𝑥

𝜏1 − 𝑐
2

2
cos𝜋𝑡)

𝑋
𝜏2

2
= −𝑐
2
𝑇
2
(cos𝜋𝑡) (𝑥𝜏1 − 𝑐2

2
cos𝜋𝑡)

𝑋
𝜏2

3
=
1

3
𝑇
3
(cos𝜋𝑡) (3𝑐4

2
cos2𝜋𝑡 − 4𝑐2

2
𝑥
𝜏1 + (𝑥

𝜏1)
2
) .

(23)

Note that (20) and (23) provide approximate solutions to
(17) but evaluated at different interval time delays. To find
the third order approximate solution of (17), we can use a
homotopy of the form:

𝐻(𝑋
𝜏𝑖 , 𝑝) =

𝑑

𝑑𝑇
𝑋
𝜏𝑖 + 𝑝 [𝑋

𝜏𝑖−1 − cos (𝜋𝑡) (𝑋𝜏𝑖)2] = 0.
(24)

Then, by using our EMPHM approach, we have that

𝑋
𝜏𝑖

0
= 𝑐

𝑋
𝜏𝑖

1
= −𝑇 (𝑥

𝜏𝑖−1 − 𝑐
2 cos𝜋𝑡)

𝑋
𝜏𝑖

2
= −𝑐𝑇

2
(cos𝜋𝑡) (𝑥𝜏𝑖−1 − 𝑐2 cos𝜋𝑡)

𝑋
𝜏𝑖

3
=
1

3
𝑇
3
(cos𝜋𝑡) (3𝑐4cos2𝜋𝑡 − 4𝑐2𝑥𝜏𝑖−1 + (𝑥𝜏𝑖−1)2) .

(25)

Notice from (25) that the 𝑘th order approximate solution of
(17) can be written as

𝑋
𝜏𝑖

0
= 𝑐

𝑋
𝜏𝑖

𝑘
=
𝑇

𝑘
(−𝑥
𝜏𝑖−1𝑔 (𝑘) + cos𝜋𝑡

𝑘−1

∑

𝑛1=0

𝑋
𝜏𝑖

𝑛1
𝑋
𝜏𝑖

𝑘−1−𝑛1
) ,

(26)

where 𝑘 > 0, 𝑔(𝑘) = 1 when 𝑘 = 1 and zero otherwise.
Figure 2 shows the approximate solution of (17) obtained

by using the EMHPM approach compared to its numerical
integration solution by using the dde23MATLAB subroutine
program. This case assumes two different initial solutions of
the form 𝑥𝜏0(𝑇) = cos(𝜋(𝑇 + 1)), 𝑥𝜏0(𝑇) = 𝑒𝑇+1, and a time
subintervals Δ𝑡 = 0.01. We can see from Figure 2 that both
simulations agree well for the time span showed.

To further assess the applicability of our proposed
EMHPM approach to high order delay differential equations,
we will next describe a methodology to obtain the approx-
imate solutions of well-known high order delay differential
equations by generalizing our EMHPM approach.
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Figure 3: Schematic of the zeroth order polynomial used to fit the
approximate EMHPM solution.

5. Generalized Solution of Linear DDEs
by the EMHPM Approach

Let us consider an 𝑛-dimensional delay differential equation
of the form

ẋ (𝑡) = A (𝑡) x + B (𝑡) x (𝑡 − 𝜏) , (27)

whereA(𝑡 + 𝜏) = A(𝑡), B(𝑡 + 𝜏) = B(𝑡), x(𝑡) is the state vector,
and 𝜏 is the time delay. By following our EMHPM procedure,
we can write (27) in equivalent form as

ẋ
𝑖 (𝑇) − A𝑡x𝑖 (𝑇) ≈ B𝑡x

𝜏

𝑖
(𝑇) , (28)

where x
𝑖
(𝑇) denotes the 𝑚 order solution of (27) in the 𝑖th

subinterval that satisfies the initial conditions x
𝑖
(0) = x

𝑖−1
and

A
𝑡
and B

𝑡
represent the values of the periodic coefficients at

the time 𝑡. In order to approximate the delayed term x𝜏
𝑖
(𝑇)

in (28), the period [𝑡
0
− 𝜏, 𝑡
0
] is discretized in 𝑁 points

equally spaced as shown in Figure 3. Here, we assume that
the function x𝜏

𝑖
(𝑇) in the delay subinterval [𝑡

𝑖−𝑁
, 𝑡
𝑖−𝑁+1

] is
approximated by a constant value

x𝜏
𝑖
(𝑇) = 𝑥

𝑖−𝑁+1
(𝑇) ≈ x

𝑖−𝑁 (29)

as shown in Figure 3. By following the homotopy perturba-
tion technique, we can write the homotopy representation of
(28) as

