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We propose a method to smoothen a piecewise linear interpolation at a small number of nodes on a bounded interval.Themethod
employs a sigmoidal type weight function having a property that clusters most points on the left side of the interval toward 0 and
those on the right side toward 1. The proposed method results in a noninterpolatory approximation which is smooth over the
whole interval. We provide an algorithm for implementing the presented smoothening method. To demonstrate usefulness of the
presented method we introduce some numerical examples and investigate the results.

1. Introduction

It is well known that, byWeierstrass approximation theorem,
every continuous function on a bounded interval can be
approximated arbitrarily accurately by polynomials. Never-
theless, it is also true that there is no fixed array of inter-
polation points that achieves convergence for all continuous
functions as mentioned in the literature [1]. To overcome this
problem, the piecewise polynomial interpolation or rational
function approximation may be considered. In particular,
piecewise polynomial functions such as spline functions
have been used in various approximation fields including
computer graphics, data fitting, numerical integration, and
differential equations [2, 3]. However, it is not difficult to find
troublesome examples for which the existing approximation
methods will not suitably work when the number of interpo-
lation nodes is not large enough.

In this paper, we propose a new noninterpolatory approx-
imation method that is based on a smoothening process
for the piecewise linear interpolation at a small number of
nodes on a given interval. The main purpose of this work is
summarized as follows:

(i) Rendering the piecewise linear interpolant smooth,
that is, infinitely differentiable over thewhole interval.

(ii) Improving the accuracy of the approximation over the
interval except the interpolation nodes.

To fulfill this purpose, we construct a rational function
denoted by 𝑞

𝑛
(𝑥) which smoothens all the vertices of the

initial piecewise linear interpolant for 2𝑛 nodes with a small
integer 𝑛. From numerical results for some examples one can
see that the presented method is available and comparable
with existing outstanding methods.

Contents of this paper are as follows. In Section 2, we
employ a weight function 𝑤

𝑚
(𝑥) in (1) of order 𝑚 ≥ 1

whose prototype is a sigmoidal transformation introduced by
Prössdorf and Rathsfeld [4]. In Section 3, for a set of equally
spaced nodes {𝑥

𝑘
}
2𝑛
𝑘=0 on a bounded interval [𝑎, 𝑏], we define a

modified weight function V
𝑗,𝑘
(𝑥) of an integer order 𝑚

𝑗
≥ 1.

Then, for each integer 1 ≤ 𝑗 ≤ 𝑛, we construct piecewise
smooth functions 𝐿

𝑗,𝑘
(𝑥), 𝑘 = 1, 2, . . . , 2𝑛−𝑗, in the 𝑗th

smoothening step so that each 𝐿
𝑗,𝑘
(𝑥) reflects the behavior of

its precedents𝐿
𝑗−1,2𝑘−1(𝑥) and𝐿

𝑗−1,2𝑘(𝑥), depending on order
𝑚
𝑗
of the associated weight function V

𝑗,𝑘
(𝑥). It is found that

the resultant approximation 𝑞
𝑛
(𝑥) := 𝐿

𝑛,1(𝑥) is in 𝐶
∞

[𝑎, 𝑏]

and noninterpolatory with the approximation property at
the given nodes as shown in Theorem 1. Section 4 includes
numerical examples of some test functions whose results
show the availability of the presented method.

2. A Sigmoidal Type Weight Function

For an interval [𝛼, 𝛽] and a real number 𝑚 ≥ 1 we set a real
valued function

𝑤
𝑚
(𝛼, 𝛽; 𝑥) =

(𝑥 − 𝛼)
𝑚

(𝑥 − 𝛼)
𝑚

+ (𝛽 − 𝑥)
𝑚
, 𝛼 ≤ 𝑥 ≤ 𝛽 (1)
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which we call a weight function of order𝑚. The derivative of
𝑤
𝑚
(𝛼, 𝛽; 𝑥) with respect to 𝑥 is

𝑤
󸀠

𝑚
(𝛼, 𝛽; 𝑥) =

𝑚 (𝛽 − 𝛼) (𝑥 − 𝛼)
𝑚−1

(𝛽 − 𝑥)
𝑚−1

{(𝑥 − 𝛼)
𝑚

+ (𝛽 − 𝑥)
𝑚

}
2 (2)

satisfying 𝑤
󸀠

𝑚
(𝛼, 𝛽; 𝑥) > 0 for all 𝛼 < 𝑥 < 𝛽. In addition,

𝑤
󸀠

𝑚
(𝛼, 𝛽;

𝛼 + 𝛽

2
) =

𝑚

𝛽 − 𝛼
. (3)

We summarize basic properties of 𝑤
𝑚
(𝑥) := 𝑤

𝑚
(𝛼, 𝛽; 𝑥)

below.

