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We propose two variants of a stochastic epidemicmodel inwhich the disease is spread bymobile particles performing randomwalks
on the complete graph. For the first model, we study the effect on the epidemic size of an immunizationmechanism that depends on
the activity of the disease. In the second model, the transmission agents can gain lives at random during their existences. We prove
limit theorems for the final outcome of these processes. The epidemic model with mutations exhibits phase transition, meaning
that if the mutation parameter is sufficiently large, then asymptotically all the individuals in the population are infected.

1. Introduction

One of the most important applications of stochastic pro-
cesses is in epidemiology, more specifically, in studying the
spread of epidemics and analyzing mechanisms to control
them. The first studies of stochastic systems of epidemics
go back to a pioneer paper of McKendrick [1] and the
unpublished lecture notes of Reed and Frost, written around
1930. But only since the late 1940s, with Bartlett [2], that
stochastic epidemic models began to be studied more exten-
sively. Recently, the mathematical theory of epidemics has
experienced a renewal impulse, due to the extension of
the concept of a disease, to include computer malware,
rumour spreading, and viral marketing. For well-crafted
presentations of this theory, the reader should refer to the
books by Anderson and May [3], Andersson and Britton [4],
Bailey [5], Daley and Gani [6], and Draief and Massoulié [7].

In many models of the literature on epidemics, individu-
als reside at the vertices of a graph and the disease is transmit-
ted through contacts along the edges, in such a way that the
state of an individual depends on the state of other individuals
in its vicinity. Typically, one considers the complete graph
(representing a homogeneously mixing population) and the
dissemination of the disease is described by a continuous-
time Markov process whose transition probabilities are non-
linear in nature. The classical approach for studying such

stochastic epidemic processes is to analyze the forward equa-
tion, which frequently results in differential equations that are
very hard to tract analytically. In the last decades, the main
advances have been made by using other tools, such as the
analysis of the embeddedMarkov chain, coupling,martingale
arguments, and diffusion approximations. In our paper, we
study the final outcome of two epidemic processes described
through interacting particle systems. Although our models
have the standard assumption of homogeneous mixing, the
possible interactions are dynamic: we suppose that the viruses
are mobile particles which move along the vertices of the
graph. In addition, the classical coupling techniques are
difficult to apply, by virtue of the dependence between the
progeny and the lifetime of the pathogenic agents. Thus, we
illustrate how the machinery of density dependent popula-
tion processes is useful for proving results about the final
outcome of stochastic epidemic models on homogeneously
mixing populations. This theory, described in Ethier and
Kurtz [8, Chapter 11], is also exploited for this purpose in Ball
andBritton [9, 10] andKurtz et al. [11]. A detailed treatment of
classical epidemic models on general networks can be found
in Draief and Massoulié [7, Chapter 8].

Let us describe the dynamics of the interacting particle
system formulated in Kurtz et al. [11], which models the
propagation of a disease in a population and the spreading
of a virus in a computer network. For 𝑛 ≥ 3, let K

𝑛
be
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the complete graph on 𝑛 vertices, that is, the undirected graph
with 𝑛 vertices where each pair of vertices is connected by an
edge. At time zero, there is one particle at each vertex ofK

𝑛
;

one of them is active; the others are inactive. Active particles
perform independent, continuous-time, rate 1, randomwalks
on K

𝑛
, and, whenever any active particle visits an inactive

one, the latter becomes active and starts its own randomwalk.
However each active particle dies at the instant it jumps on a
vertex that has already been visited by the process.

To understand the epidemic interpretation, think that the
active particles are viruses which move along the vertices
of the graph (individuals or computers). During its life, at
the time points of a homogeneous Poisson process with
intensity 1, a virus moves to a randomly chosen vertex of
the graph, different from the one at which it is located.
When the virus jumps onto a susceptible individual (i.e.,
a vertex that has not already been visited by the process),
this individual catches the disease and the virus duplicates.
Once that happens, the individual is regarded as immunized;
that is, it activates an antivirus which will kill any virus
that tries to infect it in the future. Thus, we may think
that each newly born virus starts with one life, and it dies
whenever it jumps onto an immunized individual. Since
the process eventually finishes (when all viruses die), the
main question concerns the proportion of individuals who
ultimately become infected (i.e., the proportion of visited
vertices at the end of the process). Kurtz et al. [11] prove
a Law of Large Numbers for this proportion, which states
that, for large 𝑛, approximately 80% of the individuals are
infected with high probability. A Central Limit Theorem
describing the magnitude of the random fluctuations around
this limiting value is also established.

Our purpose is to generalize these limit theorems for
two variants of this epidemic model in which we introduce
mechanisms of vaccination and mutations of the viruses.
In the first model, presented in Section 2, we incorporate a
process of vaccination in the epidemic model that depends
on the activity of the disease and analyze how this affects
the asymptotic distribution of the final epidemic size. In
particular, we are able to evaluate the immunization rate
required to keep the epidemic at a reasonable level with
high probability. In the secondmodel, described in Section 3,
we consider a mutation parameter ], which determines the
epochs when the viruses gain more lives. This model exhibits
a phase transition in the parameter, which means that for
] < 1 asymptotically the infection is restricted to a fraction
less than 1 of the population, whereas for ] ≥ 1 asymptotically
all the individuals are infected. In Section 4, we present some
numerical illustrations of the main results for both models.
Section 5 is devoted to the proofs.

2. Epidemic Model with Immunization

Let us first review the basic definitions andmain results stated
for the epidemic model formulated by Kurtz et al. [11]. For
each 𝑛 ≥ 3 and 𝑡 ≥ 0, let 𝑉

(𝑛)

(𝑡) and 𝐴
(𝑛)

(𝑡) denote,
respectively, the number of visited vertices and the number of
active particles at time 𝑡, where 𝑉

(𝑛)

(0) = 𝐴
(𝑛)

(0) = 1. Then,

the evolution of the epidemic is described by a continuous-
time Markov chain in Z2 which proceeds according to the
following transition scheme:

(𝑉
(𝑛)

(𝑡) , 𝐴
(𝑛)

(𝑡)) → (𝑉
(𝑛)

(𝑡) + 1, 𝐴
(𝑛)

(𝑡) + 1)

at rate 𝐴
(𝑛)

(𝑡) (

𝑛 − 𝑉
(𝑛)

(𝑡)

𝑛 − 1

) ,

(𝑉
(𝑛)

(𝑡) , 𝐴
(𝑛)

(𝑡)) → (𝑉
(𝑛)

(𝑡) , 𝐴
(𝑛)

(𝑡) − 1)

at rate 𝐴
(𝑛)

(𝑡) (

𝑉
(𝑛)

(𝑡) − 1

𝑛 − 1

) .

