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The objective of this research is to study the evolution of CD4+ T lymphocytes infected with HIV in HIV-seropositive individuals
under antiretroviral treatment utilizing a mathematical model consisting of a system of delay-differential equations. The infection
rate of CD4+T lymphocytes is a time-dependent parameter with delay. Such delay is given by a fuzzy number due to the uncertainty
of the effects of both pharmacological and intracellular delays. A cellular automaton is utilized to estimate the parameters of the
system.The effects of antiretroviral therapy in the cellular automaton are modeled using a fuzzy rule-based system with two inputs:
themedication potency and the treatment adhesion for three hypothetical individuals. For each of them, we determine the infection
rate of CD4+ T lymphocytes, which is different from zero, as opposed to other studies reported in the literature. As the infection
rate is considered a fuzzy parameter, we determine the fuzzy and the defuzzified solutions for the infected CD4+T lymphocytes.We
obtain the maximum values of infected cells for individuals that receive low, medium, and high potency medication and treatment
adhesion. The results obtained are in accordance qualitatively with what would be expected in a real situation.

1. Introduction

AIDS (acquired immunodeficiency syndrome) is an infec-
tious and contagious disease caused by HIV (human immun-
odeficiency virus) which leads to a progressive loss of infected
individuals’ immunity.This syndrome is characterized by sig-
nals and symptomswhich are due to the reduced rate ofCD4+
T lymphocytes within the bloodstream which are cells of
paramount importance for the perfect function of the human
immune system. Since HIV was identified, AIDS became
a world epidemic of great proportions. Experts from the
United Nations estimate that in 2013 about 35 million people
were contaminated worldwide with HIV. In Latin American
countries 1.6 million people are infected, which indicates that
they face a biologic problem of great social and economic
repercussion [1]. The virus produces three proteins that are
of paramount importance for the replication process: reverse
transcriptase, integrase, and protease.When the virus reaches
the bloodstream, it attacks mainly the CD4+ T lymphocytes.
The quantity of CD4+ T lymphocytes in peripheral blood

presents important prognostic implication for the evolution
of the viral infection. The antiretroviral treatment works
through the inhibition of those three proteins. The inhibitors
prevent free virus particles from infecting CD4+ T lympho-
cytes delaying viral replication and allowing the organism to
react naturally. The inhibition of these three enzymes has led
to a substantial improvement in HIV therapy [2].

In the last decades, fuzzy set theory has contributed
significantly to the mathematical modeling of uncertain
phenomena such as in the case of the infection by HIV [3–
5]. Zarei et al. [6] proposed a fuzzy mathematical model of
HIV infection which consisted of a linear fuzzy differential
equation system that describes the level of immune cells and
the viral load due to the inherent fuzziness of the immune
system’s strength. The authors also proposed a fuzzy optimal
control problem that minimizes both the viral load and the
systemic cost for the body.

The deterministic mathematical models described by
delay-differential equations are sometimes more realistic
than the ones with no delay. Herz et al. [7] developed a
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deterministic model to describe the behavior of uninfected
and infected CD4+ T lymphocytes and the plasma HIV
load incorporating pharmacological and intracellular delays
in individuals under antiretroviral therapy. Such delays are
defined as, respectively, the time span during which the drugs
reach an effective concentration and the time span between
cell infection and the production of new virus particles.
They also demonstrate that intracellular delay may affect the
magnitude of the range of HIV decline causing variability
or uncertainty in the response to the therapy with protease
inhibitors. In many cases the equation parameters are uncer-
tain and such equations should be reinterpreted. Traditionally
such uncertainty has been treated by means of statistical
methodologies. Mittler et al. [8] assume that the delay is
characterized by a probability distribution. The adoption of
distributed delay produced good results in the study of HIV
dynamics under treatment. The authors above provide simu-
lations close to the biological information given by Herz et al.
(1996) in which the different phases of decay of the virus after
treatment with antiretrovirals are represented graphically.

Jafelice et al. [9], using the model proposed by Herz et al.
[7], modeled the virus rate decline in function of the delay at
the onset of the treatment. The delay was considered a fuzzy
parameter; therefore, a fuzzy solution was determined for the
decline of the virus.