(P1) Values of 𝑤
𝑚
(𝑥) at the points 𝑥 = 𝛼, (𝛼 + 𝛽)/2, 𝛽 are

𝑤
𝑚
(𝛼) = 0,

𝑤
𝑚
(
𝛼 + 𝛽

2
) =

1
2
,

𝑤
𝑚
(𝛽) = 1

(4)

independently of the order 𝑚. In addition, 𝑤
𝑚
(𝑥) is

strictly increasing from 0 to 1 on the interval [𝛼, 𝛽]
since 𝑤󸀠

𝑚
(𝑥) > 0 in (2).

(P2) For sufficiently large𝑚 asymptotic behavior of𝑤
𝑚
(𝑥)

is

𝑤
𝑚
(𝑥) =

{{{

{{{

{

𝑂((
𝑥 − 𝛼

𝛽 − 𝑥
)

𝑚

) , 𝛼 < 𝑥 <
𝛼 + 𝛽

2

1 − 𝑂((
𝛽 − 𝑥

𝑥 − 𝛼
)

𝑚

) ,
𝛼 + 𝛽

2
< 𝑥 < 𝛽.

(5)

(P3) 𝑤
𝑚
(𝑥) satisfies

𝑤
𝑚
(𝑐 − 𝑡) +𝑤

𝑚
(𝑐 + 𝑡) = 1, 0 ≤ 𝑡 ≤

(𝛽 − 𝛼)

2
(6)

for a central point 𝑐 = (𝛼 + 𝛽)/2.
(P4) 𝑤

𝑚
(𝑥) ∈ 𝐶

1
[𝛼, 𝛽] ∩ 𝐶

∞

(𝛼, 𝛽) for any real𝑚 ≥ 1.

By the change of variables 𝑥 = (𝛽 − 𝛼)𝜉 + 𝛼 the weight
function 𝑤

𝑚
(𝑥) becomes the so-called elementary sigmoidal

transformation 𝛾
𝑚
(𝜉) = 𝜉

𝑚

/(𝜉
𝑚

+(1−𝜉)𝑚), 0 ≤ 𝜉 ≤ 1, defined
in [4]. In general, traditional sigmoidal transformations have
been used for numerical evaluation of the singular integrals
[5–7].

3. Smoothening the Piecewise Linear
Interpolation

For a given interval [𝑎, 𝑏], in this paper, we consider a set of
equally spaced nodes

𝑥
𝑘
= 𝑎+(

𝑏 − 𝑎

𝑁
)𝑘, 𝑘 = 0, 1, 2, . . . , 𝑁, (7)

where 𝑁 ≥ 2 is an integer not too large. We generalize the
weight function 𝑤

𝑚
, defined in (1), on [𝑎, 𝑏] as follows. For

an integer 𝑗 ≥ 1 and for an integer𝑚
𝑗
≥ 1, define

V
𝑗,𝑘

(𝑥) := 𝑤
𝑚
𝑗

(𝑎
𝑘
, 𝑏
𝑘
; 𝑥) =

(𝑥 − 𝑎
𝑘
)
𝑚
𝑗

(𝑥 − 𝑎
𝑘
)
𝑚
𝑗

+ (𝑏
𝑘
− 𝑥)
𝑚
𝑗

,

𝑎 ≤ 𝑥 ≤ 𝑏,

(8)

where 𝑎
𝑘
and 𝑏
𝑘
are some nodes such as 𝑎 ≤ 𝑎

𝑘
< 𝑏
𝑘

≤ 𝑏

defined by (7).
The function V

𝑗,𝑘
(𝑥) with an integer order 𝑚

𝑗
has inher-

ited the properties (P1)–(P4) of 𝑤
𝑚
𝑗

(𝑥) on the restricted
interval [𝛼, 𝛽] = [𝑎

𝑘
, 𝑏
𝑘
], including additional properties

(P3)󸀠 and (P4)󸀠 on the whole interval [𝑎, 𝑏] below.
(P3)󸀠 V

𝑗,𝑘
(𝑥) satisfies

V
𝑗,𝑘

(𝑐
𝑘
− 𝑡) + V

𝑗,𝑘
(𝑐
𝑘
+ 𝑡) = 1, 𝑡 ≥ 0 (9)

for a central point 𝑐
𝑘
= (𝑎
𝑘
+ 𝑏
𝑘
)/2.

