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Copyright © 2015 Marcos Marvá et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Traditional biomedical approaches treat diseases in isolation, but the importance of synergistic disease interactions is now
recognized. As a first step we present and analyze a simple coinfectionmodel for two diseases simultaneously affecting a population.
The host population is affected by the primary disease, a long-term infection whose dynamics is described by a SIS model with
demography, which facilitates individuals acquiring a second disease, secondary (or opportunistic) disease. The secondary disease
is instead a short-term infection affecting only the primary infected individuals. Its dynamics is also represented by a SIS model
with no demography. To distinguish between short- and long-term infection the complete model is written as a two-time-scale
system. The primary disease acts at the slow time scale while the secondary disease does at the fast one, allowing a dimension
reduction of the system andmaking its analysis tractable. We show that an opportunistic disease outbreak might change drastically
the outcome of the primary epidemic process, although it does among the outcomes allowed by the primary disease. We have
found situations in which either acting on the opportunistic disease transmission or recovery rates or controlling the susceptible
and infected population size allows eradicating/promoting disease endemicity.

1. Introduction

Coinfection is the simultaneous infection of a host by mul-
tiple pathogen species. The global incidence of coinfection
among humans is huge [1] and supposed to bemore common
than single infection. The interactions between pathogen
species within their host can have either positive or negative
effects on each other. The net effect of coinfection on human
health is thought to be negative [2].

The case of positive parasite interactions falls into the
concept of syndemic: aggregation of two or more diseases
in a population in which there is some level of positive
biological interaction that exacerbates the negative health
effects of any or all of the diseases [3]. From the point of
view of prevention and treatment of disease it is the opposite
case that is important, sometimes called counter syndemic:
disease interactions that yield a lower whole effect than the
sum effects of the individual diseases involved. An example of
counter syndemic is that of human immunodeficiency virus
(HIV) transiently suppressed during acute measles infec-
tions. A broadly extended syndemic involves tuberculosis

(TB) andHIV [4].TheWorldHealthOrganization [5] reports
that people living with HIV are around 30 times more likely
to develop TB than persons without HIV and also that TB
is the most common occurring illness among people living
withHIV.Other syndemics involving infectious diseases have
been described in the literature: HIV and malaria syndemic
[6]; the helminthic infections, malaria, and HIV/AIDS syn-
demic [7]; the pertussis, influenza, and tuberculosis syndemic
[8]; and the HIV and sexually transmitted disease (STD)
syndemic [9].

In this work we deal with a particular, but very common,
type of coinfection. We consider the interactions of two
diseases, the first one of the type called primary disease and
the second one of the opportunistic disease type. Only rela-
tively few pathogen species cause disease in otherwise healthy
individuals [10].Those few are called primary pathogens.The
diseases that they cause, primary diseases, are the result of
their only activity within a healthy host. An opportunistic
disease, on the other hand, is characterized [11] as a serious,
usually progressive infection by a microorganism that has
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limited (or no) pathogenic capacity under ordinary circum-
stances, but which has been able to cause serious disease as
a result of the predisposing effect of another disease or of its
treatment.

The importance of opportunistic diseases for public
health [2, 12, 13] is underrepresented in the mathematical
modelling literature. A reason for that is that models of
coinfection usually result in large dimensional systems which
are difficult to be studied analytically. The main aim of this
work is to settle a model describing the interaction between
both, the primary and the secondary diseases.Themodel that
we present in this work tries to capture the basic features of
a coinfection model using for it the least possible number of
variables.The dynamics of the primary disease is represented
by means of a 𝑆𝐼𝑆 model. All individuals affected by the
primary infection are assumed to be susceptible of being
infected by the opportunistic disease. As the dynamics of
the opportunistic disease is also described in terms of a
𝑆𝐼𝑆 model, we only distinguish three types of individuals
in the population: individuals with no infection, susceptible,
individuals infected by the primary disease but not by
the opportunistic disease, primary infected, and individuals
infected by both diseases, coinfected.

Specifically, we want to know whether or not the coin-
fection by a secondary disease produces epidemiological
scenarios not allowed by the primary disease submodel. In
the latter case, it is of interest to assess if coinfection has any
influence on the actual outcome of the model, even if it is
only among those allowed by the primary disease submodel.
On the other hand, and in any case, we look for identifying
mechanisms to modulate the epidemiological outcome.

A primary disease enabling secondary infections has
typically a long illness period. It must produce a persistent
alteration of the immune response which weakens the body’s
ability to clear secondary diseases. On the other hand, a
compromised immune system presents an opportunity that
a secondary pathogen must rapidly take advantage of. As
a simplified approximation of the general case we suppose
that the primary disease is a long-term infection that evolves
slowly compared to the opportunistic disease which has
a rapid evolution and, thus, can be considered a short-
term infection. This difference in the acting speed of both
infections is reflected in our model in two different issues.
Firstly, we assume that demography has an impact in the
primary disease, due to its slow evolution, whereas it is
negligible for the opportunistic disease which evolves in a
short period of time. Secondly, the system of differential
equations, in terms of which we express our model, possesses
two time scales: the slow one encompassing the demography
and the primary disease evolution and the fast one associated
with the opportunistic disease evolution.

The inclusion of two time scales in the system has the
advantage of allowing its reduction.The asymptotic behavior
of the solutions of the initial three-dimensional system can
be studied through a planar system. The reduction of the
system is undertaken with the help of aggregation methods
[14–16]. The general aim of these methods is studying the
relationships between a large class of complex systems, in
which many variables are involved, and their corresponding

reduced or aggregated systems, governed by a few global
variables. The idea behind the reduction of the system in our
model is considering the evolution of the secondary infection
as instantaneous in relation to that of the primary one.
Obviously this is but an approximation which, on the other
hand, can be precisely treated with the help of the aggregation
method. The steady state rapidly, almost instantaneously,
reached by the opportunistic disease serves to merging in
one single variable those variables corresponding to primary
infected and coinfected individuals. The result is a 𝑆𝐼𝑆
type model where the effect of the opportunistic disease is
reflected in its parameters.

The model is presented in Section 2. In this section the
reduction of the system is also included. Section 3 is devoted
to the analysis of the reduced system. This analysis allows a
discussion of the permanence of the population as well as of
the influence of the final size of the opportunistic disease on
the outcome of the primary epidemic. This discussion is the
content of Section 4.

