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We consider the following state dependent boundary-value problem 𝐷
𝛼

0+
𝑦(𝑡) − 𝑝𝐷

𝛽

0+
𝑔(𝑡, 𝑦(𝜎(𝑡))) + 𝑓(𝑡, 𝑦(𝜏(𝑡))) = 0, 0 < 𝑡 < 1;

𝑦(0) = 0, 𝜂𝑦(𝜎(1)) = 𝑦(1), where 𝐷𝛼 is the standard Riemann-Liouville fractional derivative of order 1 < 𝛼 < 2, 0 < 𝜂 < 1, 𝑝 ≤ 0,
0 < 𝛽 < 1, 𝛽 + 1 − 𝛼 ≥ 0 the function 𝑔 is defined as 𝑔(𝑡, 𝑢) : [0, 1] × [0,∞) → [0,∞), and 𝑔(0, 0) = 0 the function 𝑓 is defined as
𝑓(𝑡, 𝑢) : [0, 1] × [0,∞) → [0,∞)𝜎(𝑡), 𝜏(𝑡) are continuous on 𝑡 and 0 ≤ 𝜎(𝑡), 𝜏(𝑡) ≤ 𝑡. Using Banach contraction mapping principle
and Leray-Schauder continuation principle, we obtain some sufficient conditions for the existence and uniqueness of the positive
solutions for the above fractional order differential equations, which extend some references.

1. Introduction

Fractional order differential equations has useful applications
in many fields, such as physics, mechanics, chemistry, engi-
neering, biology, and so on. There has been a significant
development in fractional differential equations (e.g., [1–9]).
In the previous papers, some authors investigated fractional
order partial differential equations [10–15]. For example,
Wu [15] used the wavelet operational method for solving
fractional partial differential equations numerically. Since it is
one of the important fields to be concernedwith the boundary
value problems for fractional order differential equations,
some authors considered the existence of positive solutions
for fractional differential equations or systemswith boundary
value conditions [16–25] and the stability [26].

As early as 1994, Delbosco [27] investigated the nonlinear
Dirichlet-type problem

𝑥
𝛼−1

(𝐷
𝛼

0+
𝑦) (𝑥) = 𝑓 (𝑦 (𝑥)) , 0 < 𝑥 < 1, 1 < 𝛼 < 2,

𝑦 (0) = 𝑦


(1) = 0,

(1)

where𝐷𝛼 is𝛼 order Riemann-Liouville derivative.The author
had proved that if 𝑓 is a Lipschitz function, then the problem

has at least one solution 𝑦(𝑥) in a certain subspace of 𝐶[0, 1]
in which the fractional derivative has a Hölder property.

Later, using some fixed point theorems, Bai and Lü [20]
obtained the existence of positive solutions of the following
equation with boundary value conditions

𝐷
𝛼

0+
𝑦 (𝑡) + 𝑓 (𝑡, 𝑦 (𝑡)) = 0, 0 < 𝑡 < 1, 1 < 𝛼 < 2,

𝑦 (0) = 𝑦 (1) = 0,

or 𝑦 (0) + 𝑦


(0) = 𝑦 (1) + 𝑦


(1) = 0.

(2)

More recently, Bai [9] also considered the following
boundary value problem

𝐷
𝛼

0+
𝑦 (𝑡) + 𝑓 (𝑡, 𝑦 (𝑡)) = 0, 0 < 𝑡 < 1, 1 < 𝛼 ≤ 2,

𝑦 (0) = 0,

𝛽𝑦 (𝜂) = 𝑦 (1) .

(3)

By constructing a Green’s function, and using contraction
map principle, the author obtained some existence conditions
of positive solutions for (3).
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Motivated by the above references, we consider a state
dependent boundary value problem with fractional order
differential operators

𝐷
𝛼

0+
𝑦 (𝑡) − 𝑝𝐷

𝛽

0+
𝑔 (𝑡, 𝑦 (𝜎 (𝑡))) + 𝑓 (𝑡, 𝑦 (𝜏 (𝑡))) = 0,

0 < 𝑡 < 1,

𝑦 (0) = 0,

𝜂𝑦 (𝜎 (1)) = 𝑦 (1) ,

(4)

where 𝐷
𝛼 is the standard Riemann-Liouville fractional

derivative of order 1 < 𝛼 < 2, 0 < 𝛽 < 1, 0 < 𝜂 < 1, 𝑝 ≤ 0,
𝛽 + 1 − 𝛼 ≥ 0, 1 − 𝜂𝜎

𝛼−1

(1) > 0; the function 𝑔 is defined
as 𝑔(𝑡, 𝑢) : [0, 1] × [0,∞) → [0,∞), and 𝑔(0, 0) = 0; the
function 𝑓 is defined as 𝑓(𝑡, 𝑢) : [0, 1] × [0,∞) → [0,∞)

and 𝜎(𝑡), 𝜏(𝑡) are continuous on 𝑡 and 0 ≤ 𝜎(𝑡), 𝜏(𝑡) ≤ 𝑡.
By using Banach contraction mapping principle and

Leray-Schauder continuation principle, we obtain some suffi-
cient conditions for the existence and uniqueness of the pos-
itive solutions for boundary value problem (4). Furthermore,
we give an example to illustrate our results.

2. Preliminary

In this section, we introduce some definitions and prelimi-
nary facts which are used in this paper.

Definition 1 (see [8, 16]). The fractional integral of order 𝛼
with the lower limit 𝑡

0
for a function 𝑓 is defined as

𝐼
𝛼

(𝑓 (𝑡)) =
1

Γ (𝛼)
∫

𝑡

𝑡0

𝑓 (𝑠)

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠, 𝑡 > 𝑡
0
, 𝛼 > 0, (5)

provided the right-side is point-wise defined on [𝑡
0
,∞],

where Γ is the Gamma function.

Definition 2 (see [8, 16]). Riemann-Liouville derivative of
order 𝛼with the lower limit 𝑡

0
for a function𝑓 : [0,∞) → R

can be written as

𝐷
𝛼

(𝑓 (𝑡)) =
1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

𝑡0

𝑓 (𝑠)

(𝑡 − 𝑠)
𝛼+1−𝑛

𝑑𝑠,

𝑡 > 𝑡
0
, 𝑛 − 1 < 𝛼 < 𝑛.

(6)

Definition 3 (see [8, 16]). Caputo’s derivative of order 𝛼 with
the lower limit 𝑡

0
for a function 𝑓 : [0,∞) → R can be

written as

𝑐

𝐷
𝛼

(𝑓 (𝑡)) =
1

Γ (𝑛 − 𝛼)
∫

𝑡

𝑡0

𝑓
(𝑛)

(𝑠)

(𝑡 − 𝑠)
𝛼+1−𝑛

𝑑𝑠

= 𝐼
𝑛−𝛼

𝑓
(𝑛)

(𝑡) , 𝑡 > 𝑡
0
, 𝑛 − 1 < 𝛼 < 𝑛.

