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We propose and analyze a mathematical model for alcohol drinking problem. The transmission process is modeled as a
social “contact” process between “heavy” alcohol drinkers and “light” alcohol drinkers within an unchanging shared drinking
environment. The basic reproductive number of the model is computed and the stability of the model steady states is investigated.
Further, the model is fitted to data on alcohol drinking for Cape Town and Gauteng, South Africa. In addition, the basic model is
extended to incorporate three time dependent intervention strategies.The control functions represent the efforts and policies aimed
at weakening the intensity of social interactions between light and heavy drinkers and increase the fraction of treated individuals
who permanently quit alcohol drinking. Optimal control results suggest that effective control of high-risk alcohol drinking can
be achieved if more resources and efforts are devoted on weakening the intensity of social interactions between light and heavy
drinkers.

1. Introduction

Excessive alcohol drinking has been attributed to many
types of violence including violence in public settings, sexual
violence, domestic violence, and child maltreatment [1, 2].
Prior studies suggest that excessive alcohol drinking results
in 2.5 million global deaths annually, and about 88,000 of
these deaths occur in United States [3]. In addition, alcohol
misuse is thought to play a part in approximately 3 million
crimes which occur over world each year [2]. Long-term
excessive alcohol drinking can lead to the development of
chronic diseases (alcoholic hepatitis, cirrhosis, and so on),
neurological impairments, and several social problems [3].
Further, it can interfere with testicular function and male
hormone production resulting in impotence, infertility, and
reduction of male secondary sex characteristics such as facial
and chest hair.

Mathematical modeling of alcohol drinking dynamics
and its impact on human health has been an interesting topic
for a number of researchers [4–8]. In [4], Thomas and Lungu
proposed a mathematical model to investigate the effect of
heavy alcohol drinking on the transmission and progression

of HIV/AIDS and to assess the impact of heavy drinkers on
human immune deficiency virus (HIV) related social and
health problems such as tuberculosis (TB) case load and the
number of orphans. Their work suggested that there is need
for vital counselling and education about the adverse effects
of heavy alcohol drinking in order to reduce new HIV cases
and the population of orphans in the community.

In Lee et al., [4] an SIR (Susceptible-Infectious-Rec-
overed) type of epidemic model is proposed to study the
impact of optimal control intervention strategies in low and
high problem drinking populations. The model constituted
of three compartments of alcohol drinkers: light or moderate
drinkers, heavy drinkers, and recovery class. The proposed
model incorporated three optimal control strategies. Their
work revealed among other results that controlmeasuresmay
have long-term effect on reducing or eliminating excessive
alcohol use in the community only when carried out in
conjunction with policies that generated dramatic changes in
the population’s behavioural norms.

More recently, Wang et al. [7] proposed a compartmental
model to explore the impact of optimal control intervention
strategies tied on reducing or eliminating excessive alcohol
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use at Lanzhou University of Technology (LUT) in China.
Their work highlighted some specific optimal control mea-
sures which can be key to reduce alcoholism within the
university community.

Motivated by the aforementioned studies we formulate a
model for alcohol drinking that includes incorporating the
effects of peer-influence, accounts for multiple intervention
strategies, and allows optimal control methods to be used.
Alcohol drinking models in [5, 6] provide the starting
point for our discussion. The aim of our study is to use a
mathematicalmodeling to gain insights into the transmission
dynamics of alcohol drinking and to assess the role of
multiple intervention strategies. The model is formulated
and analyzed in Section 2; an important threshold parameter
which determines the number of new conversions is deter-
mined and qualitatively used to investigate the stability of
model steady states. Impact of multiple optimal intervention
strategies is carried out in Section 3. In Section 4, we give
some conclusions and discussions.

2. Model Formulation and Analysis

2.1. Framework. In this section, a new dynamic model for
alcohol drinking is presented. We consider the total popu-
lation of alcohol drinkers denoted by 𝑁(𝑡), which includes
“light” or “susceptible” 𝑆(𝑡), “heavy”𝐻(𝑡), occasional alcohol
drinkers 𝐴(𝑡) (these are individuals who are in alcohol-
related treatment and occasionally drink alcohol, at a fre-
quency less than that of light drinkers), and recovered 𝑅(𝑡)
(these are individuals who are on treatment and those who
have successful completed treatment and have permanently
quit alcohol drinking). Thus,

𝑁(𝑡) = 𝑆 (𝑡) +𝐻 (𝑡) +𝐴 (𝑡) + 𝑅 (𝑡) . (1)

We assume a constant size population with a recruitment and
non-alcohol-related death rate given by 𝜇. The recruitment
of susceptible is proportional to the drinking population and
is given by 𝜇𝑁(𝑡). Initiation into heavy alcohol drinking
“transmission” occurs when a susceptible individual has
contact with someone in the heavy alcohol compartment.The
force of infection describing this mechanism is given by