2. The Model

We build up in this section a model of coinfection that
describes the interaction between two diseases, one of pri-
mary type whereas the second one is of opportunistic type.
Only the individuals infected by the primary disease are
susceptible of being infected by the opportunistic disease.
Moreover, the interaction of both diseases occurs at different
time scales, the evolution of the opportunistic disease being
much faster than that of the primary one. The model is
written in terms of a slow-fast ordinary differential equations
model. After building the slow-fast model, the separation
of time scales allows us to apply approximate aggregation
techniques [14, 15] to get a smaller dimensional system.
For the convenience of readers nonfamiliar with it, the
reduction procedure is sketched in Section 2.4. The sec-
tion finishes describing which kind of information about
the slow-fast system can be retrieved from the reduced
system.

2.1. The Primary Disease Submodel. The primary disease
dynamics is described by a 𝑆𝐼𝑆 model with demographic
effects. In a 𝑆𝐼𝑆model individuals are divided into susceptible
(𝑆) and infected (𝐼). The latter return to the susceptible
class on recovery because the disease confers no immunity
against reinfection [17]. It is appropriate for most diseases
transmitted by bacterial or helminth agents andmost sexually
transmitted diseases. Concerning transmission, there are two
extreme traditional forms: [18] the density-dependent trans-
mission (DDT) and the frequency-dependent transmission
(FDT). In DDT the rate of contact between susceptible and
infected individuals increases with host density while in FDT
this rate of contact is independent of host density. The fact
that the primary disease acts together with demography at
the same time scale leads us to assume it does with density-
dependent transmission. On the other hand, in the case of
the opportunistic disease which turns out to evolve at a faster
time scale we consider that it does with frequency-dependent
transmission [19, 20].
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We denote by 𝛾 the recovery rate and by 𝛽 the constant
transmission rate. The parameter 𝜇 describes the additional
disease-induced mortality.

We consider demographic effects with only horizontal
transmission of the disease. In many mathematical models,
from a demographic point of view, the differences between
susceptible and infected individuals are reduced to an addi-
tional disease-related death rate or disease-induced reduction
in fecundity [21]. However, there are experimental evidences
of the influence of disease on host competitive abilities [22]
which have already been introduced in ecoepidemiological
models [23]. We adopt this last approach. The intrinsic per

capita fertility rate of uninfected individuals is given by 𝑟.
The reduction on intrinsic per capita fertility rate of infected
individuals is represented by the parameter 𝑎 ∈ (0, 1). The
natural death rate is denoted by𝑚. The effects of intraspecific
competition reducing population growth are introduced in
the model by means of parameters 𝑐

𝑆𝑆
, 𝑐
𝑆𝐼
, 𝑐
𝐼𝑆
, and 𝑐

𝐼𝐼
. To

be precise, the parameters 𝑐𝑆𝑆 and 𝑐𝐼𝐼 represent intraclass
competition between susceptible and infected individuals,
respectively, whereas the parameters 𝑐𝑆𝐼 and 𝑐𝐼𝑆 introduce the
interclass impact of infected on susceptible individuals and of
susceptible on infected individuals, respectively.

The primary disease submodel is given by the equations

𝑑𝑆

𝑑𝑡
= 𝑟𝑆 + 𝑎𝑟𝐼 − 𝑚𝑆 − (𝑐𝑆𝑆𝑆 + 𝑐𝑆𝐼𝐼) 𝑆 −𝛽𝑆𝐼 + 𝛾𝐼,

𝑑𝐼

𝑑𝑡
= −𝑚𝐼⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

density independent growth
− (𝑐
𝐼𝑆
𝑆 + 𝑐
𝐼𝐼
𝐼) 𝐼⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

competition

+𝛽𝑆𝐼 − 𝛾𝐼 − 𝜇𝐼⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

transmission, recovery, and diseasemortality

.

(1)

As mentioned in the introduction, to our knowledge, the pri-
mary disease submodel (1) has not been previously analyzed.
However, we postpone its analysis to Section 3, once we have
described the full model and the aforementioned reduction
process.

2.2. The Opportunistic Disease Submodel. The opportunistic
disease spreads only through the individuals infected by the
primary disease. We consider that the opportunistic disease
dynamics is also described by a 𝑆𝐼𝑆 model. Individuals
infected by the primary disease are further classified into
those not infected by the opportunistic disease (𝑈), primary
infected, and those infected by both diseases (𝑉), coinfected.

The fast evolution of the opportunistic disease, compared
to primary disease and demography, suggests not including
demographic effects and choosing the frequency-dependent
transmission form. Let 𝜆 and 𝛿 be, respectively, the constant
transmission and recovery rates.

The opportunistic disease submodel is represented by the
equations

𝑑𝑈

𝑑𝜏
= −𝜆

𝑈𝑉

𝑈 + 𝑉
+ 𝛿𝑉,

𝑑𝑉

𝑑𝜏
= 𝜆

𝑈𝑉

𝑈 + 𝑉
− 𝛿𝑉.

(2)

We use 𝜏 to denote the time variable for the fast time scale. It
is related to variable time 𝑡 in system (1) as 𝑡 = 𝜀𝜏, where 𝜀 is
a small positive constant representing the ratio between time
scales.

2.3. The Full Two-Time-Scale Model. Finally, we construct
the model encompassing both diseases. It has the form of
a system with three state variables: susceptible 𝑆, primary
infected 𝑈, and coinfected 𝑉 individuals. It is a system
with two time scales that is expressed in terms of the fast
time variable 𝜏. The terms associated with the slow time
scale, demography and primary disease dynamics, appear

multiplied by 𝜀 in (3). The fast part of system (3), the
opportunistic disease dynamics, coincides with system (2).

In the slow part of system (3) we have to define differ-
ent rates for primary infected and coinfected individuals.
We denote by 𝛽𝑈 and 𝛽𝑉 the constant primary disease
transmission rates due to primary infected and coinfected
individuals, respectively. We assume that there is no direct
connection between the susceptible and coinfected stages. A
susceptible individual must first acquire the primary disease
and later be infected by the opportunistic one. On the other
hand, a coinfected individual must first recover from the
opportunistic disease and then, being just primary infected,
can also recover from the primary one. The primary disease
recovery rate is still denoted by 𝛾. Parameters 𝜇

𝑈
and 𝜇

𝑉

describe the additional primary disease-induced mortality in
primary infected and coinfected individuals, respectively.

