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The present study is aimed at magnetic and mechanical properties of iron nitride (𝛾󸀠-Fe
4
N) with elastic deformation. Electronic

structure and thermal properties of the iron nitride are also studied to have a comprehensive understanding of the characteristics
of 𝛾󸀠-Fe

4
N. This study is focused on the variation of the magnetic and the mechanical properties of iron nitride with a change in

crystal size represented by lattice constant. As the lattice constant is altered with deformation, magnetic moment of Fe-II atoms is
appreciably elevated, while that of Fe-I atoms is nearly unchanged. Dependence of the magnetic moment and the bulk modulus on
the lattice constant is examined. Meanwhile, chemical bonds between Fe atoms and N atoms formed across the crystal have been
visualized by delocalization of atomic charge density in electron density map, and thermodynamic properties, including entropy,
enthalpy, free energy, and heat capacity, are evaluated.

1. Introduction

Iron-based nitrides received much attention from related
researchers in recent years due to their interesting properties
and their possible applications as high-density magnetic
recordingmaterials, as described by Shi et al. [1]. In particular,
these compounds exhibited many unique characteristics
in chemical, thermal, mechanical, electrical, and magnetic
properties. On the other hand, in recent years highly sensitive
magnetic strain gauges have been developed. In a typical
magnetic sensing device, the strain gauge senses themagnetic
property (such as magnetic moment and magnetic force)
of the magnetic materials which responds to the physical
quantity, such as strain. Through the calibration for the rela-
tionship between the magnetic property and strain, the input
signal of the magnetic property can be converted to a reading
of the deformation or other sensed physical quantity. Among

these compounds, 𝛾󸀠-Fe
4
N is placed on the focus of interest

for applications in magnetic sensing devices. In the report of
Mohn andMatar [2], its largemagneticmoment, low coercive
force, corrosion resistance, and chemical stability have been
studied based on an ab initio calculation. However, to the
best of authors’ knowledge, when the material is subject to a
compressive or tensile deformation, the magnetic properties
of the deformed iron nitride have been not yet calculated.
Therefore, it is worthwhile to perform these calculations of
dependence of the magnetic moment on the deformation of
iron nitride.

As a matter of fact, as mentioned by Jang et al. [3] and y
Blancá et al. [4], in addition to serving as amagneticmaterial,
iron nitride has also been considered as a ductile and damage-
tolerant material because of its high bulk modulus, shear
modulus, and Poisson’s ratio. Recently, Takahashi et al. [5]
and Yang et al. [6] presented information for mechanical
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properties of the material. In parallel, investigation of ther-
modynamic properties such as phonon dispersion, specific
heats, thermal expansion, and heat conduction is performed
by Baroni et al. [7]. Unfortunately, it remains insufficient in
spite of the importance of the thermodynamic properties
which are the basis of solid state science and industrial
applications. Thus, it is necessary to have a comprehensive
understanding about these properties.

In the present study, the magnetic and the mechanical
properties of iron nitride that is experiencing elastic defor-
mation are predicted bymeans of the ab initiomethods. Elec-
tronic structure and thermal properties of the iron nitride
are also studied to have a comprehensive understanding of
the characteristics of 𝛾󸀠-Fe

4
N. This study is focused on the

changes in the magnetic and the mechanical properties of
iron nitride with a change in crystal size represented by lattice
constant. Therefore, the opportunity of development of a
nanoscale magnetic sensor for tensile or compressive strain
detection based onmeasurement of variation in themagnetic
properties of 𝛾󸀠-Fe

4
N due to deformation may be explored.

Meanwhile, electronic structure and thermal properties of
the iron nitride are also studied to develop a comprehensive
understanding of the characteristics of 𝛾󸀠-Fe

4
N and also

partly confirm the existing experimental results that were
presented in previous reports.