Cellular automata allow simulation of complex nonlinear
dynamic systems simultaneously in time and space. The state
of each cell of the automaton is modified according to its
own state and the states of the cells in its neighborhood.
These states correlate amongst themselves through simple
rules that imitate the biological and physical laws which rule
the behavior of the system [10]. Jafelice et al. (2009) simulated
a cellular automaton, shaped like a torus, in which artificially
uninfected and infected CD4+ T lymphocytes, free virus
particles, and virus-specific cytotoxic T lymphocytes (CTLs)
that attack infected cells within an individual undergoing
antiretroviral therapy coexist.

The objective of this research is to propose a model
of the evolution of infected CD4+ T lymphocytes in HIV-
seropositive individuals under antiretroviral treatment. From
a cellular automaton [11] it is possible to obtain an approx-
imate function of the infection rate coherent with the HIV
dynamic behavior. In this paper we study HIV dynamics by
means of a system of differential equations with uncertain
delay in three hypothetical individuals submitted to three
levels of treatment adhesion and three medication potencies.
The parameters and the infection rate values for this system
are obtained from the cellular automaton. The infection rate
values are adjusted by the least squares method. Afterward
we determine the numeric solution of the fuzzy model
considering the delay as a triangle fuzzy number. Finally, we
attain the defuzzified numeric solution for this model for
each one of the three individuals. A different aspect of our
research is that we consider the infection rate as different
from zero, whereas in the model by Herz et al. (1996), set
for simplification, such rate was equal to zero. Considering
the infection rate equal to zero implies that the antiretroviral
treatments are 100% effective, a situation that does not occur
in reality since there is no definitive control of AIDS.

2. Methodology

2.1. Basic Concepts of Fuzzy SetTheory. First we define a fuzzy
subset 𝐷 of 𝑋 given from a function 𝜇

𝐷
: 𝑋 → [0, 1], called

the membership function, which is associated with the fuzzy
set𝐷, where𝑋 is a nonempty set. The value 𝜇

𝐷
(𝑥) represents

the degree of membership of 𝑥 ∈ 𝐷. A classic subset 𝐷 of𝑋 is
a particular fuzzy set for which the membership function is
the characteristic functionX

𝐷
: 𝑋 → {0, 1} [12].

The 𝛼-cuts of the fuzzy set 𝐷 are denoted by [𝐷]
𝛼 and

defined as [𝐷]
𝛼

= {𝑥 ∈ 𝑋, 𝜇
𝐷
(𝑥) ≥ 𝛼}, 0 < 𝛼 ≤ 1; [𝐷]

0
=

supp(𝐷), where supp(𝐷) = {𝑥 ∈ 𝑋, 𝜇
𝐷
(𝑥) > 0} is the sup-

port of𝐷. A fuzzy set𝐷 is called a fuzzy number when𝑋 = R

and all 𝛼-cuts of 𝐷 are nonempty, all 𝛼-cuts of 𝐷 are closed
intervals of R, and the support of𝐷 is bounded.

Secondly we remind the reader that fuzzy rule-based
systems (FRBS) is a concept that plays a key role in fuzzy set
theory. They are broadly used in model problems, control,
and classification [13] and may be considered as “expert
systems” due to their basic composition that includes an
inference machine and a rule base, both under the direct
influence of human expert knowledge [14]. Four components
comprise a FBRS: an input processor that performs the
fuzzification of the input data, a collection of nebulous
rules called rule bases, an inference machine, and an output
processor that provides a real number. Once rule bases of the
type “If. . .then. . .” are established, a FRBS can be understood
as a mapping between an input and an output of the formula
𝑦 = 𝑓(𝑥), 𝑥 ∈ 𝑅

𝑛 and 𝑦 ∈ 𝑅
𝑚.

Thirdly a concept used also in this paper is Zadeh’s
Extension Principle. Its role is to obtain images of fuzzy sets
via classic functions.

Let 𝑋 and 𝑌 be two nonempty universal sets and a
function 𝑓 : 𝑋 → 𝑌. Given a fuzzy set 𝐷 ⊂ 𝑋, the fuzzy
set ̂

𝑓(𝐷) ⊂ 𝑌, with membership function given by

𝜇
𝑓(𝐷)

(𝑦) =

{

{

{

sup
{𝑥:𝑓(𝑥)=𝑦}

𝜇
𝐷 (𝑥) if {𝑥 : 𝑓 (𝑥) = 𝑦} ̸= 𝜙,

0 otherwise,
(1)

is called Zadeh’s Extension Principle of 𝐷 by 𝑓. Note that
̂
𝑓(𝐷) = 𝑓(𝐷) if𝐷 is a classical set of𝑋.