(1)

The two possible transitions (1, 1) and (0, −1) correspond,
respectively, to the occurrence of a contagion (infection of a
susceptible individual and creation of a new virus) and the
occurrence of a removal (death of a virus). The transition
rates have the usualmeaning; for instance, the first onemeans
that

𝑃 (𝑉
(𝑛)

(𝑡 + 𝑑𝑡) = 𝑖 + 1, 𝐴
(𝑛)

(𝑡 + 𝑑𝑡) = 𝑗 + 1 |

𝑉
(𝑛)

(𝑡) = 𝑖, 𝐴
(𝑛)

(𝑡) = 𝑗)

= 𝑗 (

𝑛 − 𝑖

𝑛 − 1

) 𝑑𝑡 + 𝑜 (𝑑𝑡) .

(2)

Let

𝛾
(𝑛)

= inf {𝑡 ≥ 0 : 𝐴
(𝑛)

(𝑡) = 0} (3)

be the time until the epidemic ceases. Notice that if all
individuals are infected then the process evolves like a death
chain in the second coordinate, so that 𝛾

(𝑛) is finite almost
surely.Thus, the proportion 𝑛

−1

𝑉
(𝑛)

(𝛾
(𝑛)

) is the final epidemic
size (which is called the coverage ofK

𝑛
in Kurtz et al. [11]). To

state the limit theorems for this proportion, let𝑊
0
denote the

principal branch of the Lambert𝑊 function. More details on
this functionmay be found in the Appendix. From the results
proved in Kurtz et al. [11], we have that

lim
𝑛→∞

𝑉
(𝑛)

(𝛾
(𝑛)

)

𝑛

= V
∞

in probability, (4)

where

V
∞

= 1 +

1

2

𝑊
0
(−2𝑒
−2

) ≈ 0.7968. (5)

Furthermore,

√𝑛(

𝑉
(𝑛)

(𝛾
(𝑛)

)

𝑛

− V
∞

)

D
→ 𝑁(0, 𝜎

2

) as 𝑛 → ∞, (6)

where D
→ denotes convergence in distribution and𝑁(0, 𝜎

2

) is
the Gaussian distribution with mean zero and variance given
by

𝜎
2

=

V
∞

(1 − V
∞

)

2V
∞

− 1

≈ 0.2727. (7)
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This means that, for large 𝑛, approximately 80% of the
individuals are infected with high probability. In addition,
the distribution of the final epidemic size is asymptotically
normal with mean 0.7968 and variance 0.2727𝑛

−1.
Now we define the first variant of the epidemic model,

in which we introduce an infection control mechanism, like
an immunization treatment or vaccination. We consider the
possibility of immunizing the individuals of the population
(vertices of the graph), in order to reduce the epidemic
outbreak, and study how this influences the final outcome
of the process. We suppose that we cannot kill the active
particles (viruses) directly and incorporate a process of
vaccination in the epidemic model that is tied to the intensity
of the epidemic as it evolves. We assume that, apart from
the natural dynamics of the model, at rate proportional
to the number of active particles, a vertex is chosen at
random and is immunized if it has not been visited by
the process (i.e., if it is still susceptible). Whenever an
active particle jumps onto an immunized vertex, it dies.
This corresponds to a door-to-door immunization process,
which may occur at each time step of the embedded Markov
chain. We denote by 𝜆 the immunization rate and let 𝐼(𝑛)(𝑡)
be the number of immunized individuals at time 𝑡. Then,
the process {(𝑉

(𝑛)

(𝑡), 𝐴
(𝑛)

(𝑡), 𝐼
(𝑛)

(𝑡))}
𝑡≥0

is a continuous-time
Markov chain that starts at the point (1, 1, 0) andmakes three
possible transitions during each time increment (𝑡, 𝑡 + 𝑑𝑡):

𝑢
0
= (1, 1, 0) , 𝑢

1
= (0, −1, 0) , 𝑢

2
= (0, 0, 1) . (8)

These possible transitions correspond, respectively, to the
occurrence of a contagion, a removal of a virus, and an
immunization of a susceptible individual. The associated
infinitesimal transition rates are as follows:

Transition in (𝑡, 𝑡 + 𝑑𝑡) Infinitesimal rate

(𝑉, 𝐴, 𝐼) → (𝑉,𝐴, 𝐼) + 𝑢
0

𝐴(

𝑛 − 𝐼 − 𝑉

𝑛 − 1

) ,

(𝑉, 𝐴, 𝐼) → (𝑉,𝐴, 𝐼) + 𝑢
1

𝐴(

𝐼 + 𝑉 − 1

𝑛 − 1

) ,

(𝑉, 𝐴, 𝐼) → (𝑉,𝐴, 𝐼) + 𝑢
2

𝜆𝐴(

𝑛 − 𝐼 − 𝑉

𝑛 − 1

) .

(9)

Let 𝛾(𝑛) denote the time until the epidemic process stops (as
given in (3)), so the proportions of infected and immunized
persons in the population after all viruses die are given,
respectively, by

V(𝑛)
𝐹

=

𝑉
(𝑛)

(𝛾
(𝑛)

)

𝑛

, 𝑖
(𝑛)

𝐹
=

𝐼
(𝑛)

(𝛾
(𝑛)

)

𝑛

.
(10)

Our main results are a Law of Large Numbers and a
Central Limit Theorem for these proportions.

Theorem 1. Define

𝑟
∞

= 1 +

1

2

𝑊
0
(−2𝑒
−2

) ≈ 0.7968,

V
∞

= V
∞

(𝜆) =

𝑟
∞

1 + 𝜆

,

𝑖
∞

= 𝑖
∞

(𝜆) =

𝜆𝑟
∞

1 + 𝜆

.