(P4)󸀠 V
𝑗,𝑘
(𝑥) ∈ 𝐶

∞

[𝑎, 𝑏].
General behavior of V

𝑗,𝑘
(𝑥), 𝑚

𝑗
= 1, 2, 3, 6, with [𝑎

𝑘
, 𝑏
𝑘
] =

[0, 2] ⊂ [𝑎, 𝑏] = [−2, 4], for example, is shown in Figure 1.
One can see that V

𝑗,𝑘
(𝑥) becomes flatter outside the interval

[𝑎
𝑘
, 𝑏
𝑘
] as the order𝑚

𝑗
goes higher.This can be surmised from

property (P2).
From now on we set 𝑁 = 2𝑛 for an integer 𝑛 ≥ 1. Then,

for a continuous function 𝑓(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏, we define linear
functions

𝑙
𝑘
(𝑥) =

𝑓 (𝑥
𝑘
) − 𝑓 (𝑥

𝑘−1)

𝑥
𝑘
− 𝑥
𝑘−1

(𝑥 − 𝑥
𝑘
) +𝑓 (𝑥

𝑘
) ,

𝑘 = 1, 2, . . . , 𝑁,

(10)

each of which interpolates two points (𝑥
𝑘−1, 𝑓(𝑥𝑘−1)) and

(𝑥
𝑘
, 𝑓(𝑥
𝑘
)). Then we consider a piecewise linear interpola-

tion,

𝑞0 (𝑥) :=

{{{{{{{{

{{{{{{{{

{

𝑙1 (𝑥) , 𝑥0 ≤ 𝑥 ≤ 𝑥1

𝑙2 (𝑥) , 𝑥1 ≤ 𝑥 ≤ 𝑥2

.

.

.

𝑙
𝑁
(𝑥) , 𝑥

𝑁−1 ≤ 𝑥 ≤ 𝑥
𝑁
.

(11)

To smoothen the piecewise linear interpolation 𝑞0(𝑥) over the
whole interval [𝑎, 𝑏] = [𝑥0, 𝑥𝑁]we propose an 𝑛-step strategy
using the weight function V

𝑗,𝑘
(𝑥) as follows.

Step 0. Setting initial lines:

𝐿0,𝑘 (𝑥) = 𝑙
𝑘
(𝑥) (12)

for each 𝑘 = 1, 2, . . . , 2𝑛 = 𝑁.

Step 1. Smoothening vertices of 𝑞0(𝑥) at the nodes 𝑥2𝑘−1, 𝑘 =

1, 2, . . . , 2𝑛−1: set
𝐿1,𝑘 (𝑥) = {1− V1,𝑘 (𝑥)} 𝐿0,2𝑘−1 (𝑥) + V1,𝑘 (𝑥) 𝐿0,2𝑘 (𝑥) ,

𝑥2(𝑘−1) ≤ 𝑥 ≤ 𝑥2𝑘
(13)
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Figure 1: Graphs of the functions V
𝑗,𝑘
(𝑥) with 𝑎

𝑘
= 0 and 𝑏

𝑘
= 2 for each 𝑚

𝑗
= 1, 2, 3, 6 on a subinterval [𝑎

𝑘
, 𝑏
𝑘
] = [0, 2] in (a) and those on

the whole interval [𝑎, 𝑏] = [−2, 4] in (b).

for each 𝑘 = 1, 2, . . . , 2𝑛−1, and define a function

𝑞1 (𝑥) :=

{{{{{{{{

{{{{{{{{

{

𝐿1,1 (𝑥) , 𝑥0 ≤ 𝑥 ≤ 𝑥2

𝐿1,2 (𝑥) , 𝑥2 < 𝑥 ≤ 𝑥4

.

.

.

𝐿1,2𝑛−1 (𝑥) , 𝑥
𝑁−2 < 𝑥 ≤ 𝑥

𝑁
.

(14)

Step 2. Smoothening vertices of 𝑞0(𝑥) at the nodes 𝑥4𝑘−2, 𝑘 =

1, 2, . . . , 2𝑛−2: set
𝐿2,𝑘 (𝑥) = {1− V2,𝑘 (𝑥)} 𝐿1,2𝑘−1 (𝑥) + V2,𝑘 (𝑥) 𝐿1,2𝑘 (𝑥) ,

𝑥4(𝑘−1) ≤ 𝑥 ≤ 𝑥4𝑘
(15)

for each 𝑘 = 1, 2, . . . , 2𝑛−2, and define a function

𝑞2 (𝑥) :=

{{{{{{{{

{{{{{{{{

{

𝐿2,1 (𝑥) , 𝑥0 ≤ 𝑥 ≤ 𝑥4

𝐿2,2 (𝑥) , 𝑥4 < 𝑥 ≤ 𝑥8

.

.

.

𝐿2,2𝑛−2 (𝑥) , 𝑥
𝑁−4 < 𝑥 ≤ 𝑥

𝑁
.

(16)

.

.