Concerning the part of demography, we keep the same
intrinsic per capita fertility rate of uninfected individuals 𝑟
and the individuals natural death rate 𝑚 as in system (1).
We include different coefficients of reduction on intrinsic
per capita fertility rate for primary infected and coinfected
individuals: 𝑎

𝑈
and 𝑎
𝑉
. We assume them to verify 0 < 𝑎

𝑉
<

𝑎
𝑈
< 1 supposing that coinfected individuals participate

in reproduction though at a smaller rate. To distinguish the
effects of intraspecific competition among the three stages
we need to introduce nine parameters 𝑐𝑆𝑆, 𝑐𝑆𝑈, 𝑐𝑆𝑉, 𝑐𝑈𝑆, 𝑐𝑈𝑈,
𝑐𝑈𝑉, 𝑐𝑉𝑆, 𝑐𝑉𝑈, and 𝑐𝑉𝑉. They represent the competition, either
intraclass or interclass, between the two stages in each of the
nine different interaction pairs.

The complete two-time-scale system reads as follows:
𝑑𝑆

𝑑𝜏
= 𝜀 [𝑟𝑆 + 𝑎

𝑈
𝑟𝑈 + 𝑎

𝑉
𝑟𝑉 − 𝑚𝑆

− (𝑐
𝑆𝑆
𝑆 + 𝑐
𝑆𝑈
𝑈 + 𝑐
𝑆𝑉
𝑉) 𝑆 − 𝛽

𝑈
𝑆𝑈 − 𝛽

𝑉
𝑆𝑉 + 𝛾𝑈] ,

𝑑𝑈

𝑑𝜏
= −

𝜆𝑈𝑉

𝑈 + 𝑉
+ 𝛿𝑉 + 𝜀 [−𝑚𝑈 − (𝑐𝑈𝑆𝑆 + 𝑐𝑈𝑈𝑈 + 𝑐𝑈𝑉𝑉)𝑈

+𝛽
𝑈
𝑆𝑈 + 𝛽

𝑉
𝑆𝑉 − 𝛾𝑈 − 𝜇

𝑈
𝑈] ,
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𝑑𝑉

𝑑𝜏
=
𝜆𝑈𝑉

𝑈 + 𝑉
− 𝛿𝑉

+ 𝜀 [−𝑚𝑉 − (𝑐𝑉𝑆𝑆 + 𝑐𝑉𝑈𝑈 + 𝑐𝑉𝑉𝑉)𝑉 − 𝜇𝑉𝑉] .

(3)

2.4. Reduction of theModel. In this section we take advantage
of the two time scales to reduce the dimension of the complete
system (3). In the next section, as a consequence of this
reduction, we perform the analysis of the model by means
of a planar system. The reduction follows the technique
called approximate aggregation method [14, 15]. The first step
is writing the system in the so-called slow-fast form. This
is easily done in system (3) using the change of variables
(𝑆, 𝑈, 𝑉) 󳨃→ (𝑆, 𝐼, 𝑉), where 𝐼 = 𝑈 + 𝑉 represents all the
infected individuals, both primary infected and coinfected.
Consider

𝑑𝑆

𝑑𝜏
= 𝜀 [𝑟𝑆 + 𝑎𝑈𝑟 (𝐼 − 𝑉) + 𝑎𝑉𝑟𝑉 − 𝑚𝑆

− (𝑐
𝑆𝑆
𝑆 + 𝑐
𝑆𝑈 (𝐼 − 𝑉) + 𝑐𝑆𝑉𝑉) 𝑆

−𝛽
𝑈
𝑆 (𝐼 − 𝑉) − 𝛽𝑉𝑆𝑉 + 𝛾 (𝐼 − 𝑉)] ,

𝑑𝐼

𝑑𝜏
= 𝜀 [−𝑚𝐼 − (𝑐𝑈𝑆𝑆 + 𝑐𝑈𝑈 (𝐼 − 𝑉) + 𝑐𝑈𝑉𝑉) (𝐼 − 𝑉)

+ 𝛽
𝑈
𝑆 (𝐼 − 𝑉) + 𝛽𝑉𝑆𝑉

− 𝛾 (𝐼 − 𝑉) − 𝜇𝑈 (𝐼 − 𝑉)

− (𝑐
𝑉𝑆
𝑆 + 𝑐
𝑉𝑈 (𝐼 − 𝑉) + 𝑐𝑉𝑉𝑉)𝑉 − 𝜇𝑉𝑉] ,

𝑑𝑉

𝑑𝜏
=
𝜆 (𝐼 − 𝑉)𝑉

𝐼
− 𝛿𝑉

+ 𝜀 [−𝑚𝑉 − (𝑐
𝑉𝑆
𝑆 + 𝑐
𝑉𝑈 (𝐼 − 𝑉) + 𝑐𝑉𝑉𝑉)𝑉 − 𝜇𝑉𝑉] .

(4)

The key point of the new form of system (3) is making it
visible that variables 𝑆 and 𝐼 are slow (the right-hand side
terms of their equations have 𝜀 as a factor) in the sense
that they almost do not change at the fast time scale. The
fast dynamics is concentrated in the first terms without 𝜀 in
the equation for 𝑉. The approximation that the aggregation
method proposes consists in separating both dynamics.
Firstly, the nonslow variables are calculated in terms of the
slow ones by assuming that they are the equilibria (called
fast equilibria) determining the long-term behaviour of the
fast dynamics. Secondly, these obtained values of the nonslow
variables are substituted into the equations of the slow ones
yielding a reduced system for the latter. In this reduced or
aggregated system the fast dynamics is summarized in its
parameters. In the particular case of system (4), the only
nonslow variable is 𝑉 and the fast dynamics reduces to the
equation

𝑑𝑉

𝑑𝜏
=
𝜆 (𝐼 − 𝑉)𝑉

𝐼
− 𝛿𝑉. (5)

Assuming the slow variable 𝐼 to be constant, the analysis of
(5) for positive values of 𝑉(0) gives

lim
𝜏→∞

𝑉 (𝜏) = ]∗𝐼 =
{{

{{

{

0 if 𝛿 ≥ 𝜆

(1 −
𝛿

𝜆
) 𝐼 if 𝛿 < 𝜆,

(6)

which corresponds to the results of a classical 𝑆𝐼𝑆 model
without demography and frequency-dependent transmission
[17]. If the recovery rate is larger than the transmission
rate, the disease disappears since the number of coinfected
individuals tends rapidly to zero. On the other hand, if the
recovery rate is smaller than the transmission rate, the disease
becomes endemic with a stable fraction ]∗ = 1 − 𝛿/𝜆 of the
infected population 𝐼 remaining coinfected.