(7)

It is well known that if 𝑛 − 1 ≤ 𝛼 ≤ 𝑛, then 𝐷
𝛼

𝑡
𝛼−𝑘

= 0,
𝑘 = 1, 2, . . . , 𝑛. Furthermore, if 𝑦(𝑡) ∈ 𝐿

1

[0, 𝑇] and 𝛼 > 0,
then for 𝑡 ∈ [0, 𝑇], we have

𝐷
𝛼

𝐼
𝛼

𝑦 (𝑡) = 𝑦 (𝑡) , (8)

which is with the semigroup property

𝐼
𝛿

𝐼
𝛼

= 𝐼
𝛿+𝛼

= 𝐼
𝛼

𝐼
𝛿

, (9)

for 𝛿 + 𝛼 > 0 and 𝑡 ∈ [0, 𝑇].
We also need to introduce some Lemmas as follows,

which will be used in the proof of our main theorems.

Lemma 4 (see [19, 20]). Let 𝛼 > 0; then the fractional
equation

𝐷
𝛼

(ℎ (𝑡)) = 0, (10)

has solutions

ℎ (𝑡) = 𝑐
1
𝑡
𝛼−1

+ 𝑐
2
𝑡
𝛼−2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛
𝑡
𝛼−𝑛

,

𝑐
𝑖
∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛, 𝑛 = [𝛼] + 1.

(11)

Lemma 5 (see [19, 20]). Let 𝛼 > 0; then

𝐼
𝛼

𝐷
𝛼

ℎ (𝑡) = ℎ (𝑡) + 𝑐
1
𝑡
𝛼−1

+ 𝑐
2
𝑡
𝛼−2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛
𝑡
𝛼−𝑛

, (12)

for some 𝑐
𝑖
∈ R, 𝑖 = 1, 2, . . . , 𝑛, 𝑛 = [𝛼] + 1.

Lemma 6 (see [28], the Banach contraction mapping the-
orem). Let 𝑇 : 𝑀 → 𝑀 be a contraction mapping of a
complete metric space 𝑀. Then 𝑇 has one and only one fixed
point.

Lemma 7 (see [28–30], the Leray-Schauder continuation
principle). Let 𝑋 be a Banach space with 𝐶 ⊂ 𝑋 being closed
and convex. Assume that𝑈 is a relatively open subset of𝐶with
0 ∈ 𝑈 and 𝑇 : 𝑈 → 𝐶 is completely continuous. Then either

(a) 𝑇 has a fixed point in 𝑈, or

(b) there exists 𝑢 ∈ 𝜕𝑈 and 𝜆 ∈ (0, 1) with 𝑢 = 𝜆𝑇𝑢.

Throughout this paper, we assume that 𝑓, 𝑔 ∈ 𝐶([0, 1] ×

[0,∞), [0,∞, )) and we satisfy the following

(H): (i)𝑓(𝑡, 𝑢), 𝑔(𝑡, 𝑢) is Lebesguemeasurable with respect
to 𝑡 on [0, 1];

(ii) 𝑓(𝑡, 𝑢), 𝑔(𝑡, 𝑢) is continuous with respect to 𝑢 on
[0,∞).

3. Main Results

For convenience, we rewrite (4) as follows:

𝐷
𝛼

0+
𝑦 (𝑡) = 𝑝𝐷

𝛽

0+
𝑔 (𝑡, 𝑦 (𝜎 (𝑡))) − 𝑓 (𝑡, 𝑦 (𝜏 (𝑡))) ,

0 < 𝑡 < 1,

(13)

𝑦 (0) = 0,

𝜂𝑦 (𝜎 (1)) = 𝑦 (1) .

(14)
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Integrating both sides of (13) of 𝛼 order with respect to 𝑡,
it follows that

𝑦 (𝑡)

= 𝑝
1

Γ (𝛼 − 𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−𝛽−1

𝑔 (𝑠, 𝑦 (𝜎 (𝑠))) 𝑑𝑠

+ 𝑐
0
𝑡
𝛼−1

+ 𝑐
1
𝑡
𝛼−2

−
1

Γ (𝛼)

⋅ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑦 (𝜏 (𝑠))) 𝑑𝑠, 0 < 𝑡 < 1.

(15)

From (14) and (15), we have

𝑐
1
= 0, (16)

𝑦 (1)

= 𝑝
1

Γ (𝛼 − 𝛽)
∫

1

0

(1 − 𝑠)
𝛼−𝛽−1

𝑔 (𝑠, 𝑦 (𝜎 (𝑠))) 𝑑𝑠

+ 𝑐
0
−

1

Γ (𝛼)
∫

1

0

(1 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑦 (𝜏 (𝑠))) 𝑑𝑠,

0 < 𝑡 < 1,

𝑦 (𝜎 (1))

= 𝑝
1

Γ (𝛼 − 𝛽)
∫

𝜎(1)

0

[𝜎 (1) − 𝑠]
𝛼−𝛽−1

𝑔 (𝑠, 𝑦 (𝜎 (𝑠))) 𝑑𝑠

+ 𝑐
0
𝜎
𝛼−1

(1) −
1

Γ (𝛼)

⋅ ∫

𝜎(1)

0

[𝜎 (1) − 𝑠]
𝛼−1

𝑓 (𝑠, 𝑦 (𝜏 (𝑠))) 𝑑𝑠,

0 < 𝑡 < 1.

(17)

Combining (14) with (17), we obtain

𝑐
0
=

1

Γ (𝛼) [1 − 𝜂𝜎𝛼−1 (1)]

⋅ ∫

1

0

(1 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑦 (𝜏 (𝑠))) 𝑑𝑠

−
𝜂

Γ (𝛼) [1 − 𝜂𝜎𝛼−1 (1)]

⋅ ∫

𝜎(1)

0

[𝜎 (1) − 𝑠]
𝛼−1

𝑓 (𝑠, 𝑦 (𝜏 (𝑠))) 𝑑𝑠

−
𝑝

Γ (𝛼 − 𝛽) [1 − 𝜂𝜎𝛼−1 (1)]

⋅ ∫

1

0

(1 − 𝑠)
𝛼−𝛽−1

𝑔 (𝑠, 𝑦 (𝜎 (𝑠))) 𝑑𝑠

+
𝑝𝜂

Γ (𝛼 − 𝛽) [1 − 𝜂𝜎𝛼−1 (1)]

⋅ ∫

𝜎(1)

0

[𝜎 (1) − 𝑠]
𝛼−𝛽−1

𝑔 (𝑠, 𝑦 (𝜎 (𝑠))) 𝑑𝑠,

0 < 𝑡 < 1.