.

Step 𝑛 − 1. Smoothening vertices of 𝑞0(𝑥) at the nodes
𝑥2𝑛−1𝑘−2𝑛−2 , 𝑘 = 1, 2: set

𝐿
𝑛−1,𝑘 (𝑥) = {1− V

𝑛−1,𝑘 (𝑥)} 𝐿𝑛−2,2𝑘−1 (𝑥)

+ V
𝑛−1,𝑘 (𝑥) 𝐿𝑛−2,2𝑘 (𝑥) ,

(17)

𝑥2𝑛−1(𝑘−1) ≤ 𝑥 ≤ 𝑥2𝑛−1𝑘, for each 𝑘 = 1, 2, and define a function

𝑞
𝑛−1 (𝑥) :=

{

{

{

𝐿
𝑛−1,1 (𝑥) , 𝑥0 ≤ 𝑥 ≤ 𝑥2𝑛−1

𝐿
𝑛−1,2 (𝑥) , 𝑥2𝑛−1 < 𝑥 ≤ 𝑥

𝑁
.

(18)

Step 𝑛. Smoothening a vertex of 𝑞0(𝑥) at the node𝑥2𝑛−1 : define
a final function

𝑞
𝑛
(𝑥) := 𝐿

𝑛,1 (𝑥)

= {1− V
𝑛,1 (𝑥)} 𝐿𝑛−1,1 (𝑥) + V

𝑛,1 (𝑥) 𝐿𝑛−1,2 (𝑥) ,
(19)

𝑎 = 𝑥0 ≤ 𝑥 ≤ 𝑥
𝑁

= 𝑏.
In each 𝑗th smoothening step (𝑗 = 1, 2, . . . , 𝑛) above,

function V
𝑗,𝑘
(𝑥) is defined by (8) with an appropriate integer

order𝑚
𝑗
≥ 1 and nodes set by

𝑎
𝑘
= 𝑥2𝑗(𝑘−1),

𝑏
𝑘
= 𝑥2𝑗𝑘

(20)

for each 𝑘 = 1, 2, . . . , 2𝑛−𝑗(= 𝑁/2𝑗).
As a result, every vertex of the initial piecewise linear

interpolation 𝑞0(𝑥) has been smoothened by 𝑞
𝑛
(𝑥), whereas

the interpolation property may be weakened as 𝑞
𝑛
(𝑥
𝑖
) ≈

𝑓(𝑥
𝑖
) for all 𝑥

𝑖
’s except 𝑥0, 𝑥2𝑛−1 , and 𝑥

𝑁
= 𝑥2𝑛 as shown

in Theorem 1. In fact, property (P4)󸀠 implies that 𝑞
𝑛
(𝑥) ∈

𝐶
∞

[𝑎, 𝑏].
For intuitional comprehension on the presented method,

Figure 2 is included. It shows the effect of 𝐿1,𝑘(𝑥) in the first
smoothening step (𝑗 = 1) by comparing results for the orders
𝑚1 = 1, 2, 4, 8 of the associated weight function V1,𝑘(𝑥). One
can see that 𝐿1,𝑘(𝑥) reflects the behavior of its precedents
𝐿0,2𝑘−1(𝑥) and 𝐿0,2𝑘(𝑥) over the larger region as order𝑚1 goes
higher, preserving the interpolation and the smoothness on
the doubled local interval [𝑥2(𝑘−1), 𝑥2𝑘]. In general, each 𝑗th
piecewise smooth function 𝐿

𝑗,𝑘
(𝑥), 𝑘 = 1, 2, . . . , 2𝑛−𝑗, has the

same property on the local interval [𝑥2𝑗(𝑘−1), 𝑥2𝑗𝑘].
Referring to the aforementioned comments, we may

consider that, for small 𝑗 (i.e., for the small subintervals
𝑥2𝑗(𝑘−1) ≤ 𝑥 ≤ 𝑥2𝑗𝑘), order 𝑚𝑗 of the weight function V

𝑗,𝑘
(𝑥)

might be low in order to sustain the natural behavior in
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(a)

(m1 = 2)

(b)

L1,k(x)

(m1 = 8)

(c)

(m1 = 4)

(d)

Figure 2: Effect of the first step (𝑗 = 1) smoothening 𝐿1,𝑘(𝑥) for each of the orders𝑚1 = 1, 2, 4, 8 of the weight function V1,𝑘(𝑥).

the range between interpolation nodes. For large 𝑗 (i.e., for
the large subintervals), higher orders are required to prevent
loss of the accuracy at the nodes except the endpoints and the
midpoint of the subinterval. Thus, for practical performance
of the presented method, we suggest integer orders 𝑚