𝑔 (𝐻) = 𝛽𝐻 (1+𝛼𝐻) , (2)

where 𝛽 is the transmission rate and 𝛼 is a positive constant.
Here, we adopt the approach in Buonomo and Lacitignola [6]
which incorporates the effects of peer-influence on the spread
of high-risk alcohol consumption behavior. Our model is
based on the following equations:

̇𝑆 = 𝜇𝑁−𝑔 (𝐻)
𝑆

𝑁
−𝜇𝑆+ (1−𝑝)𝜓𝐴,

�̇� = 𝑔 (𝐻)
𝑆

𝑁
− (𝜙+ 𝜖 + 𝜇)𝐻,

�̇� = (1−𝑓) 𝜙𝐻− (𝜓+𝜇)𝐴,

�̇� = 𝑓𝜙𝐻+𝑝𝜓𝐴−𝜇𝑅,

(3)

where the upper dot represents the derivative of the com-
ponent with respect to time. The time spent in the heavy
alcohol drinking compartment is (𝜙 + 𝜖 + 𝜇)−1, where 𝜙
denote the rate at which heavy drinking individuals enter
into a treatment program and 𝜖 represent alcohol-induced
death rate. Upon entering a treatment program, a fraction
(1 − 𝑓) become occasional drinkers and the remainder 𝑓 is
assumed to permanently quit alcohol drinking. Occasional
alcohol drinkers successfully complete treatment at rate 𝜓,
with a fraction𝑝of occasional drinkerswho complete therapy
assumed to permanently quit alcohol drinking while the
remainder (1 − 𝑝) become light alcohol drinkers.

It is helpful to rescale system (3) so that we have
dimensionless variables. We let

𝑠 =
𝑆

𝑁
,

ℎ =
𝐻

𝑁
,

𝑎 =
𝐻

𝑁
,

𝑟 =
𝑅

𝑁
,

(4)

so that 𝑔(𝐻) becomes 𝑔(ℎ) = 𝛽(1 + 𝛼ℎ)ℎ. We thus have the
following rescaled system:

̇𝑠 = 𝜇 − 𝑔 (ℎ) 𝑠 − 𝜇𝑠 + (1−𝑝)𝜓𝑎,

ℎ̇ = 𝑔 (ℎ) 𝑠 − (𝜙 + 𝜖 + 𝜇) ℎ,

̇𝑎 = (1−𝑓) 𝜙ℎ − (𝜓+𝜇) 𝑎,

̇𝑟 = 𝑓𝜙ℎ+𝑝𝜓𝑎−𝜇𝑟.

(5)

Observe that the total drinking population ( system (5))
satisfies the equation:

̇𝑠 + ℎ̇ + ̇𝑎 + ̇𝑟 = 𝜇 − 𝜇 (𝑠 + ℎ + 𝑎+ 𝑟) − 𝜖𝑎 ≤ 𝜇 (1− 𝑛) . (6)

Thus, 𝑛(𝑡) = 1 − (1 − 𝑛0)𝑒
−𝜇𝑡 for 𝑛0 a constant. Therefore, the

feasible region of system (5) is given by the closed set:

Ω = {(𝑠, ℎ, 𝑎, 𝑟) | 0≤ 𝑠 + ℎ + 𝑎+ 𝑟 ≤ 1} . (7)

2.2. Equilibrium Points and Their Stability Analysis. System
(5) has a high-level drinking “free” equilibrium E0 (i.e., 𝑠0 =
1, ℎ0 = 𝑎0 = 𝑟0 = 0), which represents a population with only
susceptible individuals. The possibility of the propagation of
high levels of drinking within the susceptible community is
analyzed through the examination of the impact generated by
the introduction of a small number of “typical” heavy alcohol
drinkers (an “invasion” process) in a whole of susceptible
population. Now, we evaluate the Jacobian matrix of system
(5) aboutE0; that is,

𝐽 =

[
[
[
[
[

[

−𝜇 −𝛽 (1 − 𝑝)𝜓 0
0 𝛽 − (𝜙 + 𝜖 + 𝜇) 0 0
0 (1 − 𝑓) 𝜙 − (𝜓 + 𝜇) 0
0 𝑓𝜙 𝑝𝜓 −𝜇

]
]
]
]
]

]

. (8)
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From (8) it is evident that the eigenvalues of system (5) are

𝜆1 = −𝜇,

𝜆2 = 𝛽− (𝜙 + 𝜖 + 𝜇) ,

𝜆3 = − (𝜓+𝜇) ,

𝜆4 = −𝜇.

(9)

Based on the eigenvalues of system (5) we haveTheorem 1.

Theorem 1. The equilibrium pointE0 is locally asymptotically
stable whenever 𝜆2 < 0, that is, 𝛽/(𝜙+𝜖+𝜇) < 1, and unstable
otherwise.