Structure of iron nitride (𝛾󸀠-Fe
4
N) is a simple cubic

crystal in the space group Pm3m, as shown in Figure 1. The
unit cell can be described as a variant of face center cubic
structure (FCC) composed of Fe and N atoms, with one
nitrogen atom at the unit center, one Fe atom (Fe-I) at corner
of cubic m3m site, and 3 Fe atoms (Fe-II) at a tetragonal 4/
mmm site. A more recent phase diagram of iron nitrides
extended to low temperatures was proposed by Du Marchie
van Voorthuysen et al. [8]. Depending on the nitrogen
content, different iron nitride phases with different structures
and properties can be observed. All iron nitrides are metallic
conductors which are metastable with respect to decomposi-
tion into Fe andN

2
. According to the phase diagramprovided

by authors, 𝛾󸀠-Fe
4
N phase is located in a narrow composition

range at around 20% atomic percent nitrogen. The phase
of 𝛾󸀠-Fe

4
N features remarkable magnetic properties, which

make it attractive as used in a multilayer structure designed
for magnetic and electronic devices.

2. Computational Methods

In condensed matter physics, the material property is pre-
dicted based on the information of interacting electrons
and atomic nuclei. They could be found by using suitable
computational tools in quantum mechanics. The idea of the
electron density methods was firstly presented by Hohenberg
and Kohn [9]. According to their study, the ground state
properties of the molecular system can be yielded without
calculating the complicated wave function. This method was
then called density functional theory (DFT) that results in
a major scientific breakthrough by solving the complexity
of material problems. The calculation of the properties is
based on the ab initio electronic structure method derived
from spin-polarized density functional theory and plane
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Figure 1: Unit cell structure of 𝛾󸀠-Fe
4
N.

wave pseudopotential method used by Baroni et al. [7]. Ultra-
soft pseudopotentials are used to describe the interactions
between electrons and core ions, as suggested by Li et al. [10]
and Soni et al. [11]. Pseudo atomic calculation is performed
for N-2s22p3 and Fe-3d64s2 electronic configurations. The
exchange-correlation potential is appliedwith the generalized
gradient approximation (GGA) based on the Perdew-Burke-
Ernzerhof (PBE) expression.Thegeometry optimizations and
property calculations are performed by Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method.

The computation is performed on the framework of a
commercial code, CASTEP [12]. The calculations are iterated
toward self-consistency with the atom convergence total
energy criterion of 0.5 × 10−6 eV/atom. The final set of
the cutoff energy is 330 eV with 8 × 8 × 8 𝑘-points in
Monkhorst-Pack grid [11]. Atomic relaxations continue until
the maximum stress and the force are less than 0.02GPa and
0.01 eV/Å, respectively.

Magnetism in the solid state involves a large variety
of phenomena that can be characterized by the magnetic
moment, which is the quantity of major concern here. For
a magnetic system, the magnetization density m(r) is a
property that can be obtained directly from spin-polarized
DFT as follows:

m (r) = −𝜇B∑
𝛼,𝛽

Ψ
∗

𝛼
(r) 𝜎
𝛼,𝛽
Ψ
𝛽
(r) , (1)

where Bohr magnetron 𝜇B is defined as

𝜇B =
𝑒ℏ

2𝑚
𝑒
𝑐

(2)

and 𝑒 is the elementary charge (1.602 × 10−19 C); ℏ is the
reduced Planck constant (1.055 × 10−34 J⋅s);𝑚

𝑒
is the electron

rest mass (9.1 × 10−31 kg); 𝑐 is the speed of light; and Pauli
matrices are denoted by

𝜎
𝑥
= (

0 1

1 0

) ;
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𝜎
𝑦
= (

0 −1

1 0

) ;

𝜎
𝑧
= (

1 0

0 −1

) .