𝑗
, 𝑗 =

1, 2, . . . , 𝑛, as

1 ≤ 𝑚1 < 𝑚2 < ⋅ ⋅ ⋅ < 𝑚
𝑛
. (21)

Theorem 1. For integer orders𝑚
𝑗
, satisfying (21), of the weight

functions V
𝑗,𝑘
(𝑥), 𝑗 = 1, 2, . . . , 𝑛, with𝑁 = 2𝑛 in (8), we have

𝑞
𝑛
(𝑥
𝑖
) = 𝑓 (𝑥

𝑖
) , 𝑖 = 0, 2𝑛−1, 2𝑛,

󵄨󵄨󵄨󵄨𝑞𝑛 (𝑥𝑖) −𝑓 (𝑥
𝑖
)
󵄨󵄨󵄨󵄨

=
{

{

{

𝑂(ℎ
𝑚2
𝑖

) , 𝑖 = 1, 3, 5, . . . , 𝑁 − 1

𝑂 (ℎ
𝑚3
𝑖

) , 𝑖 = 2, 4, 6, . . . , 𝑁 − 2,

(22)

where 0 < ℎ
𝑖
< 1.

Proof. For each 𝑥 = 𝑥0 = 𝑎 and 𝑥 = 𝑥2𝑛 = 𝑏, we have

𝑞
𝑛
(𝑎) = 𝐿

𝑛−1,1 (𝑎) = 𝐿
𝑛−2,1 (𝑎) = ⋅ ⋅ ⋅ = 𝐿0,1 (𝑎)

= 𝑙1 (𝑎) = 𝑓 (𝑎)

𝑞
𝑛
(𝑏) = 𝐿

𝑛−1,2 (𝑏) = 𝐿
𝑛−2,4 (𝑏) = ⋅ ⋅ ⋅ = 𝐿0,2𝑛 (𝑏)

= 𝑙2𝑛 (𝑏) = 𝑓 (𝑏)

(23)

from the definition of 𝐿
𝑗,𝑘
(𝑥) and property (P1) of the weight

function V
𝑗,𝑘
(𝑥). Similarly, for the midpoint 𝑥 = 𝑥2𝑛−1 ,

𝑞
𝑛
(𝑥2𝑛−1) = 𝐿

𝑛−1,1 (𝑥2𝑛−1) = 𝐿
𝑛−2,2 (𝑥2𝑛−1) = ⋅ ⋅ ⋅

= 𝐿0,2𝑛−1 (𝑥2𝑛−1) = 𝑙2𝑛−1 (𝑥2𝑛−1) = 𝑓 (𝑥2𝑛−1) .
(24)

To prove the approximation property of 𝑞
𝑛
(𝑥) at interior

points 𝑥
𝑖
, 1 ≤ 𝑖 ≤ 2𝑛 − 1 = 𝑁 − 1, we first consider the case

of 𝑖 = 1. Definition of 𝐿
𝑗,𝑘
(𝑥)with the related nodes 𝑎

𝑘
and 𝑏
𝑘

in (20) and the assumption (21) for the order of V
𝑗,𝑘
(𝑥) imply

that
𝑞
𝑛
(𝑥1) = {1− V

𝑛,1 (𝑥1)} 𝐿𝑛−1,1 (𝑥1)

+ V
𝑛,1 (𝑥1) 𝐿𝑛−1,2 (𝑥1)

= 𝐿
𝑛−1,1 (𝑥1) +𝑂 (V

𝑛,1 (𝑥1))

= {1− V
𝑛−1,1 (𝑥1)} 𝐿𝑛−2,1 (𝑥1)

+ V
𝑛−1,1 (𝑥1) 𝐿𝑛−2,2 (𝑥1) +𝑂 (V

𝑛,1 (𝑥1))

= 𝐿
𝑛−2,1 (𝑥1) +𝑂 (V

𝑛−1,1 (𝑥1)) = ⋅ ⋅ ⋅

= 𝐿1,1 (𝑥1) +𝑂 (V2,1 (𝑥1))

= {1− V1,1 (𝑥1)} 𝐿0,1 (𝑥1) + V1,1 (𝑥1) 𝐿0,2 (𝑥1)

+𝑂 (V2,1 (𝑥1)) = 𝑓 (𝑥1) +𝑂 (V2,1 (𝑥1)) ,

(25)

as𝑚2 goes to the infinity, where the last equality results from
𝐿0,1(𝑥1) = 𝐿0,2(𝑥1) = 𝑓(𝑥1). Thus, it follows that

󵄨󵄨󵄨󵄨𝑞𝑛 (𝑥1) −𝑓 (𝑥1)
󵄨󵄨󵄨󵄨 = 𝑂 (V2,1 (𝑥1)) . (26)