(18)

According to (15) and (18), it follows that

𝑦 (𝑡)

=
𝑝

Γ (𝛼 − 𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−𝛽−1

𝑔 (𝑠, 𝑦 (𝜎 (𝑠))) 𝑑𝑠

+
1

Γ (𝛼) [1 − 𝜂𝜎𝛼−1 (1)]

⋅ ∫

1

0

(1 − 𝑠)
𝛼−1

𝑡
𝛼−1

𝑓 (𝑠, 𝑦 (𝜏 (𝑠))) 𝑑𝑠

−
𝜂

Γ (𝛼) [1 − 𝜂𝜎𝛼−1 (1)]

⋅ ∫

𝜎(1)

0

[𝜎 (1) − 𝑠]
𝛼−1

𝑡
𝛼−1

𝑓 (𝑠, 𝑦 (𝜏 (𝑠))) 𝑑𝑠

−
𝑝

Γ (𝛼 − 𝛽) [1 − 𝜂𝜎𝛼−1 (1)]

⋅ ∫

1

0

(1 − 𝑠)
𝛼−𝛽−1

𝑡
𝛼−1

𝑔 (𝑠, 𝑦 (𝜎 (𝑠))) 𝑑𝑠

+
𝑝𝜂

Γ (𝛼 − 𝛽) [1 − 𝜂𝜎𝛼−1 (1)]

⋅ ∫

𝜎(1)

0

[𝜎 (1) − 𝑠]
𝛼−𝛽−1

𝑡
𝛼−1

𝑔 (𝑠, 𝑦 (𝜎 (𝑠))) 𝑑𝑠

−
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑦 (𝜏 (𝑠))) 𝑑𝑠

=
𝑝

Γ (𝛼 − 𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−𝛽−1

𝑔 (𝑠, 𝑦 (𝜎 (𝑠))) 𝑑𝑠

−
𝑝

Γ (𝛼 − 𝛽) [1 − 𝜂𝜎𝛼−1 (1)]

⋅ (∫

𝑡

0

+∫

𝜎(1)

𝑡

+∫

1

𝜎(1)

) (1 − 𝑠)
𝛼−𝛽−1

𝑡
𝛼−1

𝑔 (𝑠, 𝑦 (𝜎 (𝑠))) 𝑑𝑠

−
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑦 (𝜏 (𝑠))) 𝑑𝑠

+
1

Γ (𝛼) [1 − 𝜂𝜎𝛼−1 (1)]

⋅ (∫

𝑡

0

+∫

𝜎(1)

0

+∫

1

𝜎(1)

) (1 − 𝑠)
𝛼−1

𝑡
𝛼−1

𝑓 (𝑠, 𝑦 (𝜏 (𝑠))) 𝑑𝑠
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+
𝑝𝜂

Γ (𝛼 − 𝛽) [1 − 𝜂𝜎𝛼−1 (1)]

⋅ (∫

𝑡

0

+∫

𝜎(1)

𝑡

) [𝜎 (1) − 𝑠]
𝛼−𝛽−1

𝑡
𝛼−1

𝑔 (𝑠, 𝑦 (𝜎 (𝑠))) 𝑑𝑠

−
𝜂

Γ (𝛼) [1 − 𝜂𝜎𝛼−1 (1)]

⋅ (∫

𝑡

0

+∫

𝜎(1)

𝑡

) [𝜎 (1) − 𝑠]
𝛼−1

𝑡
𝛼−1

𝑓 (𝑠, 𝑦 (𝜏 (𝑠))) 𝑑𝑠

= 𝑝∫

𝑡

0

1

Γ (𝛼 − 𝛽) [1 − 𝜂𝜎𝛼−1 (1)]

⋅ {[1 − 𝜂𝜎
𝛼−1

(1)] (𝑡 − 𝑠)
𝛼−𝛽−1

− (1 − 𝑠)
𝛼−𝛽−1

𝑡
𝛼−1

+ 𝜂[𝜎 (1) − 𝑠]
𝛼−𝛽−1

𝑡
𝛼−1

⋅𝑔 (𝑠, 𝑦 (𝜎 (𝑠)))} 𝑑𝑠

+ 𝑝∫

𝜎(1)

𝑡

( (−(1 − 𝑠)
𝛼−𝛽−1

𝑡
𝛼−1

+𝜂[𝜎 (1) − 𝑠]
𝛼−𝛽−1

𝑡
𝛼−1

)

⋅(Γ (𝛼 − 𝛽) [1 − 𝜂𝜎
𝛼−1

(1)])
−1

)

⋅ 𝑔 (𝑠, 𝑦 (𝜎 (𝑠))) 𝑑𝑠

− 𝑝∫

1

𝜎(1)

(1 − 𝑠)
𝛼−𝛽−1

𝑡
𝛼−1

Γ (𝛼 − 𝛽) [1 − 𝜂𝜎𝛼−1 (1)]

⋅ 𝑔 (𝑠, 𝑦 (𝜎 (𝑠))) 𝑑𝑠

− ∫

𝑡

0

( ((1 − 𝜂𝜎
𝛼−1

(1)) (𝑡 − 𝑠)
𝛼−1

− (1 − 𝑠)
𝛼−1

𝑡
𝛼−1

+ 𝜂[𝜎 (1) − 𝑠]
𝛼−1

𝑡
𝛼−1

)

⋅ (Γ (𝛼) [1 − 𝜂𝜎
𝛼−1

(1)])
−1

)

⋅ 𝑓 (𝑠, 𝑦 (𝜏 (𝑠))) 𝑑𝑠

− ∫

𝜎(1)

𝑡

−(1 − 𝑠)
𝛼−1

𝑡
𝛼−1

+ 𝜂[𝜎 (1) − 𝑠]
𝛼−1

𝑡
𝛼−1

Γ (𝛼) [1 − 𝜂𝜎𝛼−1 (1)]

⋅ 𝑓 (𝑠, 𝑦 (𝜏 (𝑠))) 𝑑𝑠

+ ∫

1

𝜎(1)

(1 − 𝑠)
𝛼−1

𝑡
𝛼−1

Γ (𝛼) [1 − 𝜂𝜎𝛼−1 (1)]
𝑓 (𝑠, 𝑦 (𝜏 (𝑠))) 𝑑𝑠,

0 < 𝑡 < 1.

(19)

Let
𝐺 (𝑡, 𝑠)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

((1 − 𝑠)
𝛼−𝛽−1

𝑡
𝛼−1

− (1 − 𝜂𝜎
𝛼−1

(1))

⋅ (𝑡 − 𝑠)
𝛼−𝛽−1

− 𝜂[𝜎 (1) − 𝑠]
𝛼−𝛽−1

𝑡
𝛼−1

)

⋅ (Γ (𝛼 − 𝛽) [1 − 𝜂𝜎
𝛼−1

(1)])
−1

,

0 ≤ 𝑠 ≤ 𝑡 ≤ 1, 𝑠 ≤ 𝜎 (1) ;

((1 − 𝑠)
𝛼−𝛽−1

𝑡
𝛼−1

− (1 − 𝜂𝜎
𝛼−1

(1)) (𝑡 − 𝑠)
𝛼−𝛽−1

)

⋅ (Γ (𝛼 − 𝛽) [1 − 𝜂𝜎
𝛼−1

(1)])
−1

,

0 < 𝜎 (1) ≤ 𝑠 ≤ 𝑡 ≤ 1;

((1 − 𝑠)
𝛼−𝛽−1

𝑡
𝛼−1

− 𝜂[𝜎 (1) − 𝑠]
𝛼−𝛽−1

𝑡
𝛼−1

)