(11)

Then,

lim
𝑛→∞

V(𝑛)
𝐹

= V
∞

, lim
𝑛→∞

𝑖
(𝑛)

𝐹
= 𝑖
∞

in probability. (12)

Theorem 2. One has that

√𝑛 (V(𝑛)
𝐹

− V
∞

, 𝑖
(𝑛)

𝐹
− 𝑖
∞

)

D
→ 𝑁

2
(0, Σ) as 𝑛 → ∞, (13)

where𝑁
2
(0, Σ) is the bivariate normal distribution with mean

zero and covariance matrix Σ given by

Σ
11

=

𝑟
∞

(2𝑟
∞

− 1) (1 − V
∞

) + 2𝑖
∞

(1 − 𝑟
∞

)
2

(1 + 𝜆) (2𝑟
∞

− 1)
2

,

Σ
12

=

𝑖
∞

[𝜆 (1 − 𝑟
∞

) − (2𝑟
∞

− 1)
2

]

(1 + 𝜆) (2𝑟
∞

− 1)
2

,

Σ
22

=

𝜆 [𝑟
∞

(2𝑟
∞

− 1) (𝑟
∞

+ V
∞

− 1) + 2𝜆𝑖
∞

(1 − 𝑟
∞

)
2

]

(1 + 𝜆) (2𝑟
∞

− 1)
2

.

(14)

The proofs of Theorems 1 and 2 are given in Section 5.
The dependence of the limiting fractions of infected and
immunized individuals on 𝜆 is illustrated in Figure 1(a).
As one would expect, increasing the immunization rate 𝜆

pushes the value of V
∞

towards zero. This means that the
epidemic outbreak can be controlled by a suitable choice of
the immunization rate. In Figure 1(b), the components of the
covariance matrix Σ are plotted as a function of 𝜆.

We underline that the Central LimitTheorem allows us to
evaluate the immunization rate required to keep the epidemic
at a reasonable level with high probability. Indeed, given a
large value of 𝑛, and numbers Vmax ∈ (0, 1) and 𝛼 ∈ (0, 1),
we can compute the value of 𝜆 for which the probability that
V(𝑛)
𝐹

≤ Vmax is approximately equal to 𝛼. Table 1 exhibits the
required values of 𝜆 for some arbitrarily chosen values of 𝑛,
Vmax, and 𝛼.

3. Epidemic Model with Mutations

Now we define a version of the epidemic model with
mutations, in which a virus is allowed a random number
of jumps to already visited vertices before dying (i.e., it
has a random number of lives). In biological terms, this
corresponds to the ability of the pathogenic agents to develop
resistance, by evolutionary adaptation.We consider the initial
configuration with one particle per vertex of K

𝑛
, only one

of them being active. We assume that each newly activated
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Figure 1: Graphs of V
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∞
and the components of Σ.

Table 1: Values of 𝜆 such that the final proportion of infected individuals does not exceed Vmax with approximate probability 𝛼.

𝛼

𝑛 = 1000 𝑛 = 5000
Vmax = 0.2 Vmax = 0.35 Vmax = 0.5 Vmax = 0.2 Vmax = 0.35 Vmax = 0.5

0.75 3.227 1.370 0.6414 3.091 1.318 0.6146
0.80 3.291 1.395 0.6537 3.118 1.328 0.6199
0.85 3.366 1.423 0.6682 3.149 1.340 0.6261
0.90 3.462 1.460 0.6868 3.190 1.356 0.6340
0.95 3.610 1.516 0.7152 3.250 1.379 0.6459

particle starts with one life and assign to it two independent
Poisson clocks, with rates 1 and ]. Poisson clocks assigned
to different particles are independent of each other. The rate
] Poisson clock determines the mutation times: every time
it rings, the active particle gains one life. As usual, the rate
1 Poisson clock determines the jump epochs of the particle.
If the chosen vertex has already been visited, then the active
particle loses one life (dying if it has one life); otherwise the
inactive particle on this vertex is activated. We call ] the
mutation rate.

Let𝑉(𝑛)(𝑡) be the number of visited vertices at time 𝑡, and
let𝐴(𝑛)
𝑖

(𝑡) be the number of active particles with 𝑖 lives at time
𝑡 (𝑖 ≥ 1). We also define 𝐴

(𝑛)

(𝑡) = ∑
∞

𝑖=1
𝐴
(𝑛)

𝑖
(𝑡) the number of

active particles at time 𝑡. Notice that the infinite-dimensional
process {(𝑉(𝑛)(𝑡), 𝐴(𝑛)

1
(𝑡), 𝐴
(𝑛)

2
(𝑡), . . .)}

𝑡≥0
makes transitions in

continuous time according to the following transition rates:

Transition in (𝑡, 𝑡 + 𝑑𝑡) Infinitesimal rate

(1, 1, 0, 0, . . .) (

𝑛 − 𝑉

𝑛 − 1

)𝐴,

(0, −1, 0, 0, . . .) (

𝑉 − 1

𝑛 − 1

)𝐴
1
,

(0, . . . , 0,

𝑗

1,

𝑗+1

−1, 0, 0, . . .) (

𝑉 − 1

𝑛 − 1

)𝐴
𝑗

𝑗 = 2, 3, . . . ,

(0, . . . , 0,

𝑗+1

−1,

𝑗+2

1 , 0, 0, . . .) ]𝐴
𝑗

𝑗 = 1, 2, . . . .

(15)

We underline an important feature of this epidemic model:
it may continue forever, even if every individual is infected
by the disease. We consider the process as finished either
when there are no more active particles or when the whole
population is infected; that is, we define its absorption time
by

𝛾
(𝑛)

= inf {𝑡 ≥ 0 : 𝐴
(𝑛)

(𝑡) = 0 or 𝑉
(𝑛)

(𝑡) = 𝑛} . (16)

Thus, V(𝑛)
𝐹

= 𝑉
(𝑛)

(𝛾
(𝑛)

)/𝑛 is the final epidemic size.
Next we present the limit theorems for the final epidemic

size. The Law of Large Numbers states that the epidemic
model with mutations exhibits phase transition, in the sense
that the limiting value of the final epidemic size is less than
1 or equals 1 accordingly as ] < 1 or ] ≥ 1. That is, if the
pathogenic agents are able to gain resistance at a very large
rate, then a global outbreak affecting all individuals is almost
certain to occur.

Theorem 3. (i) For ] < 1, one defines

ℎ (]) =

2

1 − ]
,

V
∞

= V
∞

(]) = 1 +

1

ℎ (])
𝑊
0
(−ℎ (]) 𝑒−ℎ(])) .

(17)

Then,

lim
𝑛→∞

V(𝑛)
𝐹

= V
∞

in probability. (18)
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Figure 2: Graphs of V
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and 𝜎

2.