2.2. Classic Models for HIV Dynamics. Herz et al. [7] present
a model which incorporates an antiretroviral treatment that
contains three time-dependent variables: the population of
uninfected cells 𝑛(𝑡), the population of infected cells that
produce virus 𝑖(𝑡), and the plasma viral load V(𝑡), the three of
them dying at the respective rates of 𝑎, 𝑏, and 𝑠. In this model
it is assumed that uninfected cells are continually produced
by the human body at a constant influx 𝑟. The infected cells
produce virus particles at rate 𝑘(𝑡). In order to incorporate
the virus life cycle in the intracellular phase of the model,
Herz et al. [7] assume a time delay 𝜏 for virus production
after cell infection.This implies that the recruitment of virus-
producing cells at time 𝑡 is given by the density of cells that
were newly infected at time 𝑡 − 𝜏 and are still alive at time
𝑡. Moreover, we assumed a constant death rate 𝑎 for infected
but not yet virus-producing cells. The probability of survival
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Figure 1: Schematic representation of the methodology utilized to obtain the parameters of system (3).

from 𝑡−𝜏 to time 𝑡 is only 𝑒−𝑎𝜏. More generally, the probability
of survival is given by a nonincreasing function 𝑓(𝜏) with
0 ≤ 𝑓(𝜏) ≤ 1. Thus, the model can be written as

𝑑𝑛

𝑑𝑡

= 𝑟 − 𝑎𝑛 −𝛽 (𝑡) 𝑛V,

𝑑𝑖

𝑑𝑡

= 𝛽 (𝑡 − 𝜏) 𝑛 (𝑡 − 𝜏) V (𝑡 − 𝜏) 𝑒
−𝑎𝜏

− 𝑏𝑖,

𝑑V
𝑑𝑡

= 𝑘 (𝑡) 𝑖 − 𝑠V.

(2)

Based on the work by [15], we include in system (2) an
equation for CTL as variable 𝑧 and amortality rate𝑝𝑖𝑧 caused
by CTLs of infected cells in the second equation, as follows:

𝑑𝑛

𝑑𝑡

= 𝑟 − 𝑎𝑛 −𝛽 (𝑡) 𝑛V,

𝑑𝑖

𝑑𝑡

= 𝛽 (𝑡 − 𝜏) 𝑛 (𝑡 − 𝜏) V (𝑡 − 𝜏) 𝑒
−𝑎𝜏

− 𝑏𝑖 − 𝑝𝑖𝑧,

𝑑V
𝑑𝑡

= 𝑘 (𝑡) 𝑖 − 𝑠V,

𝑑𝑧

𝑑𝑡

= 𝑐𝑖𝑧 − 𝑑𝑧.

(3)

The rate of CTL proliferation in response to antigen is 𝑐𝑖𝑧.
In the absence of simulation CTLs decay at rate 𝑑𝑧. The
qualitative behavior of the HIV infection rate 𝛽(𝑡) in relation
to the lymphocyte T CD4+ is also studied. The variables
and parameters are dimensionless since the system of delay-
differential equations (3) is solved numerically according to
the parameter values and initial conditions of the variables
which are further described in Section 3.1.

In the next subsection we depict the cellular automaton
and the FRBS used for attaining the parameters of the system.

2.3. Cellular Automaton and Fuzzy Rule-Based System. In
the cellular automaton (CA) described by Jafelice et al. [11],
uninfected and infected CD4+ T lymphocytes, free virus
particles, and virus-specific CTL (cytotoxic T lymphocyte)

coexist in the bloodstream of an individual under antiretro-
viral treatment. The CA is two-dimensional with Moore
neighborhood [16] and periodic (toroidal) boundary [17].
The cells move in eight directions: north, east, south, west,
northeast, northwest, southeast, and southwest. The changes
in the states of the cells are implemented immediately;
therefore the updating is asynchronous and at random. The
CA model utilizes the output of the FRBS for the simulation.

The input variables of the FRBS are the adhesion to treat-
ment and the medication potency (efficacy). The following
linguistic values attributed to the variables are very low, low,
medium, high, and very high. For adhesion to treatment, the
interval [0, 1] is defined where 0 means none and 1 total
adhesion. Based on [18] we define the medication potency
interval as [0.8, 0.9]. The output variables are the percentage
of infected CD4+ T lymphocytes and the period of virus
replication. For the former the linguistic terms are very low,
low, medium, high, and very high and for the latter are very
rapid, rapid, medium, slow, and very slow. For percentage
of infected CD4+ T lymphocytes the interval is [0.1, 1] and
for the period of virus replication is [5, 16]. The lower limits
of these two intervals correspond to the numbers of the
iterations under the best treatment and the upper limits to the
numbers of the iterations under no treatment [11]. The fuzzy
rule base is constructed based on expert medical knowledge
(Tables 1 and 2) utilizing theMamdani inferencemethodwith
centroid defuzzification [13].