Let the average number of conversions (𝑠 → ℎ),
R
𝑎

, generated by a “typical” heavy alcohol drinker in a
population where the proportion of susceptible individuals
is approximately one be given by

R
𝑎

=
𝛽

(𝜙 + 𝜖 + 𝜇)
. (10)

Since the variable 𝑟(𝑡) does not appear in all the first three
equations of system (5), it is sufficient to consider the
following model on investigating the stability of the model
steady states. Consider

̇𝑠 = 𝜇 − 𝑔 (ℎ) 𝑠 − 𝜇𝑠 + (1−𝑝)𝜓𝑎,

ℎ̇ = 𝑔 (ℎ) 𝑠 − (𝜙 + 𝜖 + 𝜇) ℎ,

̇𝑎 = (1−𝑓) 𝜙ℎ − (𝜓+𝜇) 𝑎.

(11)

Theorem 2. The equilibrium point E0 is globally asymptoti-
cally stable ifR

𝑎

≤ 1 and unstable otherwise.

Proof. From the second and third equations of system (11) we
have

ℎ̇ ≤ 𝛽ℎ (1+𝛼ℎ) − (𝜙 + 𝜖 + 𝜇) ℎ,

̇𝑎 ≤ (1−𝑓) 𝜙ℎ − (𝜓+𝜇) 𝑎.
(12)

Then, by the comparison principle, ℎ(𝑡) → 0, and 𝑎(𝑡) → 0,
as 𝑡 → +∞ if R

𝑎

< 1. Substitution of these into the first
equation of (11) gives 𝑠(𝑡) → 1 as 𝑡 → +∞.This implies that
E0 is a global attractor. This completes the proof.

In order to investigate the long-term dynamics of high-
risk alcohol drinking, we conduct an endemic analysis when
R
𝑎

> 1. The following theorem shows the existence of the
endemic equilibrium.

Theorem 3. When R
𝑎

> 1, there exists an endemic equilib-
rium of system (11).

Proof. Let us denote the endemic equilibrium of system (11)
by E∗ = (𝑠∗, ℎ∗, 𝑎∗), where

𝑠
∗

=
𝜇 (𝜇 + 𝜓) + (1 − 𝑝) (1 − 𝑓) 𝜙𝜓ℎ∗

[𝜇 + 𝜓] [𝜇 + 𝑔 (ℎ
∗

)]
,

ℎ
∗

=
𝑔 (ℎ
∗

) [𝜇 (𝜇 + 𝜓) + (1 − 𝑝) (1 − 𝑓) 𝜙𝜓ℎ∗]
[𝜇 + 𝜓] [𝜇 + 𝑔 (ℎ

∗

)]
,

𝑎
∗

=
(1 − 𝑓) 𝜙ℎ∗

(𝜇 + 𝜓)
,

(13)

with 𝑔(ℎ∗) = 𝛽(1 + 𝛼ℎ∗)ℎ∗. We then substitute ℎ∗ from (13)
into 𝑔(ℎ∗) and define the function

𝐹 (ℎ
∗

) =
𝛽 [𝜇 (𝜇 + 𝜓) + (1 − 𝑝) (1 − 𝑓) 𝜙𝜓ℎ∗]
[𝜙 + 𝜖 + 𝜇] [𝜇 + 𝜓] [𝜇 + 𝛽 (1 + 𝛼ℎ∗) ℎ∗]

+
𝛽
2
𝛼ℎ
∗

[1 + 𝛼ℎ∗] [𝜇 (𝜇 + 𝜓) + (1 − 𝑝) (1 − 𝑓) 𝜙𝜓ℎ∗]2

[𝜙 + 𝜖 + 𝜇]
2
[𝜇 + 𝜓]

2
[𝜇 + 𝛽 (1 + 𝛼ℎ∗) ℎ∗]2

,

(14)

such that there exists an endemic equilibrium for model (11)
if and only if there is a positive solution to 𝐹(ℎ∗) = 1. Because

𝐹 (0) =
𝛽

(𝜙 + 𝜖 + 𝜇)
=R
𝑎

,

lim
ℎ

∗
→+∞

𝐹 (ℎ
∗

) = 0,
(15)

then there exists an endemic equilibrium ifR
𝑎

> 1.

Theorem 4. The equilibrium point E∗ is globally asymptoti-
cally stable ifR

𝑎

> 1 and unstable otherwise.

Proof. We consider the following Lyapunov functional:

𝑢 [𝑠 (𝑡) , ℎ (𝑡) , 𝑎 (𝑡)] = 𝑤1 [𝑠 (𝑡) − 𝑠
∗ln 𝑠 (𝑡)]

+𝑤2 [ℎ (𝑡) − ℎ
∗ln ℎ (𝑡)]

+𝑤3 [𝑎 (𝑡) − 𝑎
∗ln 𝑎 (𝑡)] ,

(16)

where 𝑤
𝑗

, for 𝑗 = 1, 2, 3, are positive constants. Differentiat-
ing 𝑢 along the solution [𝑠(𝑡), ℎ(𝑡), 𝑎(𝑡)] of system (11) gives