⋅ (Γ (𝛼 − 𝛽) [1 − 𝜂𝜎
𝛼−1

(1)])
−1

,

0 < 𝑡 ≤ 𝑠 ≤ 𝜎 (1) ≤ 1;

((1 − 𝑠)
𝛼−𝛽−1

𝑡
𝛼−1

)

⋅ (Γ (𝛼 − 𝛽) [1 − 𝜂𝜎
𝛼−1

(1)])
−1

,

0 ≤ 𝑡 ≤ 𝑠 ≤ 1, 𝜎 (1) ≤ 𝑠,

(20)

𝐺 (𝑡, 𝑠)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

((1 − 𝑠)
𝛼−1

𝑡
𝛼−1

− (1 − 𝜂𝜎
𝛼−1

(1)) (𝑡 − 𝑠)
𝛼−1

−𝜂[𝜎 (1) − 𝑠]
𝛼−1

𝑡
𝛼−1

)

⋅ (Γ (𝛼) [1 − 𝜂𝜎
𝛼−1

(1)])
−1

,

0 ≤ 𝑠 ≤ 𝑡 ≤ 1, 𝑠 ≤ 𝜎 (1) ;

((1 − 𝑠)
𝛼−1

𝑡
𝛼−1

− (1 − 𝜂𝜎
𝛼−1

(1)) (𝑡 − 𝑠)
𝛼−1

)

⋅ (Γ (𝛼) [1 − 𝜂𝜎
𝛼−1

(1)])
−1

,

0 < 𝜎 (1) ≤ 𝑠 ≤ 𝑡 ≤ 1;

((1 − 𝑠)
𝛼−1

𝑡
𝛼−1

− 𝜂[𝜎 (1) − 𝑠]
𝛼−1

𝑡
𝛼−1

)

⋅ (Γ (𝛼) [1 − 𝜂𝜎
𝛼−1

(1)])
−1

,

0 < 𝑡 ≤ 𝑠 ≤ 𝜎 (1) ≤ 1;

((1 − 𝑠)
𝛼−1

𝑡
𝛼−1

)

⋅ (Γ (𝛼) [1 − 𝜂𝜎
𝛼−1

(1)])
−1

,

0 ≤ 𝑡 ≤ 𝑠 ≤ 1, 𝜎 (1) ≤ 𝑠.

(21)

According to (19)–(21), it follows that

𝑦 (𝑡) = −𝑝∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠, 𝑦 (𝜎 (𝑠))) 𝑑𝑠

+ ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑦 (𝜏 (𝑠))) 𝑑𝑠,

(22)

which means that if 𝑦(𝑡) satisfies (13)-(14), then it satisfies
(22). It is easy to show that if 𝑦(𝑡) satisfies (22), then it also
satisfies (13)-(14).Thus, the boundary value problem (13)-(14)
is actually equivalent to integral equation (22). Therefore, we
have the following.

Lemma 8. Problem (13)-(14) is equivalent to (22).

Lemma 9. For any (𝑡, 𝑠) ∈ (0, 1) × (0, 1), 𝐺(𝑡, 𝑠), 𝐺(𝑡, 𝑠) are
continuous and 𝐺(𝑡, 𝑠) > 0, 𝐺(𝑡, 𝑠) > 0.
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Proof. It is obvious that 𝐺(𝑡, 𝑠), 𝐺(𝑡, 𝑠) are continuous on
[0, 1] × [0, 1]. We first prove that 𝐺(𝑡, 𝑠) > 0 on [0, 1] × [0, 1].
Let

𝑔
1
(𝑡, 𝑠)

= (1 − 𝑠)
𝛼−𝛽−1

𝑡
𝛼−1

− [1 − 𝜂𝜎
𝛼−1

(1)] (𝑡 − 𝑠)
𝛼−𝛽−1

− 𝜂[𝜎 (1) − 𝑠]
𝛼−𝛽−1

𝑡
𝛼−1

,

0 ≤ 𝑠 ≤ 𝑡 ≤ 1, 𝑠 ≤ 𝜎 (1) ;

𝑔
2
(𝑡, 𝑠)

= (1 − 𝑠)
𝛼−𝛽−1

𝑡
𝛼−1

− [1 − 𝜂𝜎
𝛼−1

(1)] (𝑡 − 𝑠)
𝛼−𝛽−1

,

0 < 𝜎 (1) ≤ 𝑠 ≤ 𝑡 ≤ 1;

𝑔
3
(𝑡, 𝑠)

= (1 − 𝑠)
𝛼−𝛽−1

𝑡
𝛼−1

− 𝜂[𝜎 (1) − 𝑠]
𝛼−𝛽−1

𝑡
𝛼−1

,

0 < 𝑡 ≤ 𝑠 ≤ 𝜎 (1) ≤ 1;

𝑔
4
(𝑡, 𝑠) = (1 − 𝑠)

𝛼−𝛽−1

𝑡
𝛼−1

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1, 𝜎 (1) ≤ 𝑠.

(23)

We first show that 𝑔
1
(𝑡, 𝑠) > 0, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1, 𝑠 ≤ 𝜎(1). We

rewrite 𝑔
1
(𝑡, 𝑠) as follows:

𝑔
1
(𝑡, 𝑠)

= 𝑡
𝛼−1

((1 − 𝑠)
𝛼−𝛽−1

− [1 − 𝜂𝜎
𝛼−1

(1)]

⋅ (1 −
𝑠

𝑡
)

𝛼−𝛽−1

𝑡
−𝛽

− 𝜂[𝜎 (1) − 𝑠]
𝛼−𝛽−1

) .

(24)

Let
ℎ
1
(𝑡, 𝑠) = (1 − 𝑠)

𝛼−𝛽−1

− [1 − 𝜂𝜎
𝛼−1

(1)] (1 −
𝑠

𝑡
)

𝛼−𝛽−1

𝑡
−𝛽

− 𝜂 [𝜎 (1) − 𝑠]
𝛼−𝛽−1

.

(25)

Since 0 < 𝜂𝜎
𝛼−1

(1) < 1, then

ℎ
1
(𝑠, 𝑠) = (1 − 𝑠)

𝛼−𝛽−1

− 𝜂 [𝜎 (1) − 𝑠]
𝛼−𝛽−1

> 0. (26)
Differentiating both sides of (25) with respect to 𝑡, it follows
that
𝜕ℎ
1
(𝑡, 𝑠)

𝜕𝑡

= [1 − 𝜂𝜎
𝛼−1

(1)] (1 −
𝑠

𝑡
)

𝛼−𝛽−2

𝑡
−𝛽−2

⋅ [(𝛽 − 𝛼 + 1) 𝑠 + (1 −
𝑠

𝑡
) 𝑡𝛽]

= [1 − 𝜂𝜎
𝛼−1

(1)] (1 −
𝑠

𝑡
)

𝛼−𝛽−2

𝑡
−𝛽−2

(𝑠 − 𝛼𝑠 + 𝑡𝛽) ≥ 0,

0 < 𝑠 < 𝑡 ≤ 1;

(27)

which means that ℎ
1
(𝑡, 𝑠) is nondecreasing with respect to

𝑡 on [𝑠, 1]. Thus, for any 𝑡 ∈ [𝑠, 1], ℎ
1
(𝑡, 𝑠) ≥ ℎ

1
(𝑠, 𝑠) > 0,

therefore, 𝑔
1
(𝑡, 𝑠) = 𝑡

𝛼−1

ℎ
1
(𝑡, 𝑠) > 0.