As an example in Table 1 the first rule should be read
as follows: “if medication potency is very low and adhesion
is very low then the percentage of CD4+ cells that will be
infected is very high.”

Figure 1 depicts a diagram of the methodology used, in
whichwe represent the FRBS input variable values (treatment
adhesion and medication potency) and the FRBS output
variable values (percentage of infected CD4+ T lymphocytes
and the period of virus replication). The latter are the input
values of the CA. From the simulations performed in the CA,
the parameters of the delay-differential system (3) are deter-
mined.

At each iteration the number of HIV in the neighbor-
hood of uninfected CD4+ T lymphocytes is counted. The
product of this number by the output variable (percentage



4 Journal of Applied Mathematics

Third input

First input
Second input

Third input

First input
Second input

U
ni

nf
ec

te
d 

ce
lls

 o
fC

D
4
+

(n
)

150

100

50

0

Iterations (t)
0 50 100

Iterations (t)
0 50 100

Iterations (t)
0 50 100

Iterations (t)
0 50 100

In
fe

ct
ed

 ce
lls

 o
fC

D
4
+

(i)

30

20

10

0

Fr
ee

 v
iru

s (
�

)

100

80

60

40

20

0

Vi
ru

s-
sp

ec
ifi

c C
TL

 (z
)

150

100

50

0

Figure 2: Results of cellular automaton simulation for the three individuals.

of CD4+ T lymphocytes) is the number of HIV infected
cells. The simulation is performed using the values for treat-
ment adhesion and medication potency of the three HIV-
seropositive hypothetical individuals (Table 3). In this table
the parameters of the first, second, and third columns corre-
spond to seropositive individuals who are submitted to three
levels (very low/low, medium, and very high) of medication
potency and adhesion [11]. The output values of the fuzzy
rule-based system are shown in Table 4. The first line shows
the percentage of the infected CD4+ T lymphocytes and the
second shows the period of virus replication for the input
values of Table 3. The simulation is performed in a rectangle
with 38× 38 cells with 101 iterations.The choice of the cell grid
size is defined based on several experimental runs of the CA
varying the number of iterations as well as the initial number
of elements (uninfected and infected CD4+ T lymphocytes,
free virus particles, and virus-specific CTL) and all the other
CA parameters necessary for the simulations. The 38 × 38
cell grid with 101 iterations showed the closest agreement to
qualitative results found in the literature, as in [19–21]. The

CA model is performed for each individual and the results
obtained in the simulation in function of time are presented
in Figure 2.

3. Results and Discussion

3.1. Estimation and Adjustment of the Infection Rates 𝛽(𝑡).
The infection rate 𝛽(𝑡) of CD4+ T lymphocyte by HIV is an
important parameter for AIDS control in HIV-seropositive
individuals; therefore, it is determined for the three individu-
als under study. This rate is determined using the quotient of
the number of infected CD4+ T lymphocytes by the product
of uninfected CD4+ T lymphocytes and the time variation
(Δ𝑡) [22]; that is,

𝛽 (𝑡) =

infected CD4 + T lymphocytes
(uninfected CD4 + T lymphocytes) ⋅ Δ𝑡

𝑡 = 0, 1, . . . , 100.
(4)
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Table 1: Fuzzy rules for the percentage of CD4+ cells that will be infected.

Adhesion (A) Medication potency (M)
Very low Low Medium High Very high

Very low Very high Very high Very high Very high Very high
Low High High High High High
Medium Medium High Medium High Medium
High Medium High Low Low Low
Very high Low Low Low Very low Very low

Table 2: Fuzzy rules for the period of virus replication.

Adhesion (A) Medication potency (M)
Very low Low Medium High Very high

Very low Very rapid Very rapid Very rapid Very rapid Very rapid
Low Rapid Rapid Rapid Rapid Rapid
Medium Medium Rapid Medium Rapid Medium
High Medium Rapid Medium Slow Slow
Very high Rapid Medium Medium Very slow Very slow

Third input

First input
Second input

In
fe

ct
io

n 
ra

te
 (𝛽

)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Iterations (t)
0 20 40 60 80 100

Figure 3: CD4+ T lymphocyte infection rates 𝛽(𝑡) in function of
time obtained with the cellular automaton for the three inputs.