The fast equilibria 𝑉 = ]∗𝐼 found in (5) are the values to
be substituted into the equations for the slow variables 𝑆 and
𝐼 to obtain the following reduced system:

𝑑𝑆

𝑑𝑡
= 𝑟𝑆 + 𝑎𝑟𝐼 − 𝑚𝑆 − (𝑐𝑆𝑆𝑆 + 𝑐𝑆𝐼𝐼) 𝑆 − 𝛽𝑆𝐼 + 𝛾𝐼,

𝑑𝐼

𝑑𝑡
= −𝑚𝐼 − (𝑐

𝐼𝑆
𝑆 + 𝑐
𝐼𝐼
𝐼) 𝐼 + 𝛽𝑆𝐼 − 𝛾𝐼 − 𝜇𝐼,

(7)

which has the same form as the primary disease submodel (1).
In its parameters the effect of fast dynamics, the opportunistic
disease, is implicit through ]∗

𝑎 = (1 − ]∗) 𝑎
𝑈
+ ]∗𝑎
𝑉
, 𝑐

𝑆𝐼
= (1 − ]∗) 𝑐

𝑆𝑈
+ ]∗𝑐
𝑆𝑉
,

𝑐𝐼𝑆 = (1 − ]
∗
) 𝑐𝑈𝑆 + ]

∗
𝑐𝑉𝑆,

𝑐
𝐼𝐼
= (1 − ]∗)2 𝑐

𝑈𝑈
+ (1 − ]∗) ]∗𝑐

𝑈𝑉

+ ]∗ (1 − ]∗) 𝑐
𝑉𝑈
+ (]∗)2 𝑐

𝑉𝑉
,

𝛽 = (1 − ]∗) 𝛽𝑈 + ]
∗
𝛽𝑉, 𝛾 = (1 − ]∗) 𝛾,

𝜇 = (1 − ]∗) 𝜇
𝑈
+ ]∗𝜇

𝑉
.

(8)

The reduced system (7) is useful to analyze the asymptotic
behaviour of the solutions of the complete system (3) [14, 15].
In particular, the existence of a hyperbolic asymptotically
stable equilibria (𝑆∗, 𝐼∗) of system (7) ensures the existence,
for 𝜀 small enough, of an equilibria of system (3) with
the same characteristics and a form very close to (𝑆∗, (1 −
]∗)𝐼∗, ]∗𝐼∗). In the next section we carry out the analysis
of the stability of equilibria of system (7) obtaining thus the
corresponding results for the complete model (3).

Note that the reduced system (7) and the primary disease
submodel (1) are the same, the only difference being the
values of the respective coefficients. Indeed, when 𝛿 > 𝜆 the
opportunistic disease cannot invade the population and, in
this case, the coefficients (8) of systems (7) and (1) are exactly
the same.

3. Analysis of the Reduced System

We proceed in this section to analyze the reduced system (7).
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We first note that 𝐸∗
0
= (0, 0) is an equilibrium point, the

positive 𝑆 semiaxis, {(𝑆, 0) : 𝑆 > 0}, is invariant, and on the
positive 𝐼 semiaxis, {(0, 𝐼) : 𝐼 > 0}, the vector field associated
with system (7) points to the interior of the positive quadrant.
We then have that the closed positive quadrant R2

+
= {(𝑆, 𝐼) :

𝑆 ≥ 0, 𝐼 ≥ 0} is positively invariant.
In the next result we prove that, as expected, if the

susceptible fertility rate 𝑟 is not strictly larger than the natural
death rate𝑚 the population gets extinct.

Proposition 1. If 𝑟 ≤ 𝑚 then any solution (𝑆(𝑡), 𝐼(𝑡)) of system
(7) with nonnegative initial conditions (𝑆(0), 𝐼(0)) tends to 𝐸∗

0
.

Proof. Let us call 𝑊 = 𝑆 + 𝐼. Summing up both equations
in system (7) and now choosing 𝑐 = min{𝑐

𝑆𝑆
, 𝑐
𝑆𝐼
, 𝑐
𝐼𝑆
, 𝑐
𝐼𝐼
} we

have 𝑑𝑊/𝑑𝑡 ≤ −𝑐𝑊2 that, by integration, yields

0 ≤ 𝑊 (𝑡) ≤
𝑊 (0)

1 +𝑊 (0) 𝑐𝑡
󳨀→
𝑡→∞

0 (9)

since R2
+
is positively invariant.

Henceforth, we assume that 𝑟 > 𝑚. This assumption
prevents the population from extinction.The linearization of
system (7) at the equilibrium 𝐸∗

0
has the matrix

(
𝑟 − 𝑚 𝑎𝑟 + 𝛾

0 − (𝑚 + 𝛾 + 𝜇)
) (10)

with one positive and one negative eigenvalues. The unstable
manifold of 𝐸∗

0
, associated with 𝑟 − 𝑚, is included in the 𝑆

axis, while the stable manifold, associated with −(𝑚 + 𝛾 + 𝜇),
is tangent at 0 to the eigenvector (𝑎𝑟+ 𝛾, −(𝑟 + 𝛾+𝜇)) and lies
completely outside the interior of the positive quadrant.

Assuming 𝑟 > 𝑚 the only nonnegative solution tending
to 0 is 𝐸∗

0
itself. We prove next that all nonnegative solutions

are forward bounded.

Proposition 2. Let 𝑟 > 𝑚. If (𝑆(𝑡), 𝐼(𝑡)) is any solution of
system (7) with nonnegative initial conditions (𝑆(0), 𝐼(0)) then
it is bounded on [0,∞).