(ii) If ] ≥ 1, then

lim
𝑛→∞

V(𝑛)
𝐹

= 1 in probability. (19)

Theorem 4. If ] < 1, then

√𝑛 (V(𝑛)
𝐹

− V
∞

)

D
→ 𝑁(0, 𝜎

2

) as 𝑛 → ∞, (20)

where

𝜎
2

=

V
∞

(1 − V
∞

) [2V
∞

(1 − 3]) − (1 + ]) (]2 − 4] + 1)]

(1 − ]) (1 − 2V
∞

+ ])2
.

(21)

The graphs of the limiting fraction of infected persons
and the variance of the asymptotic normal distribution as
functions of ] for 0 < ] < 1 are shown in Figure 2.

4. Numerical Illustrations

In order to illustrate the asymptotic theorems presented
in Sections 2 and 3, we performed simulation studies of
both models. Figure 3 is based on 10000 simulations of
the epidemic model for a population consisting of 𝑛 =

1000 individuals, with immunization parameter 𝜆 = 0.5.
Histograms (a) and (b) correspond to the rescaled values
√𝑛(V(𝑛)
𝐹

−V
∞

) and√𝑛(𝑖
(𝑛)

𝐹
−𝑖
∞

) obtained from the simulations,
respectively. The empirical means of the final proportions of
infected and immunized individuals were 0.5311 and 0.2653,
whereas the corresponding theoretical values are V

∞
=

0.5312 and 𝑖
∞

= 0.2656, almost the same as the empirical
means. The limiting covariance matrix Σ has components
Σ
11

= 0.461, Σ
22

= 0.1571, and Σ
12

= −0.126. The
corresponding empirical values from the simulations were
0.4418, 0.151, and −0.1187, again close to their asymptotic
counterparts. Overlaid on the histograms are the probability
density functions of the limiting Gaussian distributions
having zero mean and variances Σ

11
and Σ

22
. Figure 4 shows

the ellipsoid quartiles of the rescaled data obtained from
the simulations and the 25%, 50%, and 75% contours of the

corresponding asymptotic bivariate normal density. As can be
seen, there is an excellent agreement between the empirical
distributions and the theoretical limiting distributions.

We also ran 10000 simulations of the epidemic model
with population size 𝑛 = 1000 and mutation parameter ] =

0.2. For this choice of ], the theoretical asymptotic values are
V
∞

= 0.8926 and 𝜎
2

= 0.149. The corresponding estimates
obtained from the simulations were 0.8921 and 0.15. Figure 5
presents the histogram of the rescaled final epidemic size
from the simulations, with the limiting normal probability
density function superimposed.

5. Proofs

A fundamental approach to study the behaviour of stochastic
epidemic processes is to analyze their large population
deterministic limits and diffusion approximations. In our
proofs, we achieve that by applying the theory of density
dependent population processes, described in Ethier and
Kurtz [8, Chapter 11]. In particular, we will rely on Theorem
11.4.1 therein, which enables limit theorems to be derived for
the final outcome of the epidemic models. To use this result,
however, we have to first change the pace at which the process
evolves, without affectingwhere it is absorbed.Themain steps
follow a path similar to that presented in Kurtz et al. [11].

5.1. Proofs of Theorems 1 and 2. For 𝑡 ≥ 0, we define

𝑍
(𝑛)

(𝑡) = (𝑉
(𝑛+1)

(𝑡) − 1, 𝐴
(𝑛+1)

(𝑡) , 𝐼
(𝑛+1)

(𝑡)) ,

𝑧
(𝑛)

(𝑡) = (V(𝑛) (𝑡) , 𝑎(𝑛) (𝑡) , 𝑖(𝑛) (𝑡))

=

𝑍
(𝑛)

(𝑡)

𝑛

= (

𝑉
(𝑛+1)

(𝑡) − 1

𝑛

,

𝐴
(𝑛+1)

(𝑡)

𝑛

,

𝐼
(𝑛+1)

(𝑡)

𝑛

) .

(22)

From (9), we conclude that the continuous-time Markov
chain {𝑍

(𝑛)

(𝑡)}
𝑡≥0

has the following table of possible
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Figure 3: Histograms of the rescaled final proportions of (a) infected and (b) immunized individuals from 10000 simulations of the epidemic
model in a population of size 1000 with immunization rate 𝜆 = 0.5 and limiting normal densities superimposed.
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Figure 4: Ellipsoid quartiles of the rescaled data obtained from the
simulations of the epidemic model with immunization (blue) and
the 25%, 50%, and 75% contours of the asymptotic bivariate normal
density (purple dashed lines).

transitions and associated rates, all relating to a time
increment (𝑡, 𝑡 + 𝑑𝑡):

Transition in (𝑡, 𝑡 + 𝑑𝑡) Infinitesimal rate

𝑢
0
= (1, 1, 0) 𝑛𝑎 (1 − 𝑖 − V) ,

𝑢
1
= (0, −1, 0) 𝑛𝑎 (𝑖 + V) ,

𝑢
2
= (0, 0, 1) 𝜆𝑛𝑎 (

𝑛

𝑛 + 1

) (1 − 𝑖 − V) .

(23)

Thus, the transition rates depend on the current state of the
process only through the density process 𝑧

(𝑛), so {𝑍
(𝑛)

(𝑡)}
𝑡≥0

is a density dependent population process. Observe that
we are dealing with the epidemic model on K

𝑛+1
, but the

1

0.2

0.4

0.6

0.8

0 10.5−1 −0.5

Figure 5: Histogram of the rescaled final proportion of infected
individuals from 10000 simulations of the epidemic model in a
population of size 1000 with mutation rate ] = 0.2 and limiting
normal density superimposed.

denominator in (22) is equal to 𝑛. We adopt this definition
only to facilitate the application of the related theory.

Let

𝜏
(𝑛)

= inf {𝑡 ≥ 0 : 𝑎
(𝑛)

(𝑡) = 0} = 𝛾
(𝑛+1) (24)

denote the absorption time of the process {𝑍(𝑛)(𝑡)}
𝑡≥0

. Since

V(𝑛+1)
𝐹

=

𝑛V(𝑛) (𝜏(𝑛)) + 1

𝑛 + 1

, 𝑖
(𝑛+1)

𝐹
=

𝑛𝑖
(𝑛)

(𝜏
(𝑛)

)

𝑛 + 1

.
(25)

Theorems 1 and 2 are established once we prove the following
lemmas.

Lemma 5. lim
𝑛→∞

V(𝑛)(𝜏(𝑛)) = V
∞

and lim
𝑛→∞

𝑖
(𝑛)

(𝜏
(𝑛)

) =

𝑖
∞

in probability, where V
∞

and 𝑖
∞

are given by (11).