𝑑𝑢

𝑑𝑡
= 𝑤1 [1−

𝑠
∗

𝑠
]
𝑑𝑠

𝑑𝑡
+𝑤2 [1−

ℎ
∗

ℎ
]
𝑑ℎ

𝑑𝑡

+𝑤3 [1−
𝑎
∗

𝑎
]
𝑑𝑎

𝑑𝑡

= 𝑤1 [1−
𝑠
∗

𝑠
] [𝜇 − 𝑔 (ℎ) 𝑠 − 𝜇𝑠 + (1−𝑝)𝜓𝑎]

+𝑤2 [1−
ℎ
∗

ℎ
] [𝑔 (ℎ) 𝑠 − (𝜙 + 𝜖 + 𝜇) ℎ]

+𝑤3 [1−
𝑎
∗

𝑎
] [(1−𝑓) 𝜙ℎ − (𝜓+𝜇) 𝑎] .

(17)
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At endemic point we have the following identities:

𝜇 = 𝑔 (ℎ
∗

) 𝑠
∗

+𝜇𝑠
∗

+ (1−𝑝)𝜓𝑎∗,

(𝜙 + 𝜖 + 𝜇) = 𝑔 (ℎ
∗

)
𝑠
∗

ℎ∗
,

(𝜇 +𝜓) = (1−𝑓) 𝜙ℎ
∗

𝑎∗
.

(18)

Set 𝑤1 = 𝑤2 = 1, and 𝑤3 = 𝑔(ℎ
∗

)𝑠
∗

/(1 − 𝑓)𝜙ℎ∗, so that

𝑑𝑢

𝑑𝑡
= 𝜇𝑠
∗

[2− 𝑠

𝑠∗
−
𝑠
∗

𝑠
]

+ 𝑔 (ℎ
∗

) 𝑠
∗

[3− 𝑠ℎ
∗

𝑎

𝑠∗ℎ𝑎∗
−
ℎ𝑎
∗

ℎ∗𝑎
−
𝑠
∗

𝑠
]

+ 𝑔 (ℎ
∗

) 𝑠ℎ
∗

𝑎

𝑎∗
[1− 𝑠

∗

ℎ

𝑠ℎ∗
]

+𝑔 (ℎ) 𝑠
∗

[1− 𝑠ℎ
∗

𝑠∗ℎ
]

+ (1−𝑝)𝜓 (𝑎∗ + 𝑎) 𝑠
∗

𝑠
[1− 𝑎

∗

𝑎
] .

(19)

Therefore, �̇� ≤ 0 for all 𝑠, ℎ, 𝑎, 𝑠∗, ℎ∗, 𝑎∗ ≥ 0, since the
arithmetic mean is greater than or equal to the geometric
mean. Further, the equality is satisfied if and only if 𝑠 = 𝑠∗,
ℎ = ℎ

∗

, 𝑎 = 𝑎
∗

.Therefore, by Lyapunov-Lasalle asymptotic
stability theorem [9, 10] the positive equilibrium point E∗
is globally asymptotically stable whenever R

𝑎

> 1. This
completes the proof.

2.3. Data Fitting. In this section, we estimate the model
parameters used in our numerical simulations. Due to lack
of data regarding the alcohol drinking parameters, in this
section we estimate the values through fitting our model
with data in [11], for Cape Town and Gauteng, South Africa.
The model fits the reported data of excessive alcohol use
in Gauteng and Cape Town, South Africa (Figure 1). A
comparison between the fitted model and the real data
demonstrates that our proposed model could be useful in
predicting future trend on excessive alcohol use in different
communities. The data in [11] was obtained from South
African Community Epidemiology Network on Drug Use
(SACENDU). SACENDU, established in 1996, is a network
of researchers, practitioners, and policy makers from various
sentinel areas in South Africa. Members of SACENDU meet
every six months to provide community-level public health
surveillance of alcohol and other drug (AOD) use trends
and associated consequences through the presentation and
discussion of quantitative and qualitative research data. The
data in Tables 1 and 2 represent the proportion of patients
with alcohol as the primary substance of abuse in Cape Town
andGauteng community, respectively.These are patients who
had reported at various specialist treatment centres across all
sites in Cape Town and Gauteng between 1996 and 2008.

Assuming that these patients are heavy alcohol drinkers,
we now fit our model with the observed data. The fitting

process involves the use of the least squares-curve fitting
method. To fit our model we will use a Matlab code, and the
unknownparameterswill be assigned lower and upper bound
from which a set of parameter values that produce the best fit
will be obtained.

Onemeasure of the severity of high-risk alcohol drinking
is determined by the average number of new heavy alcohol
drinkers generated by an individual heavy alcohol drinker
during his or her time as a high-risk alcohol drinker, R

𝑎

.
Recall that

R
𝑎

=
𝛽

(𝜙 + 𝜇 + 𝜖)
. (20)

Now, using the fitted values in Table 3 it follows that the
reproductive number for Gauteng and Cape Town is 3.71 and
3.96, respectively. Thus, one heavy alcohol drinker in either
Gauteng or Cape Town is likely to influence approximately
four light alcohol drinkers to become heavy alcohol drinkers
during his or her drinking period as a heavy alcohol drinker.