Proof. Calling𝑊 = 𝑆 + 𝐼 and letting 𝑐 = min{𝑐𝑆𝑆, 𝑐𝑆𝐼, 𝑐𝐼𝑆, 𝑐𝐼𝐼}
we have

𝑑𝑊

𝑑𝑡
+ (𝑟 − 𝑚)𝑊 ≤ 2 (𝑟 − 𝑚)𝑊 − 𝑐𝑊

2
. (11)

Function 𝑔(𝑊) = 2(𝑟 − 𝑚)𝑊 − 𝑐𝑊2 attains its maximum on
[0,∞) at𝑊 = (𝑟 − 𝑚)/𝑐, so that

𝑑𝑊

𝑑𝑡
+ (𝑟 − 𝑚)𝑊 ≤

(𝑟 − 𝑚)
2

𝑐
. (12)

Multiplying both sides of (12) by 𝑒(𝑟−𝑚)𝑡 and rearranging terms
yield

𝑑

𝑑𝑡
(𝑒
(𝑟−𝑚)𝑡

𝑊) ≤ 𝑒
(𝑟−𝑚)𝑡 (𝑟 − 𝑚)

2

𝑐
, (13)

which implies, integrating (13) on [0, 𝑡],

𝑒
(𝑟−𝑚)𝑡

𝑊(𝑡) − 𝑊 (0) ≤
(𝑟 − 𝑚)

2

𝑐 (𝑟 − 𝑚)
(𝑒
(𝑟−𝑚)𝑡

− 1) . (14)

Rearranging terms in expression (14) leads to

𝑊(𝑡) ≤ 𝑊 (0) 𝑒
−(𝑟−𝑚)𝑡

+
𝑟 − 𝑚

𝑐
(1 − 𝑒

−(𝑟−𝑚)𝑡
) (15)

and, finally, we have that 𝑊(𝑡) ≤ max{𝑊(0), (𝑟 − 𝑚)/𝑐} for
every 𝑡 ∈ [0,∞).

In addition to the trivial equilibrium 𝐸
∗

0
, system (7)

possesses a disease-free equilibrium 𝐸∗
1
= (𝑆
∗

1
, 0), where

𝑆
∗

1
=
𝑟 − 𝑚

𝑐
𝑆𝑆

(16)

that represents the stable size of the population in case of
no infection. The growth of the population in the absence of
infections is logistic and 𝑆∗

1
represents its carrying capacity.

Proposition 3. Let 𝑟 > 𝑚. The equilibrium point 𝐸∗
1
= (𝑆
∗

1
, 0)

of system (7) verifies

(1) if 𝑆∗
1
(𝛽 − 𝑐𝐼𝑆) > 𝑚 + 𝛾 + 𝜇 then 𝐸∗

1
is a saddle point,

the stable manifold of which coincides with the positive
𝑆 semiaxis;

(2) if 𝑆∗
1
(𝛽 − 𝑐

𝐼𝑆
) < 𝑚 + 𝛾 + 𝜇 then 𝐸∗

1
is locally

asymptotically stable;

(3) if 𝛽−𝑐
𝐼𝑆
≤ 0 then the basin of attraction of 𝐸∗

1
includes

R2
+
− {0}.

Proof. To prove the two first items it suffices to calculate the
matrix of the linearization of system (7) at 𝐸∗

1
:

(

− (𝑟 − 𝑚) 𝑎𝑟 + 𝛾 − 𝑆
∗

1
(𝑐
𝑆𝐼
+ 𝛽)

0 𝑆
∗

1
(𝛽 − 𝑐

𝐼𝑆
) − (𝑚 + 𝛾 + 𝜇)

) . (17)

One of the eigenvalues, −(𝑟 − 𝑚), is negative while stability
depends on the other one, 𝑆∗

1
(𝛽 − 𝑐𝐼𝑆) − (𝑚 + 𝛾 + 𝜇), being

positive or negative: 𝐸∗
1
is a saddle or (locally) asymptotically

stable, respectively.
To prove the last assertion we first note that there exist

no interior equilibria because the right-hand side of the 𝐼
equation is always negative for positive 𝑆 and 𝐼. Now the
Poincaré-Bendixson theorem implies that there is no closed
orbit in the interior of the positive quadrant and therefore that
all positive solutions that are forward bounded must tend to
the unique nonnegative equilibrium point, 𝐸∗

1
.

Up to now we have obtained the condition of nonextinc-
tion of the population, 𝑟 > 𝑚, and a sufficient condition,
𝛽 − 𝑐

𝐼𝑆
≤ 0, for a disease-free scenario in the long term.

This last condition says that if the competition coefficient
𝑐
𝐼𝑆
, representing the impact of susceptible on infected indi-

viduals, is larger than the transmission rate 𝛽 then the
infection disappears independently of the initial conditions.
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Figure 1: Possible profiles of the 𝑆-nullcline 𝐼 = Φ(𝑆) and the 𝐼-nullcline 𝐼 = Ψ(𝑆) and the 𝑆-nullcline 𝐼 = Φ(𝑆) (in black, their intersection
with the positive cone).

More significant cases exist when the simple competitive
pressure of susceptible on infected individuals is not enough
to compensate transmission.

Fromnow onwe are also assuming that 𝛽−𝑐
𝐼𝑆
> 0. In this

case the conditions of local stability of the equilibrium𝐸∗
1
can

be expressed in terms of the parameter

𝐴 =
𝑚 + 𝛾 + 𝜇

𝛽 − 𝑐𝐼𝑆

. (18)

Thus, Proposition 3 can be restated as follows: for 𝑟 > 𝑚 and
𝛽 > 𝑐𝐼𝑆, if 𝑆

∗

1
> 𝐴 or 𝑆∗

1
< 𝐴, then the equilibrium 𝐸∗

1
is a

saddle point or locally asymptotically stable, respectively.The
parameter 𝐴 represents a threshold population size allowing
or not the increase of the infection when it is rare. If the
susceptible population is close to its carrying capacity, 𝑆∗

1
, a

few infected individuals are able to spread the disease if the
number of susceptible individuals is large enough, 𝑆∗

1
> 𝐴.

On the other hand, the infection disappears if the susceptible
population is under the threshold 𝐴.

In the next results we search for conditions ensuring the
endemicity of the infection. To express them in a simpler
form we define another parameter

𝐵 =
𝑎𝑟 + 𝛾

𝑐𝑆𝐼 + 𝛽

, (19)

which can be interpreted through the terms depending on 𝐼 in
the first equation of system (7). This equation can be written
in the following form:

𝑑𝑆

𝑑𝑡
= (𝑟 − 𝑚) 𝑆 − 𝑐𝑆𝑆𝑆

2
+ (𝑎𝑟 + 𝛾 − (𝑐𝑆𝐼 + 𝛽) 𝑆) 𝐼, (20)

where we note that depending on whether 𝑎𝑟 + 𝛾 − (𝑐𝑆𝐼 +
𝛽)𝑆(𝑡) is positive or negative, the existence of infected
individuals makes the susceptible growth rate increase or
decrease, respectively. The size of the susceptible population
determines if the infection has a positive or a negative effect
on its growing. If 𝑆(𝑡) < 𝐵, the more the infected individuals
the larger the susceptible population growth rate, while

𝑆(𝑡) > 𝐵 yields a larger decrease of the susceptible population
growth rate whenever there is a larger infected population.