Lemma 6. √𝑛(V(𝑛)(𝜏(𝑛)) − V
∞

, 𝑖
(𝑛)

(𝜏
(𝑛)

) − 𝑖
∞

)

D
→ 𝑁
2
(0, Σ) as

𝑛 → ∞, where Σ is given by (14).

To prove these results, the first step is to define a new
version of the process 𝑍

(𝑛), for which we can apply Theorem
11.4.1 of Ethier and Kurtz [8].
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5.1.1. Time-Changed Process. Consider the discrete-time
embedded Markov chain of the process 𝑍

(𝑛), that is, the
discrete-time Markovian structure obtained from 𝑍

(𝑛) by
ignoring the waiting times between consecutive jumps. It is
not difficult to see that the distribution of (V(𝑛)(𝜏(𝑛)), 𝑖(𝑛)(𝜏(𝑛)))
depends on 𝑍

(𝑛) only through this embedded Markov chain.
Hence, by defining the waiting times between consecutive
transitions suitably, we can construct a coupled process
̃
𝑍
(𝑛) with the same transitions as the original process 𝑍

(𝑛)

until absorption, though with time at a different pace. This
construction is done in such away that the process {̃𝑍(𝑛)(𝑡)}

𝑡≥0

has associated transition rates given by

Transition in (𝑡, 𝑡 + 𝑑𝑡) Infinitesimal rate

𝑢
0
= (1, 1, 0) 𝑛 (1 − �̃� − Ṽ) ,

𝑢
1
= (0, −1, 0) 𝑛 (�̃� + Ṽ) ,

𝑢
2
= (0, 0, 1) 𝜆𝑛 (

𝑛

𝑛 + 1

) (1 − �̃� − Ṽ) ,

(26)

where

�̃�
(𝑛)

(𝑡) =

̃
𝑍
(𝑛)

(𝑡)

𝑛

= (Ṽ(𝑛) (𝑡) , 𝑎(𝑛) (𝑡) , �̃�(𝑛) (𝑡)) . (27)

Furthermore, defining 𝜏
(𝑛)

= inf{𝑡 ≥ 0 : 𝑎
(𝑛)

(𝑡) = 0}, we have
that

V(𝑛) (𝜏(𝑛)) = Ṽ(𝑛) (𝜏(𝑛)) , 𝑖
(𝑛)

(𝜏
(𝑛)

) = �̃�
(𝑛)

(𝜏
(𝑛)

) . (28)

Now we define the functions

𝛽
𝑢0

(V, 𝑎, 𝑖) = 1 − (𝑖 + V) ,

𝛽
𝑢1

(V, 𝑎, 𝑖) = 𝑖 + V,

𝛽
𝑢2

(V, 𝑎, 𝑖) = 𝜆 [1 − (𝑖 + V)] ,

(29)

so the infinitesimal rates in (26) admit the form 𝑛[𝛽
𝑢𝑖
(Ṽ, 𝑎, �̃�)+

𝑂(1/𝑛)]. Consequently, {�̃�
(𝑛)

(𝑡)}
𝑡≥0

is a density dependent
population process with possible transitions in the set
{𝑢
0
, 𝑢
1
, 𝑢
2
}.

5.1.2. Deterministic Limit of the Time-Changed Process.
Towards proving Lemmas 5 and 6, we use Theorem 11.2.1
of Ethier and Kurtz [8] to conclude that the time-changed
system converges almost surely as 𝑛 → ∞ (on a suitable
probability space). The corresponding drift function is given
by

𝐹 (V, 𝑎, 𝑖) =

2

∑

𝑖=0

𝑢
𝑖
𝛽
𝑢𝑖

(V, 𝑎, 𝑖)

= (1 − (𝑖 + V) , 1 − 2 (𝑖 + V) , 𝜆 [1 − (𝑖 + V)]) ;

(30)

hence we obtain the following system of ordinary differential
equations for the large population limit deterministic system:

V (𝑡) = 1 − (𝑖 (𝑡) + V (𝑡)) ,

𝑎


(𝑡) = 1 − 2 (𝑖 (𝑡) + V (𝑡)) ,

𝑖


(𝑡) = 𝜆 [1 − (𝑖 (𝑡) + V (𝑡))] ,

V (0) = 𝑎 (0) = 𝑖 (0) = 0.

(31)

To solve this system, we define 𝑟(𝑡) = 𝑖(𝑡) + V(𝑡), 𝑡 ≥ 0.
From (31), it follows that 𝑟(𝑡) satisfies the ordinary differential
equation 𝑟



(𝑡) = (1 + 𝜆)(1 − 𝑟(𝑡)) with initial condition
𝑟(0) = 0, whence

𝑟 (𝑡) = 1 − 𝑒
−𝑡(1+𝜆)

, 𝑡 ≥ 0. (32)

Now we define the function 𝑓 : [0, 1) → R given by

𝑓 (𝑟) =

2𝑟 + log (1 − 𝑟)

1 + 𝜆

. (33)

Then, by solving each ordinary differential equation in (31),
we obtain that the solution of this system is given by 𝑥(𝑡) =

(V(𝑡), 𝑎(𝑡), 𝑖(𝑡)), where

V (𝑡) =

𝑟 (𝑡)

1 + 𝜆

,

𝑎 (𝑡) = 𝑓 (𝑟 (𝑡)) =

2𝑟 (𝑡)

1 + 𝜆

− 𝑡,

𝑖 (𝑡) = 𝜆V (𝑡) =

𝜆𝑟 (𝑡)

1 + 𝜆

.

(34)

It follows fromTheorem 11.2.1 of Ethier and Kurtz [8] that, as
𝑛 → ∞, �̃�(𝑛)(𝑡) converges almost surely to𝑥(𝑡), uniformly on
any finite time interval. Furthermore, analogously to Lemma
3.6 in Kurtz et al. [11], it can be proved that Ṽ(𝑛)(𝑡) converges
almost surely to V(𝑡), uniformly on R, and that the same
assertion holds for �̃�(𝑛) and 𝑖.