𝐻(X
𝑖
, 𝑝) = 𝐿 (X

𝑖
) − 𝐿 (x

𝑖0
) + 𝑝𝐿 (x

𝑖0
) = 𝑝 (A

𝑡
X
𝑖
+ B
𝑡
x
𝑖−𝑁
) .

(30)

Substituting the 𝑚 order expansion X
𝑖
= X
𝑖0
+ 𝑝X
𝑖1
+ ⋅ ⋅ ⋅ +

𝑝
𝑚X
𝑖𝑚

in (30) and by assuming an initial approximation of
the form x

𝑖0
= x
𝑖−1

, we get, after applying the proposed

EMHPMapproach, the following set of first order linear delay
differential equations:

𝑝
0: 𝑑
𝑑𝑇

X
𝑖0
+
𝑑

𝑑𝑇
x
𝑖−1
= 0, X

𝑖
(0) = x

𝑖−1
,

𝑝
1: 𝑑
𝑑𝑇

X
𝑖1
= A
𝑡
X
𝑖0
+ B
𝑡
x
𝑖−𝑁
, X
𝑖1
(0) = 0,

𝑝
2: 𝑑
𝑑𝑇

X
𝑖2
= A
𝑡
X
𝑖1
, X
𝑖2
(0) = 0,

.

.

.

𝑝
𝑚: 𝑑
𝑑𝑇

X
𝑖𝑚
= A
𝑡
X
𝑖(𝑚−1)

, X
𝑖𝑚
(0) = 0.

(31)

By solving (31), we get

X
𝑖0
= x
𝑖−1
,

X
𝑖1
= A
𝑡
x
𝑖−1
𝑇 + B

𝑡
x
𝑖−𝑁
𝑇,

X
𝑖2
=
1

2
A2
𝑡
x
𝑖−1
𝑇
2
+
1

2
A
𝑡
B
𝑡
x
𝑖−𝑁
𝑇
2
,

.

.

.

X
𝑖𝑚
=
1

𝑚!
A𝑚
𝑡
x
𝑖−1
𝑇
𝑚
+
1

𝑚!
A𝑚−1
𝑡

B
𝑡
x
𝑖−𝑁
𝑇
𝑚
.

(32)

Equations (32) can be written as

X
𝑖𝑘
=
𝑇

𝑘
(A
𝑡
X
𝑖(𝑘−1)

+ 𝑔 (𝑘)B𝑡x𝑖−𝑁) , 𝑘 = 1, 2, 3, . . . ,
(33)

where X
𝑖0
= x
𝑖−1

and 𝑔(𝑘) = 1 for 𝑘 = 1 and 𝑔(𝑘) = 0,
otherwise. Thus, the solution of (27) is obtained by adding
the X
𝑖𝑘
approximate solutions:

x
𝑖 (𝑇) ≈

𝑚

∑

𝑘=0

X
𝑖𝑘 (𝑇) . (34)

Notice, however, that solution (34) may be further improved
by using a first order polynomial representation of x𝜏

𝑖
(𝑇) as

shown in Figure 4. Then, the function x𝜏
𝑖
(𝑇) in the delay

subinterval [𝑡
𝑖−𝑁
, 𝑡
𝑖−𝑁+1

] takes the form

x𝜏
𝑖
(𝑇) = x𝑖−𝑁+1 (𝑇) ≈ x𝑖−𝑁 +

(𝑁 − 1)

𝜏
(x
𝑖−𝑁+1

− x
𝑖−𝑁
) 𝑇.