Since the reproductive number of our proposed model
is comprised of four model parameters we now investigate
which of the four parameters have the greatest influence on
increasing or decreasing the magnitude of the reproductive
number. In computing the sensitivity analysis, we adopt
the approach described by Arriola and Hyman [12]. The
normalized forward sensitivity index of a variable to a
parameter is the ratio of the relative change in the variable to
the relative change in the parameter. When the variable is a
differentiable function of the parameter, the sensitivity index
may be alternatively defined using partial derivatives.

Definition 5. The normalized forward sensitivity index of a
variable, 𝑢, that depends differentiably on a parameter, 𝑝, is
defined as

Γ
𝑢

𝑝

:=
𝜕𝑢

𝜕𝑝
×
𝑝

𝑢
. (21)

Table 4 illustrates the sensitivity indices ofR
𝑎

, evaluated
at the baseline parameter values given in Table 3. Model
parameters whose sensitivity index values are near −1 or +1
suggest that a change in their magnitude has a significant
impact on either increasing or decreasing the size of R

𝑎

.

From Table 4 it is clear that R
𝑎

is most sensitive to 𝛽, such
that an increase in 𝛽 by 10% would increase R

𝑎

by 10%
in all the communities, that is, Gauteng and Cape Town.
Further, an increase in 𝜙 by 10% would decreaseR

𝑎

9,3% for
Gauteng community and 5.8% for Cape Town community.
Thus, alcohol-related treatment is likely to have more impact
in Gauteng than in Cape Town.

In view of these results, one can suggest that policy mak-
ers should introduce control measures aimed at minimizing
or eliminating excessive alcohol use in these communities. If
control measures are to decrease endemicity, consideration
of R
𝑎

echoes the importance of weakening the intensity
of social interactions between the light and heavy drinkers,
modelled by parameter 𝛽, since it is a parameter which has
the greatest influence on changing the size ofR

𝑎

.



Journal of Applied Mathematics 5

1998 2000 2002 2004 2006 2008
0

0.2

0.4

0.6

0.8

Years

Pr
ev

al
en

ce
Gauteng, South Africa

(a)

1998 2000 2002 2004 2006 2008
0

0.2

0.4

0.6

0.8

Years

Pr
ev

al
en

ce

Cape Town

(b)

Figure 1: Model system (3) fitted to data for alcohol users who visited specialist treatment centres in (a) Gauteng and (b) Cape Town. The
blue circles indicate the actual data and the solid line indicates the model fit to the data.

Table 1: Alcohol related treatment proportions inCapeTown, South
Africa, 1996–2008.

Year %
96b 81
97a 82
97b 78
98a 74
98b 64
99a 56
99b 50
00a 48
00b 51
01a 46
01b 46
02a 48
02b 47
03a 43.6
03b 39.4
04a 38.3
04b 33.7
05a 34.4
05b 25.1
06a 30.2
06b 26.4
07a 29.5
07b 29.7
08a 30.0

3. The Optimal Control Problem
and Its Analysis

In this section, we aim at exploring the role of optimal
intervention strategies on reducing or eliminating exces-
sive alcohol drinking and its related health effects in the
community. We extend system (3) to introduce three inter-
vention methods, called controls. Controls are represented
as functions of time and assigned reasonable upper and

Table 2: Alcohol related treatment proportions in Gauteng, South
Africa, 1996–2008.

Year %
96b —
97a —
97b —
98a 69
98b 68
99a 67
99b 63
00a 60
00b 60
01a 54
01b 52
02a 54
02b 54
03a 52.2
03b 49.3
04a 50.4
04b 51
05a 46.6
05b 51.8
06a 47.5
06b 47.2
07a 45.9
07b 47
08a 47

lower bounds. The first control 𝑢1(𝑡) attempts to weaken
the intensity of social interactions between the light and
heavy drinkers. This control might be implemented through
educational efforts or an increase of price or tax on alcohol
beverages. For example, the tax hike on beer in California
in 1991 resulted in gonorrhoea rates dropping by 30% the
following year [8], and from this observation we can infer
that alcohol drinking is correlated to gonorrhoea epidemic
[8].Thus, an increase on the price or levy of alcohol beverages
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Table 3: Model parameters and their baseline values.

Model parameter Units Gauteng Cape Town Reference
𝛼 — 0.0018 0.0018 [6]
𝜇 yr−1 0.020 0.020 [13]
𝛽 yr−1 1.2884 2.000 Fitted
𝜓 yr−1 0.9600 0.6997 Fitted
𝜙 yr−1 0.3238 0.2866 Fitted
𝑝 — 0.0375 0.0071 Fitted
𝑓 — 0.0489 0.0677 Fitted
𝜖 yr−1 0.0039 0.1985 Fitted

Table 4: Sensitivity indices ofR
𝑎

.