Using parameters 𝑆∗
1
, 𝐴, and 𝐵, system (7) can be

expressed as follows:
𝑑𝑆

𝑑𝑡
= 𝑐𝑆𝑆𝑆 (𝑆

∗

1
− 𝑆) + (𝑐𝑆𝐼 + 𝛽) (𝐵 − 𝑆) 𝐼,

𝑑𝐼

𝑑𝑡
= (𝛽 − 𝑐

𝐼𝑆
) (𝑆 − 𝐴) 𝐼 − 𝑐

𝐼𝐼
𝐼
2
.

(21)

The equation of the 𝑆-nullcline of system (21), for 𝑆∗
1
̸= 𝐵,

is

𝐼 = Φ (𝑆) =
𝑐
𝑆𝑆

𝑐
𝑆𝐼
+ 𝛽

⋅
𝑆 (𝑆
∗

1
− 𝑆)

𝑆 − 𝐵
. (22)

We are interested in the part included in the positive quad-
rant. This is for 𝑆∗

1
< 𝐵 an increasing branch going from the

point 𝐸∗
1
= (𝑆
∗

1
, 0) to the asymptote 𝑆 = 𝐵 (see Figure 1, left

panel) and for 𝑆∗
1
> 𝐵 a decreasing branch going from the

asymptote 𝑆 = 𝐵 to the point 𝐸∗
1
(see Figure 1, right panel).

In the case 𝑆∗
1
= 𝐵 the 𝑆-nullcline in the positive quadrant

reduces to the line 𝑆 = 𝐵 (see Figure 1, center panel).
The 𝐼-nullcline of system (21) in the open positive

quadrant is the line

𝐼 = Ψ (𝑆) =
𝛽 − 𝑐
𝐼𝑆

𝑐𝐼𝐼

(𝑆 − 𝐴) . (23)

It is immediate to prove that if 𝐴 ≥ max{𝑆∗
1
, 𝐵} there are no

interior equilibria of the system (see panels in Figure 1) and
thus, applying again the Poincaré-Bendixson theorem, we get
that all positive solutions tend to 𝐸∗

1
. We gather these results

in the next proposition.

Proposition 4. Let 𝑟 > 𝑚 and 𝛽 − 𝑐
𝐼𝑆
> 0. If 𝐴 ≥ max{𝑆∗

1
, 𝐵},

then system (7) possesses a unique nonnegative equilibrium
point 𝐸∗

1
= (𝑆
∗

1
, 0) that is asymptotically stable and attracts

every positive solution.

Condition 𝐴 ≥ max{𝑆∗
1
, 𝐵} tell us, on the one hand, that

the infection cannot invade due to 𝐴 ≥ 𝑆∗
1
and, on the other
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Figure 2: The invariant region A = {(𝑆, 𝐼); Φ(𝑆) ≤ 𝑆 ≤ Ψ(𝑆), 0 ≤

𝐼}mentioned in the proof of Proposition 5.

hand, that infected individuals cannot help in attaining the
invasion threshold because 𝐴 ≥ 𝐵. The consequence is that
infection disappears.

There are two situations for the infection to become
endemic. The first one is allowing invasion, that is, 𝑆∗

1
> 𝐴,

that is treated in Proposition 5.The second one does not allow
infection invasion for a low number of infected individuals,
𝑆
∗

1
< 𝐴, but larger numbers of infected individualsmight help

the susceptible population growing, 𝐴 ≥ 𝐵, so as to maintain
this latter over the invasion threshold. In Proposition 6
are detailed sufficient conditions to meet this second
situation.

Proposition 5. Let 𝑟 > 𝑚 and 𝛽 − 𝑐𝐼𝑆 > 0. If 𝑆∗1 > 𝐴 then
system (7) possesses a unique interior equilibrium point 𝐸∗

+
=

(𝑆
∗

+
, 𝐼
∗

+
) that is locally asymptotically stable. If, in addition, 𝑆∗

1
<

𝐵, then 𝐸∗
+
attracts every positive solution.

Proof. The assumptions on parameters yield the existence of
unique interior equilibrium (see Figure 2). The asymptotic
stability that follows can be proved by linearization.

Note that the condition 𝑆∗
1
> 𝐴 might not ensure that

all positive solutions tend to the interior equilibrium. Due to
the Poincaré-Bendixson theorem, it might happen that some
of these solutions tend to a limit cycle included in the open
positive quadrant surrounding the equilibrium.

Condition 𝑆∗
1
< 𝐵 excludes the existence of any limit cycle

because the regionA = {(𝑆, 𝐼); Φ(𝑆) ≤ 𝑆 ≤ Ψ(𝑆), 0 ≤ 𝐼} is an
invariant (“trapping”) subregionA ⊂ R2

+
such that 𝐸∗

+
∈ 𝜕A,

the boundary of A, and 𝜕A ∩ 𝜕R2
+
̸= 0 (see Figure 2). That

is, any orbit surrounding 𝐸∗
+
must enter A but cannot leave

from there.

In any case, what condition 𝑆∗
1
> 𝐴 ensures is the

endemicity of the infection. In the Proposition 6 we state
conditions leading the population to the disease-free state or
towards conditional endemicity related with a bistable sce-
nario. By conditional endemicity we mean that the outcome
of the model can be either disease-free (see Figure 3(a)) or
with an endemic disease depending on the initial amount of
susceptible and infected individuals; see Figure 3(c).

Indeed, we introduce R that appears later in the cor-
responding proof and drives the epidemic outcome. This
quantity depends on the parameters of the model and allows
discriminating whether conditional disease endemicity is
allowed or cannot occur.

Proposition 6. Let 𝑟 > 𝑚 and 𝛽 − 𝑐
𝐼𝑆
> 0. If 𝑆∗

1
< 𝐴 < 𝐵

then system (7) possesses the asymptotically stable equilibrium
𝐸
∗

1
= (𝑆
∗

1
, 0). Furthermore, let us define

R =

𝑐
𝐼𝐼 (𝑟 − 𝑚) + (𝑎𝑟 + 𝛾) (𝛽 − 𝑐𝐼𝑆) + (𝑐𝑆𝐼 + 𝛽) (𝜇 + 𝛾)

2√(𝑐
𝑆𝑆
𝑐
𝐼𝐼
+ (𝑐
𝑆𝐼
+ 𝛽) (𝛽 − 𝑐

𝐼𝑆
)) (𝑎𝑟 + 𝛾) (𝜇 + 𝛾)

.