Table 3: Inputs for the FRBS used in simulation.

First input Second input Third input
Medication potency 0.8 0.85 0.9
Adhesion to treatment 0.1 0.6 1

As the result is attained for each iteration, the time
variation (Δ𝑡) is numerically considered to be 1. Figure 3
presents the infection rate graph in function of time for the
three input values. As we observe the graph is descendant,
which means that the infection rate of CD4+ T lymphocytes
by the virus decreases with time. Such downward curve

Table 4: Outputs of the FRBS and input of CA used in simulation.

First
output-input

Second
output-input

Third
output-input

Percentage of infected
CD4+ T lymphocytes 0.85 0.55 0.1

Period of virus
replication 6.35 10.4 16

is expected since we simulate the situation in which an
individual receives treatment with antiretrovirals.

With the values obtained (Figure 3) we determine three
expressions 𝛽(𝑡) representing the infection rate in function
of time 𝑡 for the three individuals. The values of the six first
iterations are not taken into account because they do not
represent adequately the biological process to be described.
Upon the utilization of the values of the 95 iterations, for each
individual, the curve adjustment is obtained by means of the
least squares method.

Figure 4 depicts the adjusted points and the graphs of the
expression of 𝛽(𝑡), according to Tables 3 and 4.

The 𝛽(𝑡) expressions are

(i) for the first input

𝛽 (𝑡) = 0.2703𝑒−0.005𝑡 + 0.2499; (5)

(ii) for the second input

𝛽 (𝑡) = 0.333𝑒−0.005527𝑡; (6)

(iii) for the third input

𝛽 (𝑡) = 0.335𝑒−0.008937𝑡. (7)

Figures 3 and 4 present decreasing CD4+ T lympho-
cyte infection rates in function of time. The determination
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Figure 4: Adjusted CD4+ T lymphocyte infection rates in function
of time for the three inputs.

coefficients (𝑅2) for the adjustments are, respectively, 0.3836,
0.6333, and 0.8809 for (5), (6), and (7).

In the next subsection we describe the other parameters
obtained with the CA to find the solution of the model with
time delay (3) for the three individuals studied.

3.2. Solution for the Delay-Differential Equations Model. We
consider the parameters of system (3), that is, the rates, as

rate =

1
time

, (8)

where time in the cellular automaton is the number of
iterations. The rate values are

(i) 𝑟 = 20, which is the constant influx of uninfected cells
as produced in the human body which are randomly
placed at each iteration in the CA;

(ii) 𝑎 = 1/4,which is themortality rate of uninfected cells,
as the number of iterations established for death of
uninfected cells is 4;

(iii) 𝑏 = 1/5, which is the mortality rate of infected cells,
as the number of iterations established for death of
infected cells is 5;

(iv) 𝑝 = 0.4, which is the death rate of infected cells
due to CTL bindings, as a binding is not necessarily
successful;

(v) 𝑠 = 1/2, which is the mortality rate of HIV, as the
number of iterations for HIV death is 2;

(vi) 𝑐 = 1/14, which is the reproduction rate of CTLs, as
the number of iterations for CTL reproduction is 14;

(vii) 𝑑 = 1/15, which is the rate of CTL mortality, as the
number of iterations for death of CTLs is 15.

We obtain also the rate 𝑎 which is the rate of infected cells
that have not yet produced virus. In the CA we counted all
infected cells that died but did not produce virus at each
iteration and then we calculated the average of the counts
(𝑎 = 0.0825). The time-dependent vector 𝑘(𝑡) represents
the reproduction of infected cells obtained in the automaton,
estimated through the direct count of the number of newly
reproduced infected cells at each iteration 𝑡.This vector varies
from individual to individual in conformity with medication
potency and treatment adhesion. The parameter 𝛽(𝑡 − 𝜏)

represents the infection rate for a previous time with delay
𝜏 and so it is necessary to obtain the adjustment of the curve
𝛽(𝑡) for each individual. For the numeric solution of system
(3), represented in Figure 5, we consider the adjustment (6)
that represents the seropositive individual receiving medium
potency medication and medium treatment adhesion, the
delay 𝜏 = 0.5, and the rates defined previously. The initial
conditions are 𝑛 = 0.99, 𝑖 = 0.01, V = 0.1, and 𝑧 = 0.01. The
softwareMatlabwas used to obtain the numerical solution for
the system.