5.1.3. Proofs of Lemmas 5 and 6. Both results follow from
Theorem 11.4.1 of Ethier and Kurtz [8] applied to the time-
changed process �̃�

(𝑛) (recall formula (28)). We adopt the
notations used there, except for the Gaussian process 𝑉

defined on page 458, that we would rather denote by 𝑈 =

(𝑈V, 𝑈𝑎, 𝑈𝑖). Here 𝜑(V, 𝑎, 𝑖) = 𝑎, and

𝜏
(𝑛)

= inf {𝑡 ≥ 0 : 𝑎
(𝑛)

(𝑡) ≤ 0} . (35)

We also observe that 𝑟
∞

given in (11) is the unique root of
the function 𝑓 in the interval (0, 1) (see the Appendix for
more details). In addition, the function 𝑟(⋅) in (32) establishes
a one-to-one correspondence between (0,∞) and (0, 1).
Consequently, defining

𝛾
∞

= inf {𝑡 ≥ 0 : 𝑎 (𝑡) ≤ 0} , (36)

we conclude from (11) and (34) that 𝛾
∞

= 2V
∞
, V
∞

= V(𝛾
∞

),
and 𝑖
∞

= 𝑖(𝛾
∞

). Thus, to establish Lemma 5, it is enough to
prove that

lim
𝑛→∞

𝜏
(𝑛)

= 𝛾
∞

almost surely. (37)
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The latter is exactly the first main statement of the proof of
Theorem 11.4.1 from Ethier and Kurtz [8], whose argument
we recall. The facts that 𝑎(0) > 0 and

∇𝜑 (𝑥 (𝛾
∞

)) ⋅ 𝐹 (𝑥 (𝛾
∞

)) = 𝑎


(𝛾
∞

) = 1 − 2𝑟
∞

< 0 (38)
imply that 𝑎(𝛾

∞
− 𝜀) > 0 and 𝑎(𝛾

∞
+ 𝜀) < 0 for 0 < 𝜀 < 𝛾

∞
.

Then, the almost sure convergence of 𝑎
𝑛
to 𝑎 uniformly on

any finite time interval yields (37).
With regard to Lemma 6, we obtain fromTheorem 11.4.1

of Ethier and Kurtz [8] that√𝑛(Ṽ(𝑛)(𝜏(𝑛)) − V
∞

, �̃�
(𝑛)

(𝜏
(𝑛)

) − 𝑖
∞

)

converges in distribution as 𝑛 → ∞ to

(𝑈V (𝛾∞)−

1 − 𝑟
∞

1−2𝑟
∞

𝑈
𝑎
(𝛾
∞

) , 𝑈
𝑖
(𝛾
∞

)−

𝜆 (1−𝑟
∞

)

1 − 2𝑟
∞

𝑈
𝑎
(𝛾
∞

)) .

(39)

The resulting asymptotic distribution is a mean zero bivariate
normal distribution, whose covariance matrix Σ can be
computed with the aid of a mathematical software. First, the
matrix of partial derivatives of the drift function 𝐹 and the
matrix 𝐺 are obtained as

𝜕𝐹 (V, 𝑎, 𝑖) = (

−1 0 −1

−2 0 −2

−𝜆 0 −𝜆

) ,

𝐺 (V, 𝑎, 𝑖) = (

1 − (𝑖 + V) 1 − (𝑖 + V) 0

1 − (𝑖 + V) 1 0

0 0 𝜆 [1 − (𝑖 + V)]
) .

(40)

Furthermore, the solution Φ of the matrix equation
𝜕

𝜕𝑡

Φ (𝑡, 𝑠) = 𝜕𝐹 (V (𝑡) , 𝑎 (𝑡) , 𝑖 (𝑡)) Φ (𝑡, 𝑠) , Φ (𝑠, 𝑠) = 𝐼
3

(41)

is given by

Φ (𝑡, 𝑠) =

1

1 + 𝜆

⋅ (

𝑒
(𝑠−𝑡)(1+𝜆)

+ 𝜆 0 𝑒
(𝑠−𝑡)(1+𝜆)

− 1

2 (𝑒
(𝑠−𝑡)(1+𝜆)

− 1) 1 + 𝜆 2 (𝑒
(𝑠−𝑡)(1+𝜆)

− 1)

𝜆 (𝑒
(𝑠−𝑡)(1+𝜆)

− 1) 0 𝜆𝑒
(𝑠−𝑡)(1+𝜆)

+ 1

) .

(42)

Thus, using that the covariance matrix of the Gaussian
process 𝑈 is

Cov (𝑈 (𝑡) , 𝑈 (𝑟)) = ∫

𝑡∧𝑟

0

Φ (𝑡, 𝑠) 𝐺 (V (𝑠) , 𝑎 (𝑠) , 𝑖 (𝑠))

⋅ [Φ (𝑟, 𝑠)]
𝑇

𝑑𝑠,

(43)

we get that

Cov (𝑈 (𝛾
∞

) , 𝑈 (𝛾
∞

))

=

1

1 + 𝜆

⋅ (

𝑟
∞

(1 − V
∞

) 𝑖
∞

−𝑖
∞

𝑟
∞

𝑖
∞

𝛾
∞

(2𝑟
∞

+ 𝜆 − 1) −𝑖
∞

−𝑖
∞

𝑟
∞

−𝑖
∞

𝜆𝑟
∞

(1 − 𝑖
∞

)

) .

(44)

Finally, we obtain formula (14) by using thewell-knownprop-
erties of variance and covariance and simplifying properly.

5.2. Proofs of Theorems 3 and 4. For 𝑡 ≥ 0, we define

𝑍
(𝑛)

(𝑡) = (𝑉
(𝑛+1)

(𝑡) − 1, 𝐴
(𝑛+1)

1
(𝑡) , 𝐴

(𝑛+1)

2
(𝑡) , . . .) ,

𝑧
(𝑛)

(𝑡) = (V(𝑛) (𝑡) , 𝑎(𝑛)
1

(𝑡) , 𝑎
(𝑛)

2
(𝑡) , . . .)

=

𝑍
(𝑛)

(𝑡)

𝑛

= (

𝑉
(𝑛+1)

(𝑡) − 1

𝑛

,

𝐴
(𝑛+1)

1
(𝑡)

𝑛

,

𝐴
(𝑛+1)

2
(𝑡)

𝑛

, . . .) ,

𝑎
(𝑛)

(𝑡) =

∞

∑

𝑖=1

𝑎
(𝑛)

𝑖
(𝑡) ,

𝑦
(𝑛)

(𝑡) =

∞

∑

𝑖=1

𝑖𝑎
(𝑛)

𝑖
(𝑡) .