(35)

Substituting (35) into (28) gives

ẋ
𝑖
(𝑇) − A

𝑡
x
𝑖
(𝑇)

≈ B
𝑡
x
𝑖−𝑁
−
(𝑁 − 1)

𝜏
B
𝑡
x
𝑖−𝑁
𝑇 +
(𝑁 − 1)

𝜏
B
𝑡
x
𝑖−𝑁+1

𝑇.

(36)
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We next assume that the homotopy representation of (36) is
given as

𝐻(X
𝑖
, 𝑝) = 𝐿 (X

𝑖
) − 𝐿 (x

𝑖0
) + 𝑝𝐿 (x

𝑖0
)

− 𝑝 (AX
𝑖
+ Bx
𝑖−𝑁
−
(𝑁 − 1)

𝜏
Bx
𝑖−𝑁
𝑇

+
(𝑁 − 1)

𝜏
Bx
𝑖−𝑁+1

𝑇) = 0.

(37)

Substituting the 𝑚 order expansion X
𝑖
(𝑇) = X

𝑖0
(𝑇) +

𝑝X
𝑖1
(𝑇) + ⋅ ⋅ ⋅ 𝑝

𝑚X
𝑖𝑚
(𝑇) in (37) and assuming that the initial

approximation is given by x
𝑖0
= x
𝑖−1

, we get

𝑝
0: 𝑑
𝑑𝑇

X
𝑖0
+
𝑑

𝑑𝑇
x
𝑖−1
= 0, X

𝑖 (0) = x𝑖−1,

𝑝
1: 𝑑
𝑑𝑇

X
𝑖1
= A
𝑡
X
𝑖0
+ B
𝑡
x
𝑖−𝑁
−
𝑁 − 1

𝜏
B
𝑡
x
𝑖−𝑁
𝑇

+
𝑁 − 1

𝜏
B
𝑡
x
𝑖−𝑁+1

𝑇, X
𝑖1
(0) = 0,

𝑝
2: 𝑑
𝑑𝑇

X
𝑖2
= AX

𝑖1
, X
𝑖2
(0) = 0,

.

.

.

𝑝
𝑚: 𝑑
𝑑𝑇

X
𝑖𝑚
= AX

𝑖(𝑚−1)
, X
𝑖𝑚
(0) = 0.

(38)

By solving (38) and by following the EMHPM procedure, we
get

X
𝑖0
= x
𝑖−1
,

X
𝑖1
= A
𝑡
x
𝑖−1
𝑇 + B

𝑡
x
𝑖−𝑁
𝑇 −
1

2

𝑁 − 1

𝜏
B
𝑡
x
𝑖−𝑁
𝑇
2

+
1

2

𝑁 − 1

𝜏
B
𝑡
x
𝑖−𝑁+1

𝑇
2
,

X
𝑖2
=
1

2
A2
𝑡
x
𝑖−1
𝑇
2
+
1

2
A
𝑡
B
𝑡
x
𝑖−𝑁
𝑇
2

−
1

6

𝑁 − 1

𝜏
A
𝑡
B
𝑡
x
𝑖−𝑁
𝑇
3
+
1

6

𝑁 − 1

𝜏
A
𝑡
B
𝑡
x
𝑖−𝑁+1

𝑇
3
,

.

.

.

X
𝑖𝑚
=
1

𝑚!
A𝑚
𝑡
x
𝑖−1
𝑇
𝑚
+
1

𝑚!
A𝑚−1
𝑡

B
𝑡
x
𝑖−𝑁
𝑇
𝑚

−
1

(𝑚 + 1)!

𝑁 − 1

𝜏
A𝑚−1
𝑡

B
𝑡
x
𝑖−𝑁
𝑇
𝑚+1

+
1

(𝑚 + 1)!

𝑁 − 1

𝜏
A𝑚−1
𝑡

B
𝑡
x
𝑖−𝑁+1

𝑇
𝑚+1
.