Using the similar method, we can prove that 𝑔
2
(𝑡, 𝑠) > 0,

and it is obvious that 𝑔
3
(𝑡, 𝑠) > 0, 𝑔

4
(𝑡, 𝑠) > 0. Hence,

combining (20) and (23), we obtain that 𝐺(𝑡, 𝑠) > 0.
Now, we prove that 𝐺(𝑡, 𝑠) > 0. Denote

𝑔
1
(𝑡, 𝑠)

= (1 − 𝑠)
𝛼−1

𝑡
𝛼−1

− [1 − 𝜂𝜎
𝛼−1

(1)] (𝑡 − 𝑠)
𝛼−1

− 𝜂[𝜎 (1) − 𝑠]
𝛼−1

𝑡
𝛼−1

,

0 ≤ 𝑠 ≤ 𝑡 ≤ 1, 𝑠 ≤ 𝜎 (1) ;

𝑔
2
(𝑡, 𝑠)

= (1 − 𝑠)
𝛼−1

𝑡
𝛼−1

− [1 − 𝜂𝜎
𝛼−1

(1)] (𝑡 − 𝑠)
𝛼−1

,

0 < 𝜎 (1) ≤ 𝑠 ≤ 𝑡 ≤ 1;

𝑔
3
(𝑡, 𝑠)

= (1 − 𝑠)
𝛼−1

𝑡
𝛼−1

− 𝜂[𝜎 (1) − 𝑠]
𝛼−1

𝑡
𝛼−1

,

0 < 𝑡 ≤ 𝑠 ≤ 𝜎 (1) ≤ 1;

𝑔
4
(𝑡, 𝑠) = (1 − 𝑠)

𝛼−1

𝑡
𝛼−1

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1, 𝜎 (1) ≤ 𝑠.

(28)

Let

ℎ̃
1
(𝑡, 𝑠) = (1 − 𝑠)

𝛼−1

− [1 − 𝜂𝜎
𝛼−1

(1)] (1 −
𝑠

𝑡
)

𝛼−1

− 𝜂 [𝜎 (1) − 𝑠]
𝛼−1

.

(29)

Since 0 < 𝜂𝜎
𝛼−1

(1) < 1, then

ℎ̃
1
(1, 𝑠) ≥ (1 − 𝑠)

𝛼−1

− [1 − 𝜂𝜎
𝛼−1

(1)] (1 − 𝑠)
𝛼−1

− 𝜂 [𝜎 (1) − 𝑠]
𝛼−1

= 𝜂𝜎
𝛼−1

(1) (1 − 𝑠)
𝛼−1

− 𝜂 [𝜎 (1) − 𝑠]
𝛼−1

= 𝜂 [𝜎 (1) − 𝑠𝜎 (1)]
𝛼−1

− 𝜂 [𝜎 (1) − 𝑠]
𝛼−1

≥ 𝜂 [𝜎 (1) − 𝑠]
𝛼−1

− 𝜂 [𝜎 (1) − 𝑠]
𝛼−1

= 0.

(30)

Differentiating both sides of (29) with respect to 𝑡, it follows
that

𝜕ℎ̃
1
(𝑡, 𝑠)

𝜕𝑡
= − (𝛼 − 1) [1 − 𝜂𝜎

𝛼−1

(1)] (1 −
𝑠

𝑡
)

𝛼−2

𝑠𝑡
−2

≤ 0, 0 < 𝑠 < 𝑡 ≤ 1;

(31)

whichmeans that ℎ̃
1
(𝑡, 𝑠) is nonincreasingwith respect to 𝑡 on

[𝑠, 1]. Thus, for any 𝑡 ∈ [𝑠, 1], ℎ̃
1
(𝑡, 𝑠) ≥ ℎ

1
(1, 𝑠) > 0, therefore,

𝑔
1
(𝑡, 𝑠) = 𝑡

𝛼−1

ℎ̃
1
(𝑡, 𝑠) > 0.

Using the similar method, we can prove that 𝑔
2
(𝑡, 𝑠) >

0, and the case that 𝑔
3
(𝑡, 𝑠) > 0, 𝑔

4
(𝑡, 𝑠) > 0 is obvious.

Combining (21) and (28) and using the above argument, we
obtain that 𝐺(𝑡, 𝑠) > 0. The proof is complete.
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Lemma 10. For any (𝑡, 𝑠) ∈ (0, 1) × (0, 1), 𝐺(𝑡, 𝑠), 𝐺(𝑡, 𝑠) are
nondecreasing functions with respect to 𝑡 ∈ (0, 1); that is, for
any 𝑡 ∈ (0, 1), 𝐺(𝑡, 𝑠) > 𝐺(𝑠, 𝑠), 𝐺(𝑡, 𝑠) > 𝐺(𝑠, 𝑠).

Proof. According to the proof of Lemma 9, we notice that

𝜕𝑔
1
(𝑡, 𝑠)

𝜕𝑡
= (𝛼 − 1) 𝑡

𝛼−2

ℎ
1
(𝑡, 𝑠) + 𝑡

𝛼−1
𝜕ℎ
1
(𝑡, 𝑠)

𝜕𝑡
> 0,

0 < 𝑠 < 𝑡 ≤ 1,

𝜕𝑔
2
(𝑡, 𝑠)

𝜕𝑡
> 0,

𝜕𝑔
3
(𝑡, 𝑠)

𝜕𝑡
> 0,

𝜕𝑔
4
(𝑡, 𝑠)

𝜕𝑡
> 0.

(32)

At the same time, for 𝑠 < 𝑡 < 1, we have

𝜕𝑔
1
(𝑡, 𝑠)

𝜕𝑡

= (𝛼 − 1) (1 − 𝑠)
𝛼−1

𝑡
𝛼−2

− [1 − 𝜂𝜎
𝛼−1

(1)]

⋅ (𝑡 − 𝑠)
𝛼−2

− 𝜂[𝜎 (1) − 𝑠]
𝛼−1

𝑡
𝛼−2

≥ (𝛼 − 1) 𝑡
𝛼−2

[(1 − 𝑠)
𝛼−1

− 𝜂[𝜎 (1) − 𝑠]
𝛼−1

] ≥ 0,

𝜕𝑔
2
(𝑡, 𝑠)

𝜕𝑡
> 0,

𝜕𝑔
3
(𝑡, 𝑠)

𝜕𝑡
> 0,

𝜕𝑔
4
(𝑡, 𝑠)

𝜕𝑡
> 0.

(33)

The proof is complete.

Now, we present our main results.