We employed Matlab routine dde23 that tracks disconti-
nuities and integrates with the explicit Runge-Kutta method
where the error is given 𝑂(ℎ

3
) per step and 𝑂(ℎ

2
) in total

and interpolant of ode23. It uses iteration to take steps longer
than the lags. ode23 is also an implementation of an explicit
Runge-Kutta method.

In Figure 5 we observe that, as time elapses, the unin-
fected cells and the CTLs increase up to a steady number and
the viral load and the infected cells decrease drastically. This
is themain goal of any therapy using antiretroviral treatment,
that is, to increase the number of CD4+ T lymphocytes and
to decrease the viral load.

3.3. Solution for the Fuzzy Delay-Differential EquationsModel.
We regard both pharmacological and intracellular delays as a
unique uncertain parameter. Mittler et al. (1998) consider the
delay distribution as a gamma probability distribution which
may mimic a variety of biologically possible delays. In the
present paper the delay is characterized by a distribution of
possibilities that is modeled mathematically by means of a
fuzzy number. We consider the delay 𝜏 as a fuzzy number
as depicted in Figure 6 using the interval [0.08, 1] as the
support of 𝜏. This interval is chosen based on [7] in which
experimentally 𝜏 is uncertain and assumes the values of 0.08
days (approximately 2 h), 0.5 days (12 h), and 1 day (24 h).
We utilize Zadeh’s Extension Principle in order to obtain the
nonlinear system solution with fuzzy delay (3). In system
(3) the delay only appears in the equation of infected cells.
At each instant 𝑡 that principle is applied to the numerical
solution of the equation of infected cells with delay 𝜏.

Figure 7 presents the solution of the equation of infected
cells. Other solutions of the equations for system (3) with
fuzzy delay present similar behavior to the ones with a
constant delay, that is, nonfuzzy, as in Figure 5. We observe
that, in the central region of the graph of infected cells, the
membership degree is close to 1; that is, the darker it is, the
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Figure 5: Nonlinear numeric solution of system (3) with delay.

smaller is the degree. This region is the best one to represent
the biological phenomena as far as credibility is concerned.

In order to represent the evolution of infected cells in this
model through a deterministic curve, the graph in Figure 7
must be defuzzified. Figure 8 presents the defuzzified solution
for the infected cells, which turns out to be the average fuzzy
solution [4].

The difference between the classic deterministic model
and the fuzzy model is that, in the former, the uncertainties
are excluded at the beginning while in the latter the uncer-
tainties evolve in time and the defuzzification occurs at the
moment of interest. The center of gravity method is utilized
for the defuzzification at each instant 𝑡 as described in [9].
Figure 9 depicts the defuzzified solutions for the three HIV-
seropositive individuals.

With the defuzzified solution we obtain the maxi-
mum values of infected cells for hypothetical individuals
that received low, medium, and high potency medication
and treatment adhesion, respectively, 44.9514, 44.0362, and
0.3523. These results are in accordance qualitatively with
what would be expected, since individuals who received the
weakest treatment present the highest number of infected

cells, even higher than those of individuals who received the
best treatment.

This research, although of computational nature, may
collaborate for the better understanding of HIV dynamics
as a complement of biological techniques like HIV spread,
two- and three-dimensional cell culture systems, imaging
approaches to HIV spread visualization, and others as
referred by Fackler et al. (2014) [23].

4. Conclusion

The cellular automaton was of paramount importance for
obtaining the CD4+ T lymphocyte infection rate (𝛽(𝑡)) by
HIV as well as the other parameters necessary to solve
the delay-differential equation system. The behaviors of the
HIV and the uninfected CD4+ T lymphocytes agree with
the respective behaviors reported in [19–21]. In general, the
CD4+ T lymphocytes infection rate is a parameter that
medical science faces difficulty to obtain. Moreover, upon
the medical point of view, it might be important to permit
the uncertainty to evolve in time so that answers for those
biological issues can be answered. Upon utilization of the
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Figure 7: Fuzzy solution for infected CD4+ T lymphocytes of
system (3).
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Figure 8: Defuzzified solution for infected CD4+ T lymphocytes of
system (3).
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Figure 9: Defuzzified solution for infected CD4+ T lymphocytes of
system (3) for the three individuals.

fuzzy delay model we present an approach to the estimation
of CD4+ T lymphocyte infection rates that incorporates
possible uncertainties inherent of such important health
issue.
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