(3)

The Kohn-Sham orbitals 𝜓
𝑖
(r) are related to the electron

density of𝑁 electrons by

𝜌 (𝑟) =

𝑁

∑

𝑖

∑

𝑆

󵄨
󵄨
󵄨
󵄨
𝜓
𝑖
(𝑟)
󵄨
󵄨
󵄨
󵄨

2

, 𝑖 = 1 to 𝑁. (4)

The 𝑁 orbitals 𝜓
𝑖
(r) are obtained by solving the Kohn-

Sham orbital equations in canonical form, as described by
Kronmüller and Parkin [13]. The spin magnetic moment is
the magnetic moment induced by the spin of elementary
particles, which is calculated by

𝑚spin =
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫m (r) 𝑑r
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫ [𝜌
↑
(r) − 𝜌

↓
(r)] 𝑑r
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, (5)

where 𝜌
↑
(r) and 𝜌

↓
(r) represent the spin-up and spin-down

electron density functions, respectively.
The magnetization density defined by (1) is a conse-

quence of the imbalance of electrons spin-up or spin-down;
therefore, the quantity defined in (5) is called spin magnetic
moment. According to electronic population analysis byMul-
liken [14], the spinmagneticmoment should be introduced to
each atom in the unit cell.

The energy changes due to deformation of the lattice
vectors have been studied when the elastic properties of
the crystal are analyzed. The deformation can occur under
influence of stresses exerted on the crystal. As discussed by
Gressmann et al. [15], by using Voigtian matrix formulation
of Hooke’s law, the strain tensors are characterized by matrix
of six components 𝜀

𝑖
as

𝜀 =
(
(

(

𝜀
1

𝜀
6

2

𝜀
5

2

𝜀
6

2

𝜀
2

𝜀
4

2

𝜀
5

2

𝜀
4

2

𝜀
3

)
)

)

. (6)

Lattice vectors a, b, and c at the equilibrium state will be
changed to a󸀠, b󸀠, and c󸀠, respectively, after deformation. For
cubic lattice,

R = (
a 0 0
0 b 0
0 0 c
),

R󸀠 = (
a󸀠 0 0
0 b󸀠 0
0 0 c󸀠

),

(7)

where matrix R󸀠 is expressed in terms of the deformed lattice
vectors a󸀠, b󸀠, and c󸀠. One then has

R󸀠 = R (1 + 𝜀) , (8)

where 1 is a unit matrix.
For the cubic crystal, the elastic constants matrix can be

written as

(
(
(
(
(

(

𝐶
11
𝐶
12
𝐶
12
0 0 0

𝐶
12
𝐶
11
𝐶
12
0 0 0

𝐶
12
𝐶
12
𝐶
11
0 0 0

0 0 0 𝐶
44
0 0

0 0 0 0 𝐶
44
0

0 0 0 0 0 𝐶
44

)
)
)
)
)

)

. (9)

In theory, the change in the elastic energy per unit cell
(𝐸 − 𝐸

0
) is related to the components of the strain tensor and

the elastic stiffness tensor by

𝐸 − 𝐸
0
=
1

2

𝑉
0

6

∑

1

𝐶
𝑖𝑗
𝜀
𝑖
𝜀
𝑗
. (10)

Because of symmetry of the cubic crystal 𝛾󸀠-Fe
4
N, only the

three independent elastic constants, 𝐶
11
, 𝐶
12
, and 𝐶

44
, exist.

The elastic constants can be calculated in terms of various
strain-energy states on the crystal:

(1) Imposing an isotropic state of strain with 𝜀
1
= 𝜀
2
=

𝜀
3
= 𝜀 and all other strains 𝜀

𝑖
= 0, the relationship

between 𝑉
0
and strain 𝜀 is described by

𝜀 =

(1/3) (𝑉 − 𝑉
0
)

𝑉
0

. (11)

Equation (10) becomes

𝐸 − 𝐸
0
=
3

2

𝑉
0
(𝐶
11
+ 2𝐶
12
) 𝜀
2
=
9

2

𝑉
0
𝐵𝜀
2

=

(1/2) 𝐵 (𝑉 − 𝑉
0
)