(45)

Recalling (15), we have that the process {𝑍
(𝑛)

(𝑡)}
𝑡≥0

makes
transitions in continuous time according to the following
transition rates:

Transition in (𝑡, 𝑡 + 𝑑𝑡) Infinitesimal rate

(1, 1, 0, 0, . . .) 𝑛𝑎 (1 − V) ,

(0, −1, 0, 0, . . .) 𝑛V𝑎
1
,

(0, . . . , 0,

𝑗

1,

𝑗+1

−1, 0, 0, . . .) 𝑛V𝑎
𝑗

𝑗 = 2, 3, . . . ,

(0, . . . , 0,

𝑗+1

−1,

𝑗+2

1 , 0, 0, . . .) 𝑛]𝑎
𝑗

𝑗 = 1, 2, . . . .

(46)

Denoting the absorption time of this process by

𝜏
(𝑛)

= inf {𝑡 ≥ 0 : 𝑎
(𝑛)

(𝑡) = 0 or V(𝑛) (𝑡) = 1} = 𝛾
(𝑛+1)

, (47)

we obtain that

V(𝑛+1)
𝐹

=

𝑛V(𝑛) (𝜏(𝑛)) + 1

𝑛 + 1

.
(48)

Consequently, Theorems 3 and 4 are established once we
prove the following results.

Lemma 7. If ] < 1, then lim
𝑛→∞

V(𝑛)(𝜏(𝑛)) = V
∞

in
probability, and √𝑛(V(𝑛)(𝜏(𝑛)) − V

∞
)

D
→ 𝑁(0, 𝜎

2

) as 𝑛 → ∞,
where V

∞
and 𝜎

2 are given, respectively, by (17) and (21).

Lemma 8. If ] ≥ 1, then lim
𝑛→∞

V(𝑛)(𝜏(𝑛)) = 1 in probability.

The main idea to prove Lemma 7 is to define a time-
changed version ̃

𝑍
(𝑛) of the process 𝑍

(𝑛) and then apply
Theorem 11.4.1 of Ethier and Kurtz [8] to a density depen-
dent Markov chain in Z2 obtained from ̃

𝑍
(𝑛). The proof
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of Lemma 8 is similar, except for the fact that we work
with another time-changed reduced Markov chain. Since the
arguments are analogous to those presented in Section 5.1 and
in Kurtz et al. [11], we present only the main steps of the
proofs.

5.2.1. Proof of Lemma 7. We can define a coupled process ̃
𝑍
(𝑛)

with the same transitions as the process𝑍(𝑛) until absorption,
though with time at a different pace. In view of (46), the
process {̃𝑍(𝑛)(𝑡)}

𝑡≥0
is constructed in such a way that it has the

same possible transitions as𝑍(𝑛) during each time increment,
but the associated rates are given by

Transition in (𝑡, 𝑡 + 𝑑𝑡) Infinitesimal rate

(1, 1, 0, 0, . . .) 𝑛 (1 − Ṽ) ,

(0, −1, 0, 0, . . .) 𝑛Ṽ𝑎
1
(𝑎)
−1

,

(0, . . . , 0,

𝑗

1,

𝑗+1

−1, 0, 0, . . .) 𝑛Ṽ𝑎
𝑗
(𝑎)
−1

𝑗 = 2, 3, . . . ,

(0, . . . , 0,

𝑗+1

−1,

𝑗+2

1 , 0, 0, . . .) 𝑛]𝑎
𝑗
(𝑎)
−1

𝑗 = 1, 2, . . . ,

(49)

where

�̃�
(𝑛)

(𝑡) =

̃
𝑍
(𝑛)

(𝑡)

𝑛

= (Ṽ(𝑛) (𝑡) , 𝑎(𝑛)
1

(𝑡) , 𝑎
(𝑛)

2
(𝑡) , . . .) . (50)

We observe that 𝑎(𝑛)(𝑡) = ∑
∞

𝑖=1
𝑎
(𝑛)

𝑖
(𝑡) corresponds to 𝑎

(𝑛)

(𝑡)

in the new time-scale. Moreover, defining 𝜏
(𝑛)

= inf{𝑡 ≥ 0 :

𝑎
(𝑛)

(𝑡) = 0 or Ṽ(𝑛)(𝑡) = 1}, we have that V(𝑛)(𝜏(𝑛)) = Ṽ(𝑛)(𝜏(𝑛)).
In order to prove Lemma 7 usingTheorem 11.4.1 of Ethier and
Kurtz [8], we work with a reduced Markov chain. We define

𝑦
(𝑛)

(𝑡) =

∞

∑

𝑖=1

𝑖𝑎
(𝑛)

𝑖
(𝑡) , (51)

and let 𝑥(𝑛)(𝑡) = (Ṽ(𝑛)(𝑡), 𝑦(𝑛)(𝑡)), 𝑡 ≥ 0. Notice that {𝑥(𝑛)(𝑡)}
𝑡≥0

is a Markov process that summarizes the evolution of the
infinite-dimensional process {

̃
𝑍
(𝑛)

(𝑡)}
𝑡≥0

. During each time
increment (𝑡, 𝑡 + 𝑑𝑡), the possible state transitions associated
to {𝑥
(𝑛)

(𝑡)}
𝑡≥0

are 𝑢
0
= (1, 1), 𝑢

1
= (0, −1), and 𝑢

2
= (0, 1). In

fact, we have that {𝑥(𝑛)(𝑡)}
𝑡≥0

is a density dependent Markov
chain with corresponding transition functions given by

𝛽
𝑢0

(V, 𝑦) = 1 − V, 𝛽
𝑢1

(V, 𝑦) = V, 𝛽
𝑢2

(V, 𝑦) = ].
(52)

Lemma 7 follows fromTheorem 11.4.1 of Ethier and Kurtz [8]
applied to 𝑥

(𝑛). Here, we have that

𝐹 (V, 𝑦) = (1 − V, 1 − 2V + ]) , 𝜑 (V, 𝑦) = 𝑦 (1 − V) .
(53)

The corresponding system of ordinary differential equations
is

V (𝑡) = 1 − V (𝑡) ,

𝑦


(𝑡) = 1 − 2V (𝑡) + ],

V (0) = 𝑦 (0) = 0.

(54)

To solve this system, we define the function 𝑓 : [0, 1) → R

given by 𝑓(V) = 2V + (1 − ]) log(1 − V). The solution is 𝑥(𝑡) =

(V(𝑡), 𝑦(𝑡)), where

V (𝑡) = 1 − 𝑒
−𝑡

,

𝑦 (𝑡) = 𝑓 (V (𝑡)) = 2V (𝑡) − (1 − ]) 𝑡.
(55)

As 𝑛 → ∞, we have that 𝑥
(𝑛)

(𝑡) converges almost surely
to 𝑥(𝑡), uniformly on bounded time intervals (on a suitable
probability space).