(39)

Here, the recursive form of X
𝑖𝑘
(𝑇) is written as

X
𝑖𝑘
= Xa
𝑖𝑘
+ Xb
𝑖𝑘
𝑘 = 1, 2, 3, . . . , (40)

ti−N+1 tti
ti−1ti−N

Δt

x i(t)
x i+1(t)

x x i−N
x i−N+1

𝜏 = (N − 1)Δt

Figure 4: Schematic EMHPM solution using first polynomial to
approximate delay subinterval.

where Xa
𝑖0
= x
𝑖−1
,Xb
𝑖0
= 0 and

Xa
𝑖𝑘
=
𝑇

𝑘
(A
𝑡
Xa
𝑖(𝑘−1)

+ 𝑔 (𝑘)B
𝑡
x
𝑖−𝑁
) ,

Xb
𝑖𝑘
=
𝑇

𝑘 + 1
(A
𝑡
Xb
𝑖(𝑘−1)

+𝑔 (𝑘) [
𝑁 − 1

𝜏
𝑇 (−B

𝑡
x
𝑖−𝑁
+ B
𝑡
x
𝑖−𝑁+1

)]) .

(41)

Thus, the approximate solution of (27) by the EMHPM can
be obtained by substituting (40) into (34).

In the next section, we will apply our EMHPM procedure
to obtain the solution of two second order delay differential
equations: (a) the dampedMathieu equation with time delay,
and (b) the well-known delay differential equation that
describes the dynamics in one degree-of-freedom milling
machine operations.

5.1. Solution of theDampedMathieu EquationwithTimeDelay.
In order to assess the accuracy of our EMHPM approach, we
first obtain the solution of the damped Mathieu differential
equation with time delay that combines the effect of paramet-
ric excitation and damping.This equation is described by the
following equation:

𝑥̈ + 𝜅𝑥̇ + (𝛿 + 𝜀 cos(2𝜋𝑡
𝑇
))𝑥 = 𝑏𝑥 (𝑡 − 𝜏) , (42)

where 𝜅, 𝛿, 𝜀, 𝜏, and 𝑇 are system parameters whose value
depends on the physics of the system. The approximate
solution of (42) obtained by using the semidiscretization
method is widely discussed in [18, 19]. Here, we focus our
attention on applying the EMHPM to find the approximate
solution of (42) and we also assess the accuracy of the derived
solution by comparing it with the corresponding numerical
integration solution of (42).

By following the EMHPM procedure, we first write (42)
in the following equivalent form:

𝑥̈
𝑖
(𝑇) + 𝜅𝑥̇

𝑖
(𝑇) + 𝛼

𝑡
𝑥
𝑖
(𝑇) ≈ 𝑏𝑥

𝑖−𝑁+1
(𝑇) , (43)

where 𝑥
𝑖
(𝑡) denotes the 𝑚 order solution of (43) in the

𝑖th subinterval that satisfies the following initial conditions:
𝑥
𝑖
(0) = 𝑥

𝑖−1
and 𝑥̇

𝑖
(0) = 𝑥̇

𝑖−1
. The space state form

representation of (43) is given by

ẋ
𝑖
(𝑇) = A

𝑡
x
𝑖
(𝑇) + B

𝑡
x
𝑖−𝑁+1

(𝑇) , (44)
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Figure 5: Numerical solutions of the damped Mathieu equation
with time delay by dde23, the zeroth EMHPM, and the first EMHPM
with𝑁 = 50 and𝑚 = 4.

Table 1: Computer time needed to solve the damped Mathieu
equation with time delay. The 𝑚 order solution of the EMPHM
approach is chosen to guarantee the convergence of its approximate
solution.

dde23 [ms] EMHPM
𝑁 𝑚 Zeroth [ms] First [ms]

19

15 5 4 5
20 4 6 6
40 3 12 12
60 2 17 18
60 5 18 19
60 10 20 21

where

A
𝑡
= [
0 1

−𝛼
𝑡
−𝜅
] , B

𝑡
= [
0 0

𝑏
𝑡
0
] (45)

and 𝛼
𝑡
= (𝛿 + 𝜀 cos(𝑡)) is a time periodic term. The EMHPM

approximate solution of (44) is illustrated in Figure 5 where
we have assumed an unstable system behavior for which 𝜅 =
0.2, 𝛿 = 3.0, 𝜀 = 1, 𝑏 = −1, and 𝑇 = 𝜏 = 2𝜋. See
[20]. As we can see from Figure 5, our approximate EMHPM
solution to (42) is compared with its numerical integration
solution obtained from dde23 MATLAB algorithm for the
time interval of 2𝑇, by assuming that 𝑁 = 50 with the
following initial values: 𝑥

−50
(𝑇) = 𝑥

−49
(𝑇) = ⋅ ⋅ ⋅ 𝑥

0
(𝑇) =

0.001 and 𝑥̇
−50
(𝑇) = 𝑥̇

−49
(𝑇) = ⋅ ⋅ ⋅ 𝑥̇

0
(𝑇) = 0.