In fact, since 𝑎1 = 𝑥0 and 𝑏1 = 𝑥4 in (20) for definition of
V2,1(𝑥),

𝑥1 <
𝑎1 + 𝑏1

2
= 𝑥2. (27)

Then from property (P2) of the weight function V2,1(𝑥) of
order𝑚2 with 𝛼 = 𝑎1 and 𝛽 = 𝑏1 we have

V2,1 (𝑥1) = 𝑂 (ℎ
𝑚2
1 ) , (28)
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(0)

j = 1

j = 2

j = 3

L1,1(x) L1,2(x) L1,3(x) L1,4(x)

L2,1(x) L2,2(x)

L3,1(x)

x = a x = b

(1)1

(2)2

(3)1

(4)3

(5)1 (6)2

(7)1
(8)

Figure 3: Illustration of the presented method for the case of 𝑛 = 3. The symbol (𝑡)
𝑗
denotes an interpolation point at the 𝑡th node 𝑥

𝑡
which

is smoothened by 𝐿
𝑗,𝑘
(𝑥) in the 𝑗th smoothening step.

where 0 < ℎ1 < 1. This results in
󵄨󵄨󵄨󵄨𝑞𝑛 (𝑥1) −𝑓 (𝑥1)

󵄨󵄨󵄨󵄨 = 𝑂 (ℎ
𝑚2
1 ) . (29)

By a similar way, we have, for any odd integer 𝑖 = 2𝑘 − 1 (𝑘 =

1, 2, 3, . . . , 2𝑛−1),
󵄨󵄨󵄨󵄨𝑞𝑛 (𝑥𝑖) −𝑓 (𝑥

𝑖
)
󵄨󵄨󵄨󵄨 = 𝑂 (ℎ

𝑚2
𝑖

) , 0 < ℎ
𝑖
< 1. (30)

For the case of 𝑖 = 2, an even number,

𝑞
𝑛
(𝑥2) = {1− V

𝑛,1 (𝑥2)} 𝐿𝑛−1,1 (𝑥2)

+ V
𝑛,1 (𝑥2) 𝐿𝑛−1,2 (𝑥2)

= 𝐿
𝑛−1,1 (𝑥2) +𝑂 (V

𝑛,1 (𝑥2))

= {1− V
𝑛−1,1 (𝑥2)} 𝐿𝑛−2,1 (𝑥2)

+ V
𝑛−1,1 (𝑥2) 𝐿𝑛−2,2 (𝑥2) +𝑂 (V

𝑛,1 (𝑥2))

= 𝐿
𝑛−2,1 (𝑥2) +𝑂 (V

𝑛−1,1 (𝑥2)) = ⋅ ⋅ ⋅

= 𝐿2,1 (𝑥2) +𝑂 (V3,1 (𝑥2))

= {1− V2,1 (𝑥2)} 𝐿1,1 (𝑥2) + V2,1 (𝑥2) 𝐿1,2 (𝑥2)

+𝑂 (V3,1 (𝑥2)) = 𝑓 (𝑥2) +𝑂 (V3,1 (𝑥2)) ,

(31)

where the last equality results from 𝐿1,1(𝑥2) = 𝐿1,2(𝑥2) =

𝑓(𝑥2). Thus
󵄨󵄨󵄨󵄨𝑞𝑛 (𝑥2) −𝑓 (𝑥2)

󵄨󵄨󵄨󵄨 = 𝑂 (V3,1 (𝑥2)) . (32)

Since 𝑎1 = 𝑥0 and 𝑏1 = 𝑥8 in (20) for definition of V3,1(𝑥),

𝑥2 <
𝑎1 + 𝑏1

2
= 𝑥4. (33)

Then from property (P2) of the weight function V3,1(𝑥) of
order𝑚3 with 𝛼 = 𝑎1 and 𝛽 = 𝑏1 we have

V3,1 (𝑥2) = 𝑂 (ℎ
𝑚3
2 ) , 0 < ℎ2 < 1. (34)

Thus

󵄨󵄨󵄨󵄨𝑞𝑛 (𝑥2) −𝑓 (𝑥2)
󵄨󵄨󵄨󵄨 = 𝑂 (ℎ

𝑚3
2 ) . (35)

By a similar way, we have, for any even integer 𝑖 = 2𝑘 (𝑘 =

1, 2, 3, . . . , 2𝑛−1 − 1),

󵄨󵄨󵄨󵄨𝑞𝑛 (𝑥𝑖) −𝑓 (𝑥
𝑖
)
󵄨󵄨󵄨󵄨 = 𝑂 (ℎ

𝑚3
𝑖

) , 0 < ℎ
𝑖
< 1. (36)

The proof is completed.