Theorem 11. Assume that (H) holds. Suppose that there are
two functions 𝜆(𝑡), 𝜇(𝑡) ∈ 𝐶([0, 1], [0,∞)) such that

𝑓 (𝑡, 𝑢) − 𝑓 (𝑡, V) ≤ 𝜆 (𝑡) |𝑢 − V| ,

𝑓𝑜𝑟 𝑡 ∈ [0, 1] , 𝑢, V ∈ [0,∞) ,

𝑔 (𝑡, 𝑢) − 𝑔 (𝑡, V) ≤ 𝜇 (𝑡) |𝑢 − V| ,

𝑓𝑜𝑟 𝑡 ∈ [0, 1] , 𝑢, V ∈ [0,∞) .

(34)

If

−𝑝∫

1

0

𝐺 (1, 𝑠) 𝜇 (𝑠) 𝑑𝑠 + ∫

1

0

𝐺 (1, 𝑠) 𝜆 (𝑠) < 1, (35)

then the problem (13)-(14) has a unique positive solution.

Proof. Set

Ω = {𝑦 (𝑡) ∈ 𝐶 [0, 1] | 𝑦 (𝑡) ≥ 0, for 𝑡 ∈ [0, 1]} , (36)

with the maximum norm

𝑦
 = max
0≤𝑡≤1

𝑦 (𝑡)
 . (37)

It is easy to show thatΩ is a completemetric space.We denote
a operator 𝑇 as follows:

𝑇𝑦 (𝑡) = −𝑝∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠, 𝑦 (𝜎 (𝑠))) 𝑑𝑠

+ ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑦 (𝜏 (𝑠))) 𝑑𝑠.

(38)

From Lemma 9 and the conditions 𝑝 ≤ 0, 𝑓 > 0, 𝑔 > 0, it
follows that𝑇mapsΩ into itself andwe only need to prove the
contraction. In fact, according (H) and (34), for any 𝑢, V ∈ Ω,
we have

‖𝑇𝑢 − 𝑇V‖

= max
0≤𝑡≤1



−𝑝∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠, 𝑢 (𝜎 (𝑠))) 𝑑𝑠

+ 𝑝∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠, V (𝜎 (𝑠))) 𝑑𝑠

+ ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝜏 (𝑠))) 𝑑𝑠

− ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, V (𝜏 (𝑠))) 𝑑𝑠


≤ −𝑝∫

1

0

𝐺 (𝑡, 𝑠) 𝜇 (𝑠) |𝑢 (𝜎 (𝑠)) − V (𝜎 (𝑠))| 𝑑𝑠

+ ∫

1

0

𝐺 (𝑡, 𝑠) 𝜆 (𝑠) |𝑢 (𝜏 (𝑠)) − V (𝜏 (𝑠))| 𝑑𝑠

≤ [−𝑝∫

1

0

𝐺 (𝑡, 𝑠) 𝜇 (𝑠) 𝑑𝑠 + ∫

1

0

𝐺 (𝑡, 𝑠) 𝜆 (𝑠)] ‖𝑢 − V‖

≤ [−𝑝∫

1

0

𝐺 (1, 𝑠) 𝜇 (𝑠) 𝑑𝑠 + ∫

1

0

𝐺 (1, 𝑠) 𝜆 (𝑠)] ‖𝑢 − V‖

< ‖𝑢 − V‖ ,
(39)

which means that

|𝑇𝑢 − 𝑇V| < ‖𝑢 − V‖ . (40)

By the Banach contractionmapping principle (Lemma 6), we
obtain that 𝑇 has a unique fixed point 𝑦(𝑡)which is a positive
solution of (13)-(14). The proof is complete.

Remark 12. If 𝑝 = 0, 𝑓(𝑡, 𝑦(𝜏(𝑡))) = 𝑓(𝑦(𝑡)), then problem
(13)-(14) is problem (3).
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Theorem 13. Assume that (H) holds. Suppose that there exists
four nonnegative real-valued functions 𝑚, 𝑛, 𝑙, 𝑞 ∈ 𝐿

1

[0, 1]

such that

𝑓 (𝑡, 𝑢) ≤ 𝑛 (𝑡) + 𝑚 (𝑡) 𝑢,

𝑓𝑜𝑟 𝑎𝑙𝑚𝑜𝑠𝑡 𝑒V𝑒𝑟𝑦 𝑡 ∈ [0, 1] 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑢 ∈ [0,∞) ,

(41)

𝑔 (𝑡, 𝑢) ≤ 𝑙 (𝑡) + 𝑞 (𝑡) 𝑢,

𝑓𝑜𝑟 𝑎𝑙𝑚𝑜𝑠𝑡 𝑒V𝑒𝑟𝑦 𝑡 ∈ [0, 1] 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑢 ∈ [0,∞) .

(42)

If

∫

1

0

[𝐺 (1, 𝑠)𝑚 (𝑠) − 𝑝𝐺 (1, 𝑠) 𝑞 (𝑠)] 𝑑𝑠 < 1, (43)

then the problem (13)-(14) has at least one positive solution.

Proof. We also consider the operator 𝑇 defined in (38). We
divide the proof into four steps.
Step 1. 𝑇 : Ω → Ω is continuous.

Let 𝑦
𝑛
(𝑡) be a sequence in Ω such that 𝑦

𝑛
(𝑡) → 𝑦(𝑡) as

𝑛 → ∞. Noticing that 𝑓(𝑡, 𝑦), 𝑔(𝑡, 𝑦) are continuous with
respect to 𝑦, then for each 𝑡 ∈ [0, 1], we have

lim
𝑛→∞

𝑓 (𝑡, 𝑦
𝑛
(𝜏 (𝑡))) = 𝑓 (𝑡, 𝑦 (𝜏 (𝑡))) ,

lim
𝑛→∞

(𝑡, 𝑦
𝑛
(𝜎 (𝑡))) = 𝑔 (𝑡, 𝑦 (𝜎 (𝑡))) ;

(44)

thus,

lim
𝑛→∞

sup
𝑡∈[0,1]

𝑓 (𝑡, 𝑦
𝑛
(𝜏 (𝑡))) − 𝑓 (𝑡, 𝑦 (𝜏 (𝑡)))

 = 0,

lim
𝑛→∞

sup
𝑡∈[0,1]

𝑔 (𝑡, 𝑦𝑛 (𝜎 (𝑡))) − 𝑔 (𝑡, 𝑦 (𝜎 (𝑡)))
 = 0,

(45)

which implies that

𝑇𝑦𝑛 (𝑡) − 𝑇𝑦 (𝑡)


=



−𝑝∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠, 𝑦
𝑛
(𝜎 (𝑠))) 𝑑𝑠

+ 𝑝∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠, 𝑦 (𝜎 (𝑠))) 𝑑𝑠

+ ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑦
𝑛
(𝜎 (𝑠))) 𝑑𝑠

− ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑦 (𝜎 (𝑠))) 𝑑𝑠



≤ −𝑝∫

1

0

𝐺 (𝑡, 𝑠)
𝑔 (𝑠, 𝑦𝑛 (𝜎 (𝑠))) − 𝑔 (𝑠, 𝑦 (𝜎 (𝑠)))

 𝑑𝑠

+ ∫

1

0

𝐺 (𝑡, 𝑠)
𝑓 (𝑠, 𝑦

𝑛
(𝜎 (𝑠))) − 𝑓 (𝑠, 𝑦 (𝜎 (𝑠)))

 𝑑𝑠

≤ −𝑝∫

1

0

𝐺 (1, 𝑠) 𝑑𝑠 sup
𝑡∈[0,1]

𝑔 (𝑠, 𝑦𝑛 (𝜎 (𝑠))) − 𝑔 (𝑠, 𝑦 (𝜎 (𝑠)))


+ ∫

1

0

𝐺 (1, 𝑠) 𝑑𝑠 sup
𝑡∈[0,1]

𝑓 (𝑠, 𝑦
𝑛
(𝜎 (𝑠))) − 𝑓 (𝑠, 𝑦 (𝜎 (𝑠)))



→ 0, as 𝑛 → ∞.