It can be seen fromFigure 5 that in the interval [0,𝑇] both
the zeroth and the first order solutions are the same since the
delay subintervals are constant. See Figure 3. However, in the
next interval [𝑇, 2𝑇] it is clear that the first order EMPHM
solution provides a better approximation on the delay subin-
terval. The computation total time to calculate the solutions
in the MATLAB code is listed in Table 1. The order 𝑚 and
the discretized time intervals 𝑁 in the EMPHM approach
are chosen to guarantee the convergence of our approximate
solution to the exact one. To provide a full understanding of
how the solution is computed by the EMHPM approach, we
attached in Algorithm 1 the corresponding MATLAB code.
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Figure 6: Estimated relative error values between the numerical
solution dde23 and the EMHPMapproximate solutions.Herewe use
for the EMHPM the values of𝑚 = 2, 5, and 10.

Figure 6 shows the relative error between our approxi-
mate EMPHM and the dde23 solution and its relationship
with the order𝑚 and the discretized time intervals𝑁. Notice
that the relative error values coincide at values of 𝑁 ≥ 45.
Also, we can see from Figure 6 that the computed relative
error values for approximate solutions of order𝑚 ≥ 5 remain
unchanged.

5.2. A Practical Application: Cutting Operation on Milling
Machine. We next use our EMHPM procedure to obtain
the solution of the single degree-of-freedom milling opera-
tion. We use the simplified form based on [20–22]:

𝑥̈ (𝑡) + 2𝜁𝜔𝑛𝑥̇ (𝑡) + 𝜔
2

𝑛
𝑥 (𝑡) = −

𝑎
𝑝
𝐾
𝑠 (𝑡)

𝑚
𝑚

(𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏)) ,

(46)

where 𝜔
𝑛
is the angular natural frequency of the system, 𝜁 is

the damping ratio, 𝑎
𝑝
is the depth of cut, 𝑚

𝑚
is the modal

mass of the tool, 𝜏 represents the time delay which is equal
to the tooth passing period, and 𝐾

𝑠
(𝑡) is the specific cutting

force coefficient which can be determined from
𝐾
𝑠 (𝑡)

=

𝑧𝑛

∑

𝑗=1

𝑔 (𝜙
𝑗
(𝑡)) sin (𝜙

𝑗
(𝑡)) (𝐾

𝑡
cos𝜙
𝑗
(𝑡) + 𝐾

𝑛
sin𝜙
𝑗
(𝑡)) ,

(47)

where 𝑧
𝑛
is the tool number of teeth, 𝐾

𝑡
and 𝐾

𝑛
are the

tangential and the normal linear cutting force coefficients,
respectively, 𝜙

𝑗
(𝑡) is the angular position of the 𝑗-tooth

defined as

𝜙
𝑗
(𝑡) = (

2𝜋𝑛

60
) 𝑡 +

2𝜋𝑗

𝑧
𝑛

, (48)

and 𝑛 is the spindle speed in rpm [20]. The function 𝑔(𝜑
𝑗
(𝑡))

is a switching function, which has a unity value when the 𝑗-
tooth is cutting and zero otherwise:

𝑔 (𝜙
𝑗 (𝑡)) = {

1 𝜙st < 𝜙𝑗 (𝑡) < 𝜙ex
0 otherwise.

(49)
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function dde23 ddeEM mathieu paper

disp(‘Mathieu equation solution’)
% Solution by EMHPM with zeroth and first order solution

eps=1; kappa=0.2; T=2∗pi; tau=T; b=−1; delta=3; % Mathieu Parameters

pntDelay=1; N=50; m ord=5; dt=tau/(N−1); ktau=2; tspan=[0,ktau∗T]; % EMHPM Parameters

%% Solution

% Solution by dde23

tdde=linspace(0,ktau∗tau,ktau∗(N−1)+1);

dde=@(t,y,z) mathieu dde(t,y,z,kappa,delta,eps,b,tau);

te dde=tic;sol = dde23(dde,tau,@history,tspan); toc(te dde); xdde=deval(sol,tdde);