The concept of the presented method for a case of 𝑁 =

8 (𝑛 = 3) is illustrated in Figure 3. Therein one can see that
nonsmooth vertices at the nodes 𝑥1, 𝑥2, . . . , 𝑥7 appear in the
initial piecewise linear interpolation. Figure 3 explains that
the vertices at the nodes 𝑥1, 𝑥3, 𝑥5, and 𝑥7 are blunted in
the first smoothening step (𝑗 = 1) and those at the nodes
𝑥2 and 𝑥6 are blunted in the second step (𝑗 = 2). Finally, the
remaining vertex at 𝑥4 is blunted in the last step (𝑗 = 𝑛 = 3).

For implementation of the presented method, we write
the following algorithm with a given data {(𝑥

𝑖
, 𝑓(𝑥
𝑖
)) |

𝑖 = 0, 1, 2, . . . , 2𝑛} and properly chosen orders 𝑚
𝑗
, 𝑗 =

1, 2, 3, . . . , 𝑛, based on condition (21):

𝑖 := 0. (37)

While (𝑖 = 𝑖 + 1 ≤ 2𝑛).

Set 𝐿0,𝑖(𝑥) := ((𝑓(𝑥
𝑖
) − 𝑓(𝑥

𝑖−1))/(𝑥𝑖 − 𝑥
𝑖−1))(𝑥 −

𝑥
𝑖
) + 𝑓(𝑥

𝑖
)

𝑗 := 0. (38)

While (𝑗 = 𝑗 + 1 ≤ 𝑛)

𝑘 := 0. (39)
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q0(x)

(a)

q1(x)

(b)

q3(x)

(c)

q2(x)

(d)

Figure 4: Smoothened piecewise linear interpolation 𝑞
𝑗
(𝑥), 𝑗 = 0, 1, 2, 3, for the example 𝑓(𝑥) with 𝑁 = 23. The dotted curve indicates the

original graph of 𝑓(𝑥).

While (𝑘 = 𝑘 + 1 ≤ 2𝑛−𝑗)

𝑎
𝑘
:= 𝑥2𝑗(𝑘−1);

𝑏
𝑘
:= 𝑥2𝑗𝑘

V
𝑗,𝑘

(𝑥) :=
(𝑥 − 𝑎

𝑘
)
𝑚
𝑗

(𝑥 − 𝑎
𝑘
)
𝑚
𝑗

+ (𝑏
𝑘
− 𝑥)
𝑚
𝑗

𝐿
𝑗,𝑘

(𝑥) := {1− V
𝑗,𝑘

(𝑥)} 𝐿
𝑗−1,2𝑘−1 (𝑥)

+ V
𝑗,𝑘

(𝑥) 𝐿
𝑗−1,2𝑘 (𝑥) .

(40)

Set the 𝑗th smoothening interpolation,

𝑞
𝑗
(𝑥) :=

{{{{{{{{

{{{{{{{{

{

𝐿
𝑗,1 (𝑥) , if 𝑎1 ≤ 𝑥 ≤ 𝑏1

𝐿
𝑗,2 (𝑥) , if 𝑎2 ≤ 𝑥 ≤ 𝑏2

.

.

.

𝐿
𝑗,2𝑛−𝑗 (𝑥) , if 𝑎2𝑛−𝑗 ≤ 𝑥 ≤ 𝑏2𝑛−𝑗 .

(41)

4. Examples

To perform the presented algorithm we used a Mathematica
(V.10) programming code, given in Appendix, where we have
taken linearly increasing orders 𝑚

𝑗
= 3𝑗 − 2 for the weight

functions V
𝑗,𝑘
(𝑥).

We choose a test function below. Consider

𝑓 (𝑥) = cos (2𝑥+𝑥
2
) , 0 ≤ 𝑥 ≤ 3 (42)

with 2𝑛 + 1 nodes (𝑛 = 3)

𝑥
𝑘
=
3
8
𝑘, 𝑘 = 0, 1, 2, . . . , 8. (43)

Results of the presented method are given in Figure 4, which
shows consistency with the illustration given in Figure 3 and
Theorem 1. The dotted curve indicates the original graph of
𝑓(𝑥), and it is observed that 𝑞

𝑗
(𝑥), 𝑗 = 1, 2, 3, have highly

improved the accuracy of the initial piecewise linear approx-
imation 𝑞0(𝑥). In Figure 5, the resultant approximation 𝑞3(𝑥)
is compared with two existing approximations, the Hermite
interpolation 𝐻(𝑥) and the cubic spline interpolation 𝑆(𝑥).
One can see that 𝑞3(𝑥) is better than 𝐻(𝑥) and 𝑆(𝑥) in
approximation over the whole interval, while the interpola-
tion property at the given nodes is weakened as shown in
Theorem 1. In fact, computation of the 𝑙2-norm error of the
presented approximation 𝑞3(𝑥) at the nodes {𝑥𝑘}