Parameter Gauteng Cape Town
𝛽 +1 +1
𝜙 −0.93 −0.58

𝜇 −0.058 −0.040

𝜖 −0.011 −0.39

can have a positive impact on reducing the intensity of the
influence caused by heavy drinkers. The second control 𝑢2(𝑡)
is tied on increasing the proportion of treated individualswho
permanently quit alcohol and the third control 𝑢3(𝑡) is tied on
the reduction of the relapsing population.

The new model incorporating time dependent interven-
tion strategies is given by

̇𝑠 = 𝜇 − (1−𝑢1) 𝑔 (ℎ) 𝑠 − 𝜇𝑠 + (1−𝑢3) 𝜓𝑎,

ℎ̇ = (1−𝑢1) 𝑔 (ℎ) 𝑠 − (𝜙 + 𝜖 + 𝜇) ℎ,

̇𝑎 = (1−𝑢2) 𝜙ℎ − (𝜓+𝜇) 𝑎.

(22)

A successful mitigation scheme is one which reduces or
eliminates excessive alcohol drinking and its related health
effects at minimal cost. A control scheme is assumed to be
optimal if it minimizes the objective functional:

𝐽 (𝑢1, 𝑢2, 𝑢3) = ∫
𝑇

0
[ℎ +

𝐴1
2
𝑢
2
1 +

𝐴2
2
𝑢
2
2 +

𝐴3
2
𝑢
2
3] 𝑑𝑡, (23)

where𝐴1, 𝐴2, 𝐴3 are balancing coefficients transforming the
integral into dollars expended over a finite time period of
𝑇 years. The balancing coefficients account for the relative
size and importance preassigned by the modelers to the
contributing terms in the objective functional. The existence
of optimal control follows from standard results in optimal
control theory [14, 15].The necessary conditions that optimal
controls must satisfy are derived using Pontryagin’s Maxi-
mum Principle (PMP) [15]. Thus, system (22) is converted

into an equivalent problem, namely, the problem of minimiz-
ing the Hamiltonian𝐻

𝑎

given by

𝐻
𝑎

= ℎ+
𝐴1
2
𝑢
2
1 +

𝐴2
2
𝑢
2
2 +

𝐴3
2
𝑢
2
3

+𝜆1 [𝜇 − (1−𝑢1) 𝑔 (ℎ) 𝑠 − 𝜇𝑠 + (1−𝑢3) 𝜓𝑎]

+ 𝜆2 [(1−𝑢1) 𝑔 (ℎ) 𝑠 − (𝜙 + 𝜖 + 𝜇) ℎ]

+ 𝜆3 [(1−𝑢2) 𝜙ℎ − (𝜓+𝜇) 𝑎] ,

(24)

where 𝜆
𝑖

, for 𝑖 = 1, 2, 3, are the adjoint functions associ-
ated with states 𝑠, ℎ, and 𝑎, respectively. Note that in (24)
each adjoint function multiplies the right-hand side of the
differential equation of its corresponding state function. The
first terms in 𝐻

𝑎

come from the integrand of the objective
functional.

Given an optimal control 𝑢∗∗
𝑗

(for 𝑗 = 1, 2, 3) and corre-
sponding states (𝑠∗∗, ℎ∗∗, 𝑎∗∗), there exist adjoint functions
satisfying

̇𝜆
1

(𝑡) = 𝜇𝜆1 +𝑔 (ℎ
∗∗

) (1−𝑢1) (𝜆1 −𝜆2) ,

̇𝜆
2

(𝑡) = − 1+ (𝜇 + 𝜖) 𝜆2 +𝜙 (𝜆2 − (1−𝑢2) 𝜆3)

+ 𝑔 (ℎ
∗∗

) (𝜆1 −𝜆2) 𝑠
∗∗

+𝛽𝛼𝑠
∗∗

ℎ
∗∗

(𝜆1 −𝜆2) ,

̇𝜆
3

(𝑡) = 𝜇𝜆3 +𝜓 (𝜆3 − (1−𝑢3) 𝜆1) ,

(25)

with transversality conditions, 𝜆
𝑖

(𝑇) = 0, for 𝑖 = 1, 2, 3.
Observe that the right-hand side of the first differential
̇𝜆
1

(𝑡) = −𝜕𝐻
𝑎

/𝜕𝑠
∗∗ and similarly for the other adjoint

functions.The final time boundary conditions (transversality
conditions) are zero since there is no dependence on the states
at the final time in the objective functional. Furthermore, the
optimal controls are characterized by

𝑢
∗∗

1 (𝑡)

= min{max{0,
𝑔 (ℎ
∗∗

) (𝜆2 − 𝜆1) 𝑠
∗∗

𝐴1
} , 1} ,

𝑢
∗∗

2 (𝑡) = min{max{0,
𝜙𝜆3ℎ
∗∗

𝐴2
} , 1} ,

𝑢
∗∗

3 (𝑡) = min{max{0,
𝜓𝜆1𝑎
∗∗

𝐴3
} , 1} .