% Solution by zeroth EMHPM

dde emhpm fun=@(t,c0,tt,zm,zn,tau,N) mathieu zeroth(t,c0,tt,zm,zn,tau,N,m ord,

kappa,delta,eps,b,T);

tic;[t0,z0]=ddeEMHPM(dde emhpm fun,tspan,@history,tau,dt,pntDelay); toc

% Solution by First EMHPM

dde emhpm fun=@(t,c0,tt,zm,zn,tau,N) mathieu first(t,c0,tt,zm,zn,tau,N,m ord,kappa,delta,eps,b,T);

tic;[t1,z1]=ddeEMHPM(dde emhpm fun,tspan,@history,tau,dt,pntDelay); toc

% Plot results

ind0=1:2:ktau∗(N−1); ind1=2:2:ktau∗(N−1);

Parent1=figure (1);

axes1 = axes(‘Parent’,Parent1,‘FontSize’,12,‘FontName’,‘Times New Roman’);
box(axes1,‘on’); hold(axes1,‘all’);
plot(tdde,xdde(1,:),‘Parent’,axes1,‘LineWidth’,2,‘Color’,[0.502 0.502 0.502],‘DisplayName’,‘Numerical
dd23’);
plot(t0(ind0),z0(ind0,1),‘MarkerSize’,5,‘Marker’,‘o’,‘LineStyle’, ‘none’,‘DisplayName’,‘Zeroth
EMHPM’,‘Color’,[0 0 0]);

plot(t1(ind1),z1(ind1,1),‘MarkerSize’,7,‘Marker’,‘x’,‘LineStyle’,‘none’,‘DisplayName’,‘First
EMHPM’,‘Color’,[0 0 0]);

xlabel(‘\itt’,‘FontSize’,12,‘FontName’,‘Times New Roman’);
ylabel(‘\itx’,‘FontSize’,12,‘FontName’,‘Times New Roman’);
end

%% Mathieu definitions

function dydt = mathieu dde(t,y,z,kapa,dlt,eps,b,T)

dydt = [y(2)
-kapa∗y(2)−(dlt+eps∗cos(2∗pi∗t/T))∗y(1)+b∗z(1)];

end

function Z = mathieu zeroth(t,c0,tt,zm,zn,tau,N,m,kpa,dlt,eps,b,T)

Z=[c0(1),c0(2)]; alf=dlt+eps∗cos(2∗pi/T∗tt);

for ik=1:m

Z(ik+1,1)=Z(ik,2)∗t/ik;

Z(ik+1,2)=−kpa∗Z(ik,2)−alf∗Z(ik,1);

if ik==1, Z(ik+1,2)=Z(ik+1,2)+b∗zm(1); end

Z(ik+1,2)=Z(ik+1,2)∗t/ik;

end

Z=sum(Z);

end

function Z = mathieu first(t,c0,tt,zm,zn,tau,N,m,kpa,dlt,eps,b,T)

alf=dlt+eps∗cos(2∗pi/T∗tt); Z=[c0(1),c0(2)]; Z =[0,0];

for ik=1:m

Z(ik+1,:)=[Z(ik,2)∗t/ik, −kpa∗Z(ik,2)−alf∗Z(ik,1)];

Z (ik+1,:)=[Z (ik,2)∗t/ik, −kpa∗Z (ik,2)−alf∗Z (ik,1)];

if ik==1,

Z(ik+1,2)=Z(ik+1,2)+b∗zm(1);
Z (ik+1,2)=Z (ik+1,2)+b∗(N−1)/tau∗(zn(1)−zm(1))∗t;

end

Z(ik+1,2)=Z(ik+1,2)∗t/ik;

Z (ik+1,2)=Z (ik+1,2)∗t/(ik+1);

Algorithm 1: Continued.
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end

Z=sum(Z)+sum(Z );

end

function out=history(t)

out=[1E−3+0∗t 0+0∗t];

end

%% EMHPM algorithm for ODE solutions

function [t,z]= odeEMHPM(nde,tspan,z0,Deltat,pnts)