Notice now that V
∞

given in (17) is the unique root of
the function 𝑓 in (0, 1). Moreover, the function V(⋅) in (55)
establishes a one-to-one correspondence between (0,∞) and
(0, 1), so V

∞
= V(𝛾
∞

), where 𝛾
∞

= ℎ(])V
∞
. Since 𝑦



(0) > 0

and

∇𝜑 (𝑥 (𝛾
∞

)) ⋅ 𝐹 (𝑥 (𝛾
∞

)) = 𝑦


(𝛾
∞

)

= (1 − V
∞

) (1 − 2V
∞

+ ]) < 0,

(56)

we conclude that lim
𝑛→∞

𝜏
(𝑛)

= 𝛾
∞

almost surely. Conse-
quently,

lim
𝑛→∞

V(𝑛) (𝜏(𝑛)) = lim
𝑛→∞

Ṽ(𝑛) (𝜏(𝑛)) = V
∞

almost surely.
(57)

Regarding the Central Limit Theorem, the associated
Gaussian process is denoted here by 𝑈 = (𝑈V, 𝑈𝑦), and we
obtain fromTheorem 11.4.1 of Ethier and Kurtz [8] that

√𝑛 (Ṽ(𝑛) (𝜏(𝑛)) − V
∞

)

D
→ 𝑈V (𝛾∞) −

1 − V
∞

1 − 2V
∞

+ ]
𝑈
𝑦
(𝛾
∞

)

as 𝑛 → ∞.

(58)

The principal points in the calculation of the variance 𝜎
2 of

the asymptotic normal distribution are the following:

𝜕𝐹 (V, 𝑦) = (

−1 0

−2 0
) , 𝐺 (V, 𝑦) = (

1 − V 1 − V
1 − V 1 + ]) ,

Φ (𝑡, 𝑠) = (

𝑒
𝑠−𝑡

0

2 (𝑒
𝑠−𝑡

− 1) 1

) ,

Cov (𝑈 (𝛾
∞

) , 𝑈 (𝛾
∞

))

= (

V
∞

(1 − V
∞

) −]𝛾
∞

(1 − V
∞

)

−]𝛾
∞

(1 − V
∞

) (1 + ]) 𝛾
∞

(2V
∞

− 1)
) .

(59)
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Figure 6: (a) The two real branches of the Lambert 𝑊 function. (b) Graph of the function 𝑓.

Again, by using the well-known properties of variance and
covariance and simplifying properly, we obtain formula (21).

5.2.2. Proof of Lemma 8. Notice that we can construct the
epidemic process with mutation rate ] > 1 from the
process with rate 1, in such a way that the final number
of infected individuals in the latter process is no greater
than in the former. Consequently, it is enough to prove that
lim
𝑛→∞

V(𝑛)(𝜏(𝑛)) = 1 in probability only for the process with
rate ] = 1. Considering such a process, let {𝑥

(𝑛)

(𝑡)}
𝑡≥0

be
as defined previously, and construct from {𝑥

(𝑛)

(𝑡)}
𝑡≥0

a time-
changed process {𝑥

(𝑛)

(𝑡)}
𝑡≥0

which is a density dependent
Markov chain with the same transitions as 𝑥

(𝑛), but with
transition functions given by

𝛽
𝑢0

(V, 𝑦) = 1, 𝛽
𝑢1

(V, 𝑦) =

V
1 − V

, 𝛽
𝑢2

(V, 𝑦)=

1

1 − V
.

(60)

Of course, this process is defined up to 𝜏
(𝑛)

= inf{𝑡 ≥ 0 :

𝑦
(𝑛)

(𝑡)(1 − V̂(𝑛)(𝑡)) = 0}.
The solution of the corresponding system of ordinary

differential equations is given by

V (𝑡) = 𝑡,

𝑦 (𝑡) = 2𝑡, 𝑡 ∈ [0, 1] .

(61)

Since (V̂(𝑛)(𝑡), 𝑦(𝑛)(𝑡)) converges almost surely to (V(𝑡), 𝑦(𝑡))

uniformly on [0, 1], we conclude that lim
𝑛→∞

𝜏
(𝑛)

= 1

almost surely. From this, it follows that lim
𝑛→∞

V(𝑛)(𝜏(𝑛)) =

lim
𝑛→∞

V̂(𝑛)(𝜏(𝑛)) = 1 almost surely.

Appendix

The Lambert 𝑊 Function

The Lambert 𝑊 function is the multivalued inverse of the
function𝑤 → 𝑤𝑒

𝑤.That is,𝑊(𝑧) is defined to be the function
satisfying

𝑊(𝑧) 𝑒
𝑊(𝑧)

= 𝑧. (A.1)

If 𝑥 is real, then for −𝑒
−1

≤ 𝑥 < 0 there are two possible
real values of𝑊(𝑥) (see Figure 6(a)).The branch that satisfies
𝑊(𝑥) ≥ −1 is called the principal branch of the 𝑊 function
and denoted by 𝑊

0
; the branch that satisfies 𝑊(𝑥) ≤ −1

is called the lower branch and denoted by 𝑊
−1
. We refer to

Corless et al. [12] for more details.
Now let 0 < 𝑏 < 𝑎 and consider the function 𝑓 : [0, 1) →

R given by
𝑓 (V) = 𝑎V + 𝑏 log (1 − V) . (A.2)

The graph of𝑓 is presented in Figure 6(b). It is not difficult to
see that𝑓(0) = 0,𝑓 is increasing in [0, 1−𝑏/𝑎) and decreasing
in (1 − 𝑏/𝑎, 1), and limV→1−𝑓(V) = −∞. Therefore, 𝑓 has a
unique root V in the interval (0, 1).

To express V in terms of the𝑊 function, define 𝛼 = 𝑎/𝑏 >

1, thus −𝑒
−1

< −𝛼𝑒
−𝛼

< 0. Notice that V ∈ (0, 1) satisfies
V = 1 − 𝑒

−𝛼V, which can be written as

−𝛼𝑒
−𝛼

= 𝛼 (V − 1) 𝑒
𝛼(V−1)

. (A.3)

Consequently,

V = 1 +

1

𝛼

𝑊
0
(−𝛼𝑒
−𝛼

) . (A.4)
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