8
𝑘=0 results in

√∑
8
𝑘=0{𝑓(𝑥𝑘) − 𝑞3(𝑥𝑘)}

2 ≈ 0.068.
For another example, we take a parametric function

𝑟 (𝑡) = (𝑥 (𝑡) , 𝑦 (𝑡)) = (
𝑡

2
+ cos 𝑡, 𝑡

2
− sin 𝑡) ,

− 𝜋 ≤ 𝑡 ≤ 4𝜋
(44)

with the nodes

𝑡
𝑘
= −𝜋+(

5𝜋
8

) 𝑘, 𝑘 = 0, 1, 2, . . . , 8. (45)

In this case, the presentedmethod is applied to both functions
𝑥(𝑡) and 𝑦(𝑡). Figures 6 and 7 include the results of the
presented method, which shows the same availability and
efficiency of the method as the case of the previous test
function.

5. Conclusions

In this paper, we proposed a method which results in the
noninterpolatory approximations 𝑞

𝑗
(𝑥), 𝑗 = 1, 2, . . . , 𝑛, and
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(a) 𝑞3(𝑥) (b) 𝐻(𝑥) (c) 𝑆(𝑥)

Figure 5: Comparison of the presented approximation 𝑞3(𝑥), Hermite interpolation𝐻(𝑥), and spline interpolation 𝑆(𝑥) for𝑓(𝑥)with𝑁 = 23.
Dotted curves indicate the original graph of 𝑓(𝑥).

q0(x)

(a)

q1(x)

(b)

q3(x)

(c)

q2(x)

(d)

Figure 6: Smoothened piecewise linear interpolations 𝑞
𝑗
(𝑡), 𝑗 = 0, 1, 2, 3, for the parametric function 𝑟(𝑡) with 𝑁 = 23. The dotted curve

indicates the original graph of 𝑟(𝑡).

(a) 𝑞3(𝑡) (b) 𝐻(𝑡) (c) 𝑆(𝑡)

Figure 7: Comparison of the presented approximation 𝑞3(𝑡), Hermite interpolation 𝐻(𝑡), and spline interpolation 𝑆(𝑡) for the parametric
function 𝑟(𝑡) with𝑁 = 23. Dotted curves indicate the original graph of 𝑟(𝑡).

the last one 𝑞
𝑛
(𝑥) smoothens all the vertices of the initial

piecewise linear interpolant 𝑞0(𝑥). Although the interpola-
tion property of 𝑞0(𝑥) at most nodes is weakened by 𝑞

𝑛
(𝑥) as

the approximation property in Theorem 1, we have obtained
smoothness over the whole interval. Moreover, in the results
of the numerical implementation for some examples, we have

found that the accuracy of the presented approximation 𝑞
𝑛
(𝑥)

is somewhat better than that of theHermite interpolation and
the spline interpolation over the whole interval.

Theperformance of the presentedmethod depends on the
orders of the associated weight functions, and analysis for the
problem of choosing optimal orders is left as a further work.
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(a, b, n, and f[x] are given)
num := 2∧n
h := (b − a)/num
nodes := Table[x, {x, a, b, h}]
pnts := Table[{x, f[x]}, {x, a, b, h}]
L0[k , x ] := InterpolatingPolynomial[{pnts[[k]], pnts[[k + 1]]}, x]
order[x ] := 3 ∗ x − 2
w[m , a , b , x ] := ((x − a)∧m)/((x − a)∧m + (b − x)∧m)

LSmth[j , k , x ] := Module[{ak, bk,mj, v},
ak = nodes[[(2∧j) ∗ (k − 1) + 1]];
bk = nodes[[(2∧j) ∗ k + 1]];
mj = order[j];
v = If[j == 0, 0,w[mj, ak, bk, x]];
If[j == 0, L0[k, x],

(1 − v) ∗ LSmth[j − 1, 2 ∗ k − 1, x] + v ∗ LSmth[j − 1, 2 ∗ k, x]]
]

case[j , x ] := Table[{LSmth[j, k, x], nodes[[(2∧j) ∗ (k − 1) + 1]] ≤ x ≤ nodes[[(2∧j) ∗ k + 1]]},
{k, 1, 2∧(n − j)}]

q[j , x ] := Piecewise[case[j, x]]

Algorithm 1: Mathematica code for the presented method.

In addition, the idea proposed in this work may be extended
to the higher order piecewise polynomial interpolation.

Appendix

See Algorithm 1.
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