% ode solver by Enhanced Multistage Homotopy Perturbation Method

tini=tspan(1); tfin=tspan(end); tstart=tini;

tini=tini−tstart; tfin=tfin−tstart; % shifted time set to zero

% Handle errors

if tini == tfin

error(‘The ending and starting time values must be different.’);
elseif abs(tini)> abs(tfin)

tspan=flipud(fliplr(tspan)); tini=tspan(1); tfin=tspan(end);

end

tdir=sign(tfin−tini);

if any(tdir∗diff(tspan) <= 0)

error(‘tspan entries must be strictly sorted.’);
end

incT=Deltat/pnts;

if incT<=0

error (‘Increasing must be greater than zero.’)
end

z(1,:)=z0󸀠 ; t(1)=tini; iteT=2; % set initial values

t(iteT)=tini+incT∗tdir;

while tdir∗t(iteT)<tdir∗(tfin+tdir∗incT)

P act=ceil(.99999∗(t(iteT)−tini)∗tdir/Deltat); % count sub-intervals

c=z((Deltat/incT)∗(P act−1)+1,:); % set the corresponding initial condition

tsub(iteT−1)=t(iteT)-(P act−1)∗Deltat∗tdir; % evaluate the solution at the shifted time

temp=tsub(iteT−1);

z(iteT,:)=nde(temp,c,tstart+t(iteT));

if tdir∗t(iteT)>=tdir∗tfin∗0.99999 % repeat for the next sub-interval

break

else

iteT=iteT+1; t(iteT)=tini+(iteT−1)∗incT∗tdir;

end

end

t=t 󸀠 +tstart;

end

%% EMHPM algorithm for DDE solutions

function [t z]=ddeEMHPM(dde,tspan,history,tau,Deltat,pntDelta)

% dde solver by Enhanced Multistage Homotopy Perturbation Method

tini=tspan(1); tfin=tspan(end); % span where the solution is founded

if tau<Deltat

error(‘Subtinterval must not be greater than tau’);
end

if mod(tau,Deltat)∼=0

pastDlt=Deltat;

Deltat=tau/round(tau/Deltat);

warning(‘Subtinterval was modified from %0.5g to %0.5g.’,pastDlt,Deltat);
end

pnt=round(tau/Deltat); % samples−1 [−tau 0]

incT=Deltat/pntDelta; % step for set resolution

t=−tau+tini+(0:pnt∗pntDelta)’∗incT; % evaluation of the initial solution [−tau 0]

z=history(t); % initial behavior in the inverval [−tau 0]

c=z(end,:); % initial condition

Algorithm 1: Continued.
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m=pnt∗pntDelta; % samples between tau

itDlt=0;

while (t(end)+eps)<tfin;

tspan=[tini+itDlt∗Deltat;tini+(itDlt+1)∗Deltat]; % preparing the span for next Deltat

zm=z(length(z)−m,:)’; zn=z(1+length(z)−m,:)’; % previous tau solution

emhpm fun=@(time,c,T) dde(time,c,T,zm,zn,tau,m); % application of the odeEMHPM

[t aux z aux]=odeEMHPM(emhpm fun,tspan,z(end,:),Deltat,pntDelta);

z=[z(1:end−1,:);z aux]; t=[t(1:end−1,:);t aux]; % joining the solutions

itDlt=itDlt+1;

end

z=z(pnt∗pntDelta+1:end,:);t=t(pnt∗pntDelta+1:end,:);

end

Algorithm 1: MATLAB algorithm.

Here, 𝜙st and 𝜙ex are the angles where the teeth enter and exit
the workpiece. For upmilling, 𝜙st = 0 and 𝜙ex = arccos(1 −
2𝑎
𝑑
), for downmilling, 𝜙st = arccos(2𝑎

𝑑
− 1) and 𝜙ex = 𝜋,

where 𝑎
𝑑
is the radial depth of cut ratio.

By following the EMHPM procedure, we can write (46)
in equivalent form as

𝑥̈
𝑖
(𝑇) + 2𝜁𝜔

𝑛
𝑥̇
𝑖
(𝑇) + 𝜔

2

𝑛
𝑥
𝑖
(𝑇)

≈ −

𝑎
𝑝
𝐾st

𝑚
𝑚

(𝑥
𝑖 (𝑇) − 𝑥𝑖−𝑁+1 (𝑇)) ,

(50)

where 𝑥
𝑖
(𝑇) denotes the 𝑚 order solution of (46) on the 𝑖th

subinterval that satisfies the initial conditions 𝑥
𝑖
(0) = 𝑥

𝑖−1
,

𝑥̇
𝑖
(0) = 𝑥̇

𝑖−1
, and ℎ

𝑡
= ℎ(𝑡) and 𝑥

−𝜏
is given by (35).