𝑉
0

(12)

which allows us to determine the sum of the elastic
constants (𝐶

11
+ 2𝐶
12
) based on the values of 𝑉

0
, 𝐸
0
,

and total energy data calculated for different𝑉 (or 𝜀).
Then, the bulk modulus 𝐵 can be determined by

𝐵 =
1

3

(𝐶
11
+ 2𝐶
12
) . (13)

(2) Imposing a uniaxial state of strain 𝜀
1
= 𝜀 and all other

strains 𝜀
𝑖
= 0, (10) then becomes

𝐸 − 𝐸
0
=
1

2

𝑉
0
𝐶
11
𝜀
2 (14)

which leads to determination of the elastic constant
𝐶
11
.
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(3) Imposing a shear strain 𝜀
4
= 𝜀 and all other strains

𝜀
𝑖
= 0, (10) then becomes

𝐸 − 𝐸
0
=
1

2

𝑉
0
𝐶
44
𝜀
2 (15)

which leads to determination of the elastic constant
𝐶
44
.

Based on the obtained elastic constants, 𝐶
11
, 𝐶
12
, and

𝐶
44
, the following mechanical properties can be further

determined as follows:

(1) Elastic compliances:

𝑆
11
=
𝐶
11
+ 𝐶
12

𝐶
2

11
+ 𝐶
11
𝐶
12
− 𝐶
2

12

, (16a)

𝑆
12
=

−𝐶
12

𝐶
2

11
+ 𝐶
11
𝐶
12
− 𝐶
2

12

, (16b)

𝑆
44
=
1

𝐶
44

. (16c)

(2) Elastic anisotropy:

𝐴 =
2𝐶
44

𝐶
11
− 𝐶
12

. (17)

(3) Young’s modulus:

𝐸 =
9𝐵𝐺

(𝐺 + 3𝐵)

. (18)

(4) Shear modulus:

𝐺 =
𝐶
11
− 𝐶
12
+ 3𝐶
44

5

. (19)

(5) Poisson’s ratio:

] =
3𝐵 − 2𝐺

2 (3𝐵 + 𝐺)

. (20)

The phonon-related thermodynamic properties such as
enthalpy (𝐻), entropy (𝑆), free energy (𝐹), and lattice heat
capacity (𝐶V) are computed in a quasiharmonic approxima-
tion:

(1) Enthalpy:

𝐻(𝑇) = 𝐸tot + 𝐸zp + ∫
ℏ𝜔

𝑒
ℏ𝜛/𝑘𝑇
− 1

𝐹 (𝜔) 𝑑𝜔, (21)

where 𝐸zp is the zero-point vibrational energy, 𝑘 is
Boltzmann’s constant, ℏ is reduced Planck’s constant,
and 𝐹(𝜔) is the phonon density of states. 𝐸zp can be
evaluated as

𝐸zp =
1

2

∫𝐹 (𝜔) ℏ𝜔𝑑𝜔. (22)
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Figure 2: Total and partial density of state at 𝑎 = 3.772 Å.

(2) Free energy:

𝐹 (𝑇) = 𝐸tot + 𝐸zp + 𝑘𝑇∫𝐹 (𝜔) ln (1 − 𝑒
−ℏ𝜛/𝑘𝑇
) 𝑑𝜔. (23)

(3) Entropy:

𝑆 (𝑇) = 𝑘 [∫
ℏ𝜔/𝑘𝑇

𝑒
ℏ𝜛/𝑘𝑇
− 1

𝐹 (𝜔) 𝑑𝜔

− ∫𝐹 (𝜔) ln (1 − 𝑒−ℏ𝜛/𝑘𝑇) 𝑑𝜔] .
(24)

(4) Lattice heat capacity:

𝐶
𝑉
(𝑇) = 𝑘∫

(ℏ𝜔/𝑘𝑇)
2
𝑒
ℏ𝜛/𝑘𝑇

𝑒
ℏ𝜛/𝑘𝑇
− 1

𝐹 (𝜔) 𝑑𝜔. (25)

3. Results and Discussion

3.1. Magnetic Properties and Electronic Structure. Previous
experimental information for lattice constant presented by
Li et al. [10] is used in the geometry optimization process to
get the relaxed structures. Numerical prediction of the lattice
constant of the iron nitride after optimization is found to be
3.772 Å, which is only slightly lower than the experimental
value 3.79 Å [10] by 0.5%.

Total density and partial density of state of iron nitride
are displayed in Figure 2. The number of spin-up (↑) elec-
trons exceeds that of spin-down (↓) electrons so that the
distribution of DOS is asymmetric and ferromagnetism of
the material is hence induced. The total DOS lies between
−9 eV and the Fermi level (𝐸

𝑓
). For the nitrogen atom, it

is between −9 and −5.2 eV and for Fe-I atom it is between
−5 eV and 𝐸

𝑓
. These results indicate a strong superposition
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Table 1: Partial density of state of 𝛾󸀠-Fe
4
N at 𝑎 = 3.772 Å.

Atom Present study Rebaza et al. [16]
Fe-I −5 eV to 𝐸

𝑓
−5 eV to 𝐸

𝑓

Fe-II −9 eV to 𝐸
𝑓

−8.5 eV to 𝐸
𝑓

N −9 eV to −5.5 eV −8.5 eV to −5.3 eV

6.000

5.351

4.702

4.052

3.403

2.754

2.105

1.456

8.065 × 10−1

1.573 × 10−1

Figure 3: Total electron density map on the tridiagonal plane with
Fe-I and N atoms at 𝑎 = 3.772 Å.

of electronic state of the nitrogen atom and Fe-II atom in
the range between −9 and −5.2 eV and explain the reason for
the difference between Fe-I and Fe-II magnetic moments in
terms of the Fe-N 3d-sp hybridization mentioned by Rebaza
et al. [16]. As shown in Table 1, the obtained results closely
agree with the theoretical data presented by Rebaza et al. [16].

Distribution of the total electron density on the tridi-
agonal plane in the unit cell is plotted in Figure 3. It is
found that the interaction between atoms N and Fe-I is
very weak. Meanwhile, both Fe-I atoms and Fe-II atoms
contribute electrons to the total electron density of crystal but
major contribution is from the Fe-I atoms. Similarly, Figure 4
conveys the difference of electron density from each atom.
As expected, nitrogen attracts electrons from neighboring
Fe atoms, and these electrons are incompletely screened and
affect the magnetic moment. The increment of electrons is
concentrated on the N atom.

Effective ionic valences listed in Table 2 are defined to
be the difference between the formal ionic charge and the
Mulliken charge. It is also used as a measure of ionic bond.
A positive value indicates an ideal ionic bond with increasing
levels of covalence on the anion species in the crystal. Table 2
shows the overlap populations for nearest neighbors in the
crystal. The positive and negative values indicate bonding
and antibonding states, respectively, and a value close to
zero indicates insignificant interaction between the electronic
populations of the two atoms. Furthermore, a high overlap
population indicates a high degree of covalence in the bond.
In fact, the bonding types include covalent, ionic, andmetallic
characters. It is found that the atoms at the cubic corners,
Fe-I, have a low net charge (−0.06 eV), whereas the Fe-I–
Fe-II bond has high overlap populations. This implies that

2.172 × 10−1

1.578 × 10−1

9.841 × 10−2

3.901 × 10−2

−2.038 × 10−2

−7.978 × 10−2

−1.392 × 10−1

−1.986 × 10−1

−2.580 × 10−1

−3.174 × 10−1

Figure 4: Electron density difference map of the tridiagonal plane
with Fe-I and N bonds at 𝑎 = 3.772 Å.
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the bonds apparently have metallic character. The numbers
of valence electrons of Fe are not integer, which means that
the cohesive bond is no longer purely metallic. A nonmetallic
component, ionic or covalent, has been added to it.

Dependence of the total energy on the lattice constant
is displayed in Figure 5. To investigate the sensitivity of the
total energy and the magnetic moment to lattice constant
with deformation, the quantities are calculated at different
lattice constants 𝑎 varied from 3.636 to 3.828 Å. As a result,
the total energy can be correlated to the lattice constant with
a quadratic-form relation (see Figure 5). In Figure 5, it is seen
that the total energy reaches its minimum at 𝑎 = 3.765 Å.
The quadratic-form relation reflects the total energy change
in response to a deformation of the material.

Figure 6 shows the dependence of the magnetic moment
of Fe-I and Fe-II atoms on lattice constant. It is noticed
that the effects of the lattice constant are remarkable on the
magnetic moment of Fe-II atoms. The magnetic moment
of Fe-II increases greatly with the lattice constant. In other
words, by measuring the variation in magnetic properties
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Table 2: Atomic Mulliken charges and overlap population of bonds in 𝛾󸀠-Fe
4
N at 𝑎 = 3.772 Å.

Atom Mulliken charge (|𝑒|) Effective valence (|𝑒|) Bond Overlap populations (|𝑒|) Bond length (Å)
N 5.75 −0.75 (N)–(Fe-II) 0.62 1.895
Fe-II 7.73 0.27 (Fe-II)–(Fe-II) −0.54 2.67993
Fe-I 8.06 −0.06 (Fe-I)–(Fe-II) 0.53 2.67993

Table 3: A comparison in magnetic moments of 𝛾󸀠-Fe
4
N between present numerical and previous experimental or theoretical data [16–19],

at 𝑎 = 3.772 Å.

Present study Previous experimental results [17] Previous theoretical results [16, 18, 19]
𝑚Fe-I (𝜇B) 2.98 3.0 [17] 2.84 [16], 3.09 [18], and 2.98 [19]
𝑚Fe-II (𝜇B) 2.3 2.0 [17] 2.27 [16], 2.11 [18], and 2.23 [19]
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Figure 6: Dependence of magnetic moment of Fe-I and Fe-II atoms
on lattice constant.

of the Fe-II atoms with the lattice constants, it is possible
to develop a nanoscale magnetic sensor for tensile or com-
pressive strain detection. However, the effects of the lattice
constant are relatively inappreciable on themagneticmoment
of Fe-I atoms. It is seen that the magnetic moment of Fe-I
atom is only slightly decreased as 𝑎 is increased from 3.636 to
3.828 Å. The increased distance between the magnetic atoms
due to deformation leads to electrons transferring from the
3d spin-down (↓) band to the 3d spin-up (↑) band. Note
that the variation of the magnetic moment may be attributed
to the effect of the hybridization of the interstitial N atoms
with the neighboring Fe atoms, which is a straightforward
consequence of the deformation.

A comparison in the magnetic moments of 𝛾󸀠-Fe
4
N

between the present predictions and some existing informa-
tion [16–19] is made to ensure accuracy of the numerical
simulation. The results are provided in Table 3. For the case

at 𝑎 = 3.772 Å shown in this table, the present numerical
predictions of the magnetic moments are 2.98 𝜇B and 2.3 𝜇B
for the Fe-I and Fe-II atoms, respectively.These values closely
agree with the existing information.

3.2. Mechanical Properties. The elastic properties of 𝛾󸀠-Fe
4
N

are evaluated at various strain magnitudes to ensure that
the computation results are independent of the magnitude
of strain to a certain extent. The obtained elastic constants
𝐶
11
, 𝐶
12
, and 𝐶

44
and the results of elastic properties are

given in Table 4. It is found that, at 𝑎 = 3.772 Å, Young’s
modulus (E) of 𝛾󸀠-Fe

4
N is 176.5 GPa, which is roughly 12–

17% lower than those of 𝛼-Fe (211 GPa) reported in [20]
and of 𝛾-Fe austenitic stainless steels (200GPa) reported in
[21]. It is interesting to note that 𝛾󸀠-Fe

4
N is more elastically

compliant than 𝛾-Fe austenitic stainless steels in spite of
their structural similarity. Since 𝛾󸀠-Fe

4
N is ferromagnetic

while 𝛾-Fe austenitic stainless steels are paramagnetic at
room temperature, the difference in magnetic configuration
between 𝛾󸀠-Fe

4
N and 𝛾-Fe austenitic stainless steels may

be responsible for the decrease in stiffness associated with
addition ofN atom to FCC 𝛾-Fe.Thedependence of the lattice
volume on the magnetization is known as the magneto-
volume effect. The volume expansion of 𝛾󸀠-Fe

4
N due to its

ferromagnetism may cause the reduction in elastic modulus,
compared to paramagnetic 𝛾-Fe austenitic stainless steels.

The shear modulus of 𝛾󸀠-Fe
4
N (𝐺) is also evaluated in

the present study. The shear modulus is of significance in
plastic deformation of materials since it is linked to the
strength and hardness of materials. For instance, the ideal
shear strength of material is assumed to be proportional to its
shearmodulus. In accordance with the numerical simulation,
the shear modulus of 𝛾󸀠-Fe

4
N is predicted to be 65.8GPa. On

the other hand, the shear modulus of 𝛾-Fe is 49GPa. This
implies that 𝛾󸀠-Fe

4
N is intrinsically at least 1.3 times stronger

than 𝛾-Fe regarding plastic deformation.
Figure 7 shows the dependence of the bulk modulus on

the lattice constant. It is seen that the bulk modulus of the
unit cell structure of 𝛾󸀠-Fe

4
N is rather sensitive to the lattice

constant. As the lattice constant is varied from 3.7 to 3.797 Å,
the bulk modulus is decreased from 320 to 164GPa. It means
that the mechanical properties of 𝛾󸀠-Fe

4
N could be greatly

altered while the bulk material suffers from a deformation.
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Table 4: Mechanical properties of 𝛾󸀠-Fe
4
N, at 𝑎 = 3.772 Å.

𝐶
11

(GPa)
𝐶
12

(GPa)
𝐶
44

(GPa)
𝑆
11

(10−3 GPa−1)
𝑆
12

(10−3 GPa−1)
𝑆
44

(10−3 GPa−1) 𝐴
𝐵

(GPa)
𝐸

(GPa)
𝐺

(GPa) ]
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Figure 7: Dependence of bulk modulus on lattice constant.

3.3. Thermodynamic Properties. The temperature-dependent
thermodynamic properties, enthalpy 𝐻(𝑇), entropy 𝑆(𝑇),
free energy 𝐹(𝑇), and heat capacity 𝐶V(𝑇), are plotted in
Figure 8. Since the Helmholtz free energy is defined by
𝐹 = 𝐻 − 𝑇𝑆, the property entropy is presented in the
form of 𝑇 × 𝑆 product to allow comparison among the
quantities 𝐹, 𝐻, and 𝑇𝑆 in the same dimension eV. It is
observed in Figure 8(a) that, at a temperature lower than
100K, magnitudes of enthalpy, entropy, and free energy are
all nearly zero. However, as the temperature is above 100K, a
further increased temperature leads to a significant increase
in both𝐻 and 𝑇𝑆 but a decrease in free energy 𝐹.

Variation of the heat capacity 𝐶V with temperature is
illustrated in Figure 8(b). It is found that the heat capacity
increases dramatically with temperature. Below a critical
temperature of around 700K, 𝐶V increases very rapidly with
temperature. As the temperature is higher than the critical
temperature, 𝐶V increases gradually and approaches the
Dulong and Petit limit yielded by harmonic approximation
of the Debye model.

4. Concluding Remarks

The present study is concerned with magnetic and mechan-
ical properties of iron nitride (𝛾󸀠-Fe

4
N) with elastic defor-

mation. The investigation is focused on the variation of
the magnetic and the mechanical properties of iron nitride
with a change in crystal size represented by lattice constant.
The computation is based on ab initio electronic structure
analysis and derived by spin-polarized density functional
theory (DFT).

According to the numerical predictions, the following
conclusions can be made:

(1) The present numerical results have been compared
with the existing information extensively. For exam-
ple, the obtained results agree closely with the existing
data for the lattice constant presented by Li et al. [10],
for the partial density data presented by Rebaza et al.
[16] and for the magnetic moments data presented in
[16–19]. The accuracy of the present predictions can
be ensured.

(2) At 𝑎 = 3.772 Å, the magnetic moment is found
to be 2.98 𝜇B and 2.3 𝜇B for Fe-I and Fe-II atoms,
respectively. When the lattice constant is increased
with deformation,magneticmoment of Fe-II atoms is
appreciably elevated, while that of Fe-I atoms is only
slightly decreased as 𝑎 is varied between 3.636 and
3.828 Å. In other words, by measuring the variation
in magnetic properties of the Fe-II atoms with the
lattice constants, it is possible to develop a nanoscale
magnetic sensor for tensile or compressive strain
deformation.

(3) It is noticed that the bulk modulus of the unit cell
structure of 𝛾󸀠-Fe

4
N is rather sensitive to the lattice

constant. As the lattice constant is varied from 3.7
to 3.797 Å, the bulk modulus is decreased from 320
to 164GPa. It means that the mechanical properties
of 𝛾󸀠-Fe

4
N could be greatly altered while the bulk

material suffers from a deformation.
(4) In addition, the thermodynamic properties of 𝛾󸀠-

Fe
4
N, including entropy, enthalpy, free energy, and

heat capacity, are calculated. For entropy, enthalpy,
and free energy, temperature of 100K appears to
be a critical temperature. At a temperature lower
than 100K, magnitudes of enthalpy, entropy, and
free energy are all nearly fixed at zero. However, as
the temperature is above 100K, a further increased
temperature leads to a significant increase in both
𝐻 and 𝑆 but a decrease in free energy. On the
other hand, a monotonic increase in heat capacity 𝐶V
with temperature is observed. It is found that as the
temperature is over 700K, the value of heat capacity
gradually approaches the Dulong and Petit limit.

Nomenclature

𝑎: Lattice constant, Å
a, b, and c: Lattice vectors before deformation
a󸀠, b󸀠, and c󸀠: Lattice vectors after deformation
𝐴: Elastic anisotropy
𝐵: Bulk modulus, GPa
𝑐: Speed of light, m/s
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Figure 8: Temperature dependence of thermodynamic properties at 𝑎 = 3.772 Å.

𝐶: Elastic constant, GPa
𝐶V(𝑇): Heat capacity, cal/(cell⋅K)
𝑒: Elementary charge, 1.602 × 10−19 C
𝐸: Young’s modulus, GPa
𝐸
𝑓
: Fermi level energy, eV
𝐹(𝑇): Free energy, eV
G: Shear modulus, GPa
ℏ: Reduced Planck constant, 1.055 × 10−34 J⋅s
𝐻: Enthalpy, kJ/kg
𝑚: Magnetic moment, 𝜇B
𝑚
𝑒
: Electron rest mass, 9.1 × 10−31 kg
𝑚spin: Spin magnetic moment, 𝜇B
m(r): Magnetization density
𝑁: Number of electrons
r: Electron position vector, Å
R: Lattice vector matrix before deformation
R󸀠: Lattice vector matrix after deformation
𝑆: Elastic compliance, 10−3 GPa−1
𝑆(𝑇): Entropy, kJ/(kg⋅K)
𝑇: Temperature, K
]: Poisson’s ratio.

Greek Symbols

𝜀: Strain component
𝜀: Strain vector
𝜇B: Bohr magnetron
𝜌: Electron density
𝜎: Pauli matrix
]