(24)

We have:

(1) ifR < 1 then there is no interior equilibrium point and
the basin of attraction of 𝐸∗

1
includes R2

+
\ {0};

(2) if R = 1 then there is only one interior equilibrium
point 𝐸∗

+
= (𝑆
∗

+
, 𝐼
∗

+
) that is unstable; the equilibrium

𝐸
∗

1
= (𝑆
∗

1
, 0) attracts every solution with initial values

in the interior of R2
+
\ 𝐸
∗

+
;

(3) ifR > 1 then there are two interior equilibrium points
𝐸
∗

+1
= (𝑆
∗

+1
, 𝐼
∗

+1
) and 𝐸∗

+2
= (𝑆
∗

+2
, 𝐼
∗

+2
), with 𝑆∗

+1
< 𝑆
∗

+2

and 𝐼∗
+1
< 𝐼
∗

+2
. 𝐸∗
+1

is a saddle and 𝐸∗
+2

is locally
asymptotically stable.

Proof. Note that the asymptotic stability of𝐸∗
1
follows directly

from Proposition 3 since 𝑆∗
1
< 𝐴.

Next, we focus on showing the relation between R and
the existence of equilibrium points of system (7). Equating
the nullclines 𝐼 = Φ(𝑆) and 𝐼 = Ψ(𝑆) of system (7) yields

𝑐
𝑆𝑆

𝑐
𝑆𝐼
+ 𝛽

⋅
𝑆 (𝑆
∗

1
− 𝑆)

𝑆 − 𝐵
=
𝛽 − 𝑐
𝐼𝑆

𝑐𝐼𝐼

(𝑆 − 𝐴) . (25)

Keeping in mind the definition of 𝐴 and 𝐵, the previous
expression is equivalent to

0 = (𝑐
𝑆𝑆
𝑐
𝐼𝐼
+ (𝑐
𝑆𝐼
+ 𝛽) (𝛽 − 𝑐

𝐼𝑆
)) 𝑆
2

− (𝑐
𝐼𝐼 (𝑟 − 𝑚) + (𝑎𝑟 + 𝛾) (𝛽 − 𝑐𝐼𝑆) + (𝑐𝑆𝐼 + 𝛽) (𝜇 + 𝛾)) 𝑆

+ (𝑎𝑟 + 𝛾) (𝜇 + 𝛾) .

(26)

Now, direct calculations lead to the fact that R being
smaller than, equal to, or larger than 1, is equivalent to the
discriminant of (26) being negative, zero, or positive. This
yields the number of equilibrium points.

Note that when R < 1 there is no interior equilibrium
point and a direct application of the Poincaré-Bendixson
theorem yields statement 1.

Concerning statement (2), direct calculations show that
whenR = 1 the equilibrium 𝐸∗ is not hyperbolic so that we
cannot use the linearization criterion. Note that the region
B = {(𝑆, 𝐼); Ψ(𝑆) ≤ 𝑆 ≤ Φ(𝑆), 0 ≤ 𝐼} is an invariant region
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Figure 3: Related to Proposition 6, possible configurations of the nullclines when 𝑆∗
1
< 𝐴 < 𝐵. (a) 𝑆∗

1
is global attractor. (b) 𝑆∗

1
is an attractor.

(c) The bistable case: 𝑆∗
1
and 𝐸∗

+2
are locally asymptotically stable while 𝐸∗

+1
is a saddle.

such that 𝐸∗
+
∈ 𝜕B and 𝜕B ∩ 𝜕R2

+
̸= 0. Indeed, any solution

with initial values in the interior ofB converges to 𝐸∗
0
since

Ψ(𝑆) < 𝑆 < Φ(𝑆), which implies that 𝐸∗
+
is unstable. The

nonexistence of periodic orbits can be argued as done in the
proof of Proposition 5.

We now assume R > 1 and analyze the stability of the
equilibria 𝐸∗ = (𝑆∗, 𝐼∗) by means of the well known trace-
determinant criterion. Let us consider the Jacobian matrix of
the flow of system (7) at the equilibrium point which, taking
into account the fact that Φ(𝑆∗) = 𝐼∗ = Ψ(𝑆∗), simplifies to

J = (
−𝑐
𝑆𝑆
𝑆
∗
−
(𝑎𝑟 + 𝛾) 𝐼

∗

𝑆∗
𝑎𝑟 + 𝛾 − (𝐶

𝑆𝐼
+ 𝛽) 𝑆

∗

(𝛽 − 𝑐
𝐼𝑆
) 𝐼
∗

−𝑐
𝐼𝐼
𝐼
∗

) . (27)

This immediately yields trF < 0. Furthermore, a direct
calculation leads to

detJ
𝐼∗

= ((𝑐𝑆𝑆𝑐𝐼𝐼 + (𝐶𝑆𝐼 + 𝛽) (𝛽 − 𝑐𝐼𝑆)) (𝑆
∗
)
2

+ (𝑎𝑟 + 𝛾) (𝑐
𝐼𝐼
𝐼
∗
− (𝛽 − 𝑐

𝐼𝑆
) 𝑆
∗
)) ⋅ (𝑆

∗
)
−1
.

(28)

Using again the fact that 𝐼∗ = Ψ(𝑆∗), if and only if 𝑐
𝐼𝐼
𝐼
∗
=

(𝛽 − 𝑐
𝐼𝑆
)𝑆
∗
− (𝜇 + 𝛾), we have

detJ
𝐼∗

=

(𝑘𝑐𝐼𝐼 + (𝐶𝑆𝐼 + 𝛽) (𝛽 − 𝑐𝐼𝑆)) (𝑆
∗
)
2
− (𝑎𝑟 + 𝛾) (𝜇 + 𝛾)

𝑆∗
,

(29)

so that detJ > 0 is equivalent to

𝑆
∗
> √

(𝑎𝑟 + 𝛾) (𝜇 + 𝛾)

𝑘𝑐
𝐼𝐼
+ (𝐶
𝑆𝐼
+ 𝛽) (𝛽 − 𝑐

𝐼𝑆
)

, (30)

which entails local stability. On the contrary, 𝐸∗ is unstable if

𝑆
∗
< √

(𝑎𝑟 + 𝛾) (𝜇 + 𝛾)

𝑘𝑐
𝐼𝐼
+ (𝐶
𝑆𝐼
+ 𝛽) (𝛽 − 𝑐

𝐼𝑆
)

. (31)

The 𝑆 component of the equilibrium points 𝐸∗
+1

and 𝐸∗
+2

can
be explicitly calculated from (26). Direct calculations show
that 𝑆∗

+1
fulfills condition (31) while condition (30) holds for

𝑆
∗

+2
.