Introducing the transformation x
𝑖
= [𝑥
𝑖
, 𝑥̇
𝑖
]
𝑇, (50) can be

written as a system of first order linear delay differential
equations of the form

ẋ
𝑖
(𝑇) = A

𝑡
x
𝑖
(𝑇) + B

𝑡
x
𝑖−𝑁+1

(𝑇) , (51)

where

A
𝑡
= [

[

0 1

−𝜔
2

𝑛
−
𝑤

𝑚
𝑚

𝐾st −2𝜁𝜔𝑛
]

]

; B
𝑡
= [

[

0 0
𝑤

𝑚
𝑚

𝐾st 0
]

]

.

(52)

We next apply the EMHPM procedure to solve (46) by
considering a downmilling operation with the following
parameter values: 𝑧

𝑛
= 2, 𝑎

𝑑
= 0.1, 𝜔

𝑛
= 5793 rad/s,

𝜁 = 0.011, 𝑚
𝑚
= 0.03993 kg, 𝐾

𝑡
= 6 × 10

8N/m2, and
𝐾
𝑛
= 2 × 10

8N/m2. As we can see from Figures 7 and 8 and
for the depth of cut values of 𝑎

𝑝
= 2mm (stable) and 𝑎

𝑝
=

3mm (unstable), our EMHPM approximate solutions follow
closely the numerical integration solutions of (46) obtained
by using the dde23 algorithm.

Figure 9 shows the relative error between the EMPHM
and the dde23 numerical solution, while Table 2 shows the
CPU time needed for each solution. Here we use 𝑁 = 75
since the average step size of the dde23 algorithm is around
Δ𝑡 ≈ 𝜏/𝑁. Note that, for 𝑚 = 7, the zeroth order EMHPM
approximate solution has the fastest CPU time. We can see
from Figure 9 that the value of the relative error becomes
basically the same for𝑚 = 2, 7, and 10 and𝑁 ≥ 20.
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Figure 7: EMHPM approximate solutions of (46) with parameter
values of 𝑎

𝑝
= 2mm, 𝑛 = 10000 rpm. Stable machine operation.
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Figure 8: EMHPM approximate solutions of (46) with parameter
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= 3mmand 𝑛 = 10000 rpm.Unstable (chatter)machine

operation.

6. Conclusions

We have developed a new algorithm based on the homotopy
perturbation method to solve delay differential equations.
The proposed EMHPM approach is based on a sequence of
subintervals that approximate the solution of delayed differ-
ential equations by using the transformation rule 𝑢(𝑡) →
𝑢
𝑖
(𝑇), where 𝑢

𝑖
satisfies the initial conditions. We have
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Figure 9: Estimated relative error values between dde23 and the
EMHPM approximate solutions. Here we have used the system
parameter values of 𝑎

𝑝
= 2mm and 𝑛 = 1000 rpm and values of

𝑚 = 2, 7, and 10.

Table 2: CPU time comparison among the approximate solutions of
(46) by using dde23, the zeroth order, and the first order EMHPM
solutions.

Solution method Time [ms]
dde23 139
Zeroth order EMHPM (𝑚 = 7) 77
First order EMHPM (𝑚 = 7) 87

shown that our proposed EMHPM approach can be applied
to obtain the approximate solution of a delay differential
equation not only with constant, but also with variable
coefficients with theoretical predictions that follow well the
numerical integration solutions. To further assess the validity
of this new approach, we have compared the approximate
solutions of two delayed differential equations with respect to
their corresponding numerical integration solutions obtained
from the MATLAB dde23 algorithm. The test cases were (a)
the damped Mathieu differential equation with time delay
and (b) the governing equation of motion of downmilling
operations. We have found that the EMHPM closely follows
the numerical integration solutions of the corresponding
equations and that these require less CPU time and have
smaller relative errors.
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