(46)

Step 2. 𝑇maps bounded sets into bounded sets inΩ.
Indeed, it suffices to show that for any 𝛾 > 0, there exists

a positive constant 𝜂⋆ > 0 such that for 𝑦 ∈ 𝐵
𝛾
= {𝑦 ∈ Ω :

𝑦
 ≤ 𝛾}, we have 𝑇𝑦

 ≤ 𝜂
⋆. From (38)–(43), we have

𝑇𝑦


= max
0≤𝑡≤1



−𝑝∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠, 𝑦 (𝜎 (𝑠))) 𝑑𝑠

+ ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑦 (𝜏 (𝑠))) 𝑑𝑠



≤ −𝑝∫

1

0

𝐺 (𝑡, 𝑠) [𝑙 (𝑠) + 𝑞 (𝑠) 𝑦 (𝜎 (𝑠))] 𝑑𝑠

+ ∫

1

0

𝐺 (𝑡, 𝑠) [𝑛 (𝑠) + 𝑚 (𝑠) 𝑦 (𝜏 (𝑠))] 𝑑𝑠

≤ ∫

1

0

[−𝑝𝐺 (1, 𝑠) 𝑙 (𝑠) + 𝐺 (1, 𝑠) 𝑛 (𝑠)] 𝑑𝑠

+ ∫

1

0

[−𝑝𝐺 (1, 𝑠) 𝑞 (𝑠) + 𝐺 (1, 𝑠)𝑚 (𝑠)] 𝑑𝑠
𝑦


≤ ∫

1

0

[−𝑝𝐺 (1, 𝑠) 𝑙 (𝑠) + 𝐺 (1, 𝑠) 𝑛 (𝑠)] 𝑑𝑠 + 𝛾 := 𝜂
⋆

,

(47)

which means

𝑇𝑦
 ≤ 𝜂
⋆

. (48)

Step 3. 𝑇maps bounded sets into equicontinuous sets inΩ.
For any 𝑡

1
, 𝑡
2
∈ [0, 1], 𝑡

1
< 𝑡
2
, and for each 𝑦(𝑡) ∈ 𝐵

𝛾
, we

have

𝑇𝑦 (𝑡1) − 𝑇𝑦 (𝑡
2
)


=



−𝑝∫

1

0

[𝐺 (𝑡
1
, 𝑠) − 𝐺 (𝑡

2
, 𝑠)] 𝑔 (𝑠, 𝑦 (𝜎 (𝑠))) 𝑑𝑠

+ ∫

1

0

[𝐺 (𝑡
1
, 𝑠) − 𝐺 (𝑡

2
, 𝑠)] 𝑓 (𝑠, 𝑦 (𝜏 (𝑠))) 𝑑𝑠
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≤ −𝑝∫

1

0

𝐺 (𝑡
1
, 𝑠) − 𝐺 (𝑡

2
, 𝑠)

 [𝑙 (𝑠) + 𝑞 (𝑠) 𝑦 (𝜎 (𝑠))] 𝑑𝑠

+ ∫

1

0


𝐺 (𝑡
1
, 𝑠) − 𝐺 (𝑡

2
, 𝑠)


[𝑛 (𝑡) + 𝑚 (𝑡) 𝑦 (𝜏 (𝑠))] 𝑑𝑠

≤ −𝑝∫

1

0

𝐺 (𝑡
1
, 𝑠) − 𝐺 (𝑡

2
, 𝑠)

 [𝑙 (𝑠) + 𝑞 (𝑠) 𝛾] 𝑑𝑠

+ ∫

1

0


𝐺 (𝑡
1
, 𝑠) − 𝐺 (𝑡

2
, 𝑠)


[𝑛 (𝑡) + 𝑚 (𝑡) 𝛾] 𝑑𝑠.

(49)

Because 𝐺(𝑡, 𝑠), 𝐺(𝑡, 𝑠) are continuous on [0, 1] × [0, 1], it is
uniformly continuous on [0, 1] × [0, 1], which means that for
any 𝜀 > 0, there exists 𝛿 > 0, when |𝑡

2
− 𝑡
1
| < 𝛿, 𝑠 ∈ [0, 1],

𝐺 (𝑡
1
, 𝑠) − 𝐺 (𝑡

2
, 𝑠)

 <
𝜀

2 (−𝑝) ∫
1

0

[𝑙 (𝑠) + 𝑞 (𝑠) 𝛾] 𝑑𝑠

,


𝐺 (𝑡
1
, 𝑠) − 𝐺 (𝑡

2
, 𝑠)


<

𝜀

2 ∫
1

0

[𝑛 (𝑠) + 𝑚 (𝑠) 𝛾] 𝑑𝑠

.

(50)

Thus

𝑇𝑦 (𝑡1) − 𝑇𝑦 (𝑡
2
)
 < 𝜀, (51)

which means that {𝑇𝑦 : 𝑦 ∈ 𝐵
𝛾
} is equicontinuous.

Step 4. A priori bounds.
Let

𝑈 = {𝑦 ∈ Ω :
𝑦
 < 𝑟} ,

where 𝑟 =
∫
1

0

[𝐺 (1, 𝑠) 𝑛 (𝑠) − 𝑝𝐺 (1, 𝑠) 𝑙 (𝑠)] 𝑑𝑠

1 − ∫
1

0

[𝐺 (1, 𝑠)𝑚 (𝑠) − 𝑝𝐺 (1, 𝑠) 𝑞 (𝑠)] 𝑑𝑠

.