4. Discussion

We have set up a model aimed at ascertaining the impact
of an opportunistic disease outbreak in a population already
affected by a primary disease by assuming that both diseases
evolve within different time scales. For the discussion of
results, let us remember the twomain aims stated in the Intro-
duction. On the one hand, we wanted to know whether the
coinfection by a secondary disease produces epidemiological
scenarios not allowed by the primary disease submodel
or not. In the latter case, it is of interest to determine if
coinfection has any influence on the actual outcome of the
model, even if just among those allowed by the primary
disease submodel.

The answer to the first question is negative, as we have
pointed out at the end of Section 2. Thus, the catalog of
possible qualitative epidemic behaviors remains unchanged
by the influence of a secondary disease under the assumptions
considered here. We can restate this fact by saying that there
is neither functional nor dynamical emergence [14].

Nevertheless, the effect of the opportunistic disease must
be taken into account. In Section 3 we have found that 𝐴,
𝐵, and 𝑆∗

1
, as well as R, are key parameters to describe the

outcome of the model. All of them, but 𝑆∗
1
, depend on ]∗, the

fraction of coinfected individuals which, in turn, depends on
𝜆/𝛿, the ratio of the parameters describing the opportunistic
disease dynamics. It means that the opportunistic disease can
be decisive in the long-term behavior of the slow-fast model.
Therefore, the interest lies on how 𝐴, 𝐵, andR vary with the
quotient 𝛿/𝜆. Unfortunately, such a dependence is, in general,
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Figure 4: Possible epidemic outcomes. Yellow: disease-free. Orange: endemic primary infection. Gray: disease-free or endemic coinfection
depending on initial values. Red: endemic coinfection. (a) Parameter values: 𝑎
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not simple (just see (5) and (8)) and we resort to numerical
tools to illustrate the effect of varying 𝛿/𝜆 in the outcome
of the model. Figure 4 displays the different outcomes of the
aggregated model as function of 𝛿 and 𝜆: in yellow, values of
𝛿 and 𝜆 leading to the disease-free scenario; in orange, values
leading to an endemic primary infection outcome; in gray,
conditional coinfection, meaning values leading to either
disease-free or endemic coinfection scenario, depending on
the initial amount of susceptible and infected individuals; in
red, values leading to disease endemic coinfection outcome.

In Figure 4(b), the epidemiological outcome changes
from disease-free to endemic coinfection as the ratio 𝛿/𝜆
increases and crosses the threshold 𝛿/𝜆 = 1. Instead, in
Figure 4(a), note that the disease-free region (in the parame-
ters space) overlaps the region 𝜆 > 𝛿 (above the dotted line)
where the opportunistic disease would be able to invade if
there were primary infected individuals in the population. As
the ratio 𝛿/𝜆 increases, the epidemiological outcome changes
from disease-free to conditional coinfection and a further
increase leads to endemic coinfection. The only difference
between the parameter values used in each figure is on 𝑐𝑆𝑆
and 𝛽𝑉. And this fact leads us to another interesting finding:
there is a delicate interplay between competition coefficients
and infection parameters, captured by the definition of 𝐴, 𝐵,
𝑆
∗

1
, and R, which must be taken into account. Although we

could not derive general results of such an interdependence,
we have shown that it must be taken into account.

Summing up, both the irruption of an opportunistic
disease and the competitive pressure of individuals being in
different epidemiological state may affect the evolution of the
primary disease outbreak. The effect can be determined by
means of the parameters 𝐴, 𝐵, andR on 𝛿/𝜆. And it leads us
to the second objective of this work.

Related to our second objective, our results point out two
different kinds of mechanisms to modulate the outcome of
the model, each of them feasible within certain ranges of the
parameter values.

On the one hand, having control on parameters 𝛿 and
𝜆 may allow certain leeway to reverse/promote epidemic
outbreaks or infection/coinfection scenarios. Indeed, once
the actual parameter values of the model are known one
can compute (the equivalent of) Figure 4 and get enhanced
comprehension on the epidemiological context as well as
ascertaining the effect on the epidemic outbreak of changes
on 𝛿 or 𝜆. In this sense, it is interesting to note that any action
or measure taken to modify the secondary infection recovery
rate 𝛿 or transmission rate 𝜆 such that 𝛿/𝜆 remains constant
is completely ineffective. In addition, controlling individuals
competitive pressure may be relevant for the epidemiological
outcome.

On the other hand, the results in Propositions 3 and 6
suggest that acting on the susceptible/infected individuals
population size in order to keep the population above/below
certain threshold allows having control on epidemic out-
breaks. In particular, according to Proposition 3, 𝐴 is a
susceptible population size threshold allowing or not the
increase of the infection when it is rare. Therefore, introduc-
ing/culling (removing) susceptible individuals to bring the
population above/below this threshold may certainly modify
the outcome. Besides, under the hypotheses of Proposition 6,
we show that when R > 1 whether the disease establishes
itself or not depends on the initial amount of susceptible
and infected individuals. From a mathematical point of view,
this scenario is characterized by the fact that the disease-free
equilibrium𝐸∗

1
and an endemic disease (interior) equilibrium

𝐸
∗

+2
coexist and are locally asymptotically stable.There is also
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a saddle node interior equilibrium𝐸∗
+1
.The stablemanifold of

𝐸
∗

+1
separates the basins of attraction of the disease-free and

the endemic disease steady states.This stablemanifold cannot
be calculated straightforward but can be computed using, for
instance, the results in [24, 25].

A final comment has to do with the selection of the
transmission form of the opportunistic disease. Preliminary
calculations show that consideringDDT instead of FDT leads
to equivalent results.Thismeans that even if the nullclines are
different, the possible outcomes (say the dynamical scenarios)
of the corresponding aggregated model are the same.
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