(26)

The control characterization for 𝑢∗∗
𝑗

(𝑡), 𝑗 = 1, 2, 3, is
obtained on 𝜕𝐻

𝑎

/𝜕𝑢
∗∗

𝑗

= 0 whenever 0 < 𝑢∗∗
𝑗

(𝑡) < 1, taking
bounds into account, and similarly for the other controls.

3.1. Optimal Control Numerical Results. In this section, we
numerically explore the effects of the three controls on reduc-
ing or eliminating excessive alcohol use in the community.
The state system (22) and the adjoint system of differential
equations together with the control characterization above
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Figure 2: Dynamics of system (22) showing the effects of optimal control strategies on eliminating or reducing excessive alcohol drinking in
the Gauteng community. Recall thatR

𝑎

= 3.71.

from the optimality system are solved numerically using the
“forward-backward sweepmethod” [16]. Cost coefficients are
fixed within the integral expression (23) and the optimal
schedule of the three controls over 𝑇 = 16 years is simulated
for (a) Gauteng and (b) Cape Town community. For the
control we set 𝑢1 = 0.7 while 𝑢2 = 𝑢3 = 0.75 and the
weights are set to 𝐴1 = 0.0005 and 𝐴2 = 𝐴3 = 0.00003.
Here, we assume that control 𝑢1(𝑡) ismore costly compared to
all the other controls, due to the fact that its implementation
involves a large volume of people than any other control; thus
𝐴1 ≥ (𝐴2, 𝐴3).

(i) Case (a) Gauteng. Here, we utilize the parameter values for
Gauteng (Table 3) together with the associated data (Table 2),
to investigate the effects of time dependent intervention
strategies on controlling high-risk alcohol drinking in Gaut-
eng community. We set ℎ(0) = 0.47 (the last recording on
Gauteng data), 𝑠0 = 0.53, and 𝑎0 = 0.

Graphical results in Figure 2 demonstrate the effects of
optimal intervention strategies on reducing or eliminating
the problem of excessive alcohol drinking in Gauteng com-
munity. It is clear from these simulations that time dependent
interventions can take 14 years to eliminate excessive alcohol
use in Gauteng community.

In Figure 3 we examine the feasibility of the three optimal
controls. An optimal control is regarded to be feasible if it
starts at the upper bound and remains there till the end
point (final time). A control which is feasible or attainable is
essential on problem solving; hencemore effort and resources
should be devoted to such an intervention strategy for
effective problem solving. Here, we note that control 𝑢1(𝑡)
is more feasible compared to control 𝑢2(𝑡) and 𝑢3(𝑡). Thus,
for effective control of excessive alcohol use and alcohol-
related violence more effort should be devoted to strategies
and policies that weaken the interaction between light and
heavy drinkers.

The total relative costs for all the strategies are estimated
by computing the approximate area under control functions
(Figure 3) with daily costs computed by dividing the total
costs by the number of years where nonzero controls are
applied [5]. In this case, the total relative cost for the 16-year
strategy: 𝐴1 ⋅ (∫

𝑇

0 𝑢1(𝑡)𝑑𝑡 = 16), 𝐴2 ⋅ (∫
𝑇

0 𝑢2(𝑡)𝑑𝑡 = 3.19), and
𝐴3 ⋅(∫

𝑇

0 𝑢3(𝑡)𝑑𝑡 = 0.212), is 0.0081with a yearly cost of 0.0005.

(ii) Case (b) Cape Town. We utilize the parameter values
for Cape Town (Table 3) together with the associated data,
to investigate the effects of time dependent intervention
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Figure 3: Time series plots illustrating the control profiles for controls: (a) 𝑢1(𝑡), (b) 𝑢2(𝑡), and (c) 𝑢3(𝑡), and recall thatR
𝑎

= 3.71.

strategies on controlling high-risk alcohol drinking in Cape
Town. We set ℎ(0) = 0.3 (the last recording on Cape Town
data), 𝑠0 = 0.7, and 𝑎0 = 0.

Based on our simulations (Figure 4) we can deduce that
high-risk alcohol drinking problem can be eliminated in
Cape Town, after about 10 years of implementing the afore-
mentioned time dependent intervention strategies. Further,
we observe that eliminating alcohol drinking problem in
Gauteng will require an additional 4 years compared to the
Cape Town scenario.

Figure 5 highlights the feasibility of controls for the Cape
Town scenario.The results support earlier findings that more
effort should be devoted to strategies and policies that weaken
the interaction between light and heavy drinkers for effective
control of alcohol drinking problem.The total relative cost for
the 16-year strategy for Cape Town: 𝐴1 ⋅ (∫

𝑇

0

𝑢1(𝑡)𝑑𝑡 = 15.5),
𝐴2 ⋅ (∫

𝑇

0

𝑢2(𝑡)𝑑𝑡 = 0.46), and 𝐴3 ⋅ (∫
𝑇

0

𝑢3(𝑡)𝑑𝑡 = 0.411), is
0.0078 with a yearly cost of 0.00049. Here, we observe that
the relative costs for Cape Town are slightly more compared
to the Gauteng case.

3.2. Efficacy of Optimal Intervention Strategies. In this section
we explore the efficacy of optimal intervention strategies of
reducing excessive alcohol drinking in the community. We
define the efficacy function 𝐸(𝑡)

𝐸 (𝑡) =
ℎ (0) − ℎ∗ (𝑡)

ℎ (0)
= 1− ℎ

∗

(𝑡)

ℎ (0)
, (27)

where ℎ∗(𝑡) represent the optimal solutions associated with
the optimal control of the corresponding variable and ℎ(0)
denote the corresponding initial condition. Function (27)
measures the proportional decrease in the number of heavy
alcohol drinkers imposed by the intervention with controls
(𝑢1, 𝑢2, 𝑢3), by comparing the number of heavy alcohol
drinkers ℎ∗(𝑡) with the initial conditions for which there are
no controls implemented, 𝑢1 = 𝑢2 = 𝑢3 = 0. By construction,
𝐸(𝑡) ∈ [0, 1] for all time 𝑡. Thus, the upper bound of 𝐸(𝑡) is
one.

Figure 6 illustrates the efficacy of control in Gauteng and
Cape Town for a period of 16 years.The results reaffirm earlier
findings that alcohol drinking problem can be eliminated
after 10 years of implementing these controls in Cape Town
and 14 years in Gauteng. Further, it evident that after 4 years
of implementing the controls in Cape Town, the efficacy level
will take a value above 80% while in Gauteng it will be less
than 80% and this re-affirms that less time can be required
for elimination of alcohol drinking problem in Cape Town
than in Gauteng.

4. Concluding Remarks

Excessive alcohol consumption remains a major health
challenge in both developed and developing nations. In
this paper, two mathematical models for alcohol drinking
incorporating peer-influence have been proposed and qual-
itatively analyzed. The transmission process is modeled as
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Figure 4: Dynamics of system (22) showing the effects of optimal control strategies on eliminating or reducing excessive alcohol drinking in
Cape Town. Recall thatR

𝑎

= 3.96.

a social “contact” process between “heavy” alcohol drinkers
and “light” alcohol drinkers within an unchanging shared
drinking environment.The first model is an autonomous sys-
tem with constant parameters that incorporates the relevant
alcohol drinking components and alcohol-related treatment.
Themodel reproductive numberR

𝑎

was derived and proven
to be a sharp threshold for disease dynamics. Particularly,
whenever the reproductive number is less than unity, alcohol
drinking dies out, and when the reproductive number is
greater than unity, there exists a unique endemic equilibrium
that is globally asymptotically stable. Due to lack of data
regarding the parameter values, we used the observed data
on alcohol drinking problem (the data reflect the proportion
of alcohol users who visited specialist treatment centres) in
Cape Town and Gauteng, South Africa, for a period ranging
from 1996 to 2008 [11]. Numerical illustrations demonstrate
that policy makers should introduce control measures aimed
at minimizing or eliminating excessive alcohol use in these
communities. If control measures are to decrease endemicity,
consideration ofR

𝑎

echoes the importance of weakening the
intensity of social interactions between the light and heavy
drinkers, modelled by parameter 𝛽, since it is a parameter
which has the greatest influence on changing the size ofR

𝑎

.

In the second model, we extended the autonomous
system to incorporate time dependent intervention strate-
gies. Three intervention methods, called controls, have been
introduced into our earlier model. Controls are represented
as functions of time and assigned reasonable upper and
lower bounds. The first control 𝑢1(𝑡) attempts to weaken
the intensity of social interactions between the light and
heavy drinkers. The second control aims at increasing the
number of treated individuals who permanently quit alcohol
use, and the third control is tied on reducing the number
of relapsing individuals. Among other important results our
study suggests that for effective control of excessive alcohol
use in the community more attention should be devoted
to the first control than any other control. In addition,
our analysis demonstrates that time dependent interventions
have the potential to eliminate the problem of excessive
alcohol use in Gauteng community in a period of 14 years and
in 10 years for Cape Town community.

Despite a number of simplifying assumptions and the
unavailability of a large data, we hope that the model will
allow public health personnel and policy makers to plan
effectively so as to reduce alcohol drinking problem in
different communities.
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Figure 5: Time series plots illustrating the control profiles for controls: (a) 𝑢1(𝑡), (b) 𝑢2(𝑡), and (c) 𝑢3(𝑡), and recall thatR
𝑎

= 3.96.
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Figure 6: Time series plot demonstrating the efficacy of optimal intervention strategies over a period of 16 years: (a) Gauteng case and (b)
Cape Town case.
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