(52)

Assume that there exists 𝑦 ∈ 𝑈 and 0 < 𝜆 < 1 such that
𝑦 = 𝜆𝑇𝑦 and we claim that 𝑦

 ̸= 𝑟. In fact,

𝑦 (𝑡) = 𝜆 (𝑇𝑦) (𝑡)

= 𝜆 [−𝑝∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠, 𝑦 (𝜎 (𝑠))) 𝑑𝑠

+∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑦 (𝜏 (𝑠))) 𝑑𝑠] ,

(53)

which implies that

𝑦 (𝑡)


= 𝜆



−𝑝∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠, 𝑦 (𝜎 (𝑠))) 𝑑𝑠

+ ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑦 (𝜏 (𝑠))) 𝑑𝑠



< −𝑝∫

1

0

𝐺 (𝑡, 𝑠) [𝑙 (𝑠) + 𝑞 (𝑠) 𝑦 (𝜎 (𝑠))] 𝑑𝑠

+ ∫

1

0

𝐺 (𝑡, 𝑠) [𝑛 (𝑠) + 𝑚 (𝑠) 𝑦 (𝜏 (𝑠))] 𝑑𝑠

≤ ∫

1

0

[−𝑝𝐺 (1, 𝑠) 𝑙 (𝑠) + 𝐺 (1, 𝑠) 𝑛 (𝑠)] 𝑑𝑠

+ ∫

1

0

[−𝑝𝐺 (1, 𝑠) 𝑞 (𝑠) + 𝐺 (1, 𝑠)𝑚 (𝑠)] 𝑑𝑠
𝑦


≤ ∫

1

0

[−𝑝𝐺 (1, 𝑠) 𝑙 (𝑠) + 𝐺 (1, 𝑠) 𝑛 (𝑠)] 𝑑𝑠

+ 𝑟∫

1

0

[−𝑝𝐺 (1, 𝑠) 𝑞 (𝑠) + 𝐺 (1, 𝑠)𝑚 (𝑠)] 𝑑𝑠 = 𝑟,

(54)

which means that

𝑦
 < 𝑟. (55)

That is, there is no 𝑦 ∈ 𝜕𝑈, such that 𝑦 = 𝜆𝑇𝑦 for 0 < 𝜆 < 1.
From Step 1 to Step 3, it follows that 𝑇 is completely

continuous. Along with Step 4 and Lemma 7, it follows that
𝑇 has at least a fixed point in 𝑈. The proof is complete.

4. Examples

Example 1. Consider

𝐷
3/2

𝑥 (𝑡) +
1

2
𝐷
3/4

(
𝑡
2

𝑥 (𝑡/2)

10 [1 + 𝑥 (𝑡/2)]
)

=
𝑒
−𝑡

𝑥 (𝑡/2)

(9 + 𝑒𝑡) [1 + 𝑥 (𝑡/2)]
, 𝑡 ∈ [0, 1] ,

𝑥 (0) = 0,

𝑥 (1) = 𝑥 (
1

2
) ,

(56)
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where

𝑛 = 2,

𝑝 = −
1

2
,

𝛼 =
3

2
,

𝛽 =
3

4
,

𝜂 = 1,

𝜏 (𝑡) = 𝜎 (𝑡) =
𝑡

2
,

𝑔 =
𝑡
2

𝑥 (𝑡/2)

10 [1 + 𝑥 (𝑡/2)]
,

𝑓 =
𝑒
−𝑡

𝑥 (𝑡/2)

(9 + 𝑒𝑡) [1 + 𝑥 (𝑡/2)]
.

(57)

It is easy to show that

𝜆 (𝑡) =
𝑒
−𝑡

9 + 𝑒𝑡
,

𝜇 (𝑡) =
𝑡
2

10
.

(58)

Let

ℎ (𝑥) =
𝑥

1 + 𝑥
, 𝑥 > 0; (59)

then

ℎ (𝑥) − ℎ (𝑦)
 =



𝑥

1 + 𝑥
−

𝑦

1 + 𝑦



=

𝑥 − 𝑦


(1 + 𝑥) (1 + 𝑦)

<
𝑥 − 𝑦

 , for 𝑥, 𝑦 > 0;

(60)

thus,

𝑓 (𝑡, 𝑢) − 𝑓 (𝑡, V) ≤ 𝜆 (𝑡) |𝑢 − V| ,

𝑔 (𝑡, 𝑢) − 𝑔 (𝑡, V) ≤ 𝜇 (𝑡) |𝑢 − V| ,
(61)

which satisfies (28), (29). Because

𝐺 (1, 𝑠) =

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

((1 − 𝑠)
−1/4

− (1 − 1/√2)

⋅(1 − 𝑠)
−1/4

− (1/2 − 𝑠)
−1/4

)

⋅ (Γ (3/4) (1 − 1/√2))
−1

,

0 ≤ 𝑠 ≤
1

2
;

((1 − 𝑠)
−1/4

− (1 − 1/√2) (1 − 𝑠)
−1/4

)

⋅ (Γ (3/4) (1 − 1/√2))
−1

,

1

2
≤ 𝑠 ≤ 1,

𝐺 (1, 𝑠) =

{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{

{

((1 − 𝑠)
1/2

− (1 − 1/√2)

⋅(1 − 𝑠)
1/2

− (1/2 − 𝑠)
1/2

)

⋅ (Γ (3/2) (1 − 1/√2))
−1

,

0 ≤ 𝑠 ≤
1

2
;

((1 − 𝑠)
1/2

− (1 − 1/√2) (1 − 𝑠)
1/2

)

⋅ (Γ (3/2) (1 − 1/√2))
−1

,

1

2
≤ 𝑠 ≤ 1,

(62)

thus

− 𝑝∫

1

0

𝐺 (1, 𝑠) 𝜇 (𝑠) 𝑑𝑠 + ∫

1

0

𝐺 (1, 𝑠) 𝜆 (𝑠)

=
1

2
∫

1/2

0

1/√2(1 − 𝑠)
−1/4

− (1/2 − 𝑠)
−1/4

Γ (3/4) (1 − 1/√2)

𝑠
2

10
𝑑𝑠

+
1

2
∫

1

1/2

1/√2(1 − 𝑠)
−1/4

Γ (3/4) (1 − 1/√2)

𝑠
2

10
𝑑𝑠

+ ∫

1/2

0

1/√2(1 − 𝑠)
1/2

− (1/2 − 𝑠)
1/2

Γ (3/2) (1 − 1/√2)

𝑒
−𝑠

9 + 𝑒𝑠
𝑑𝑠

+ ∫

1

1/2

1/√2(1 − 𝑠)
1/2

Γ (3/2) (1 − 1/√2)

𝑒
−𝑠

9 + 𝑒𝑠
𝑑𝑠

<
1

2
∫

1/2

0

(1 − 𝑠)
−1/4

Γ (3/4) (√2 − 1)

𝑠
2

10
𝑑𝑠

+
1

2
∫

1

1/2

(1 − 𝑠)
−1/4

Γ (3/4) (√2 − 1)

𝑠
2

10
𝑑𝑠

+ ∫

1/2

0

(1 − 𝑠)
1/2

Γ (3/2) (√2 − 1)

𝑒
−𝑠

9 + 𝑒𝑠
𝑑𝑠

+ ∫

1

1/2

(1 − 𝑠)
1/2

Γ (3/2) (√2 − 1)

𝑒
−𝑠

9 + 𝑒𝑠
𝑑𝑠
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<
1

20Γ (3/4) (√2 − 1)

+
1

9Γ (3/2) (√2 − 1)

≈ 0.4014 < 1;

(63)

which satisfies Theorem 11. Thus (56) has a unique positive
solution on [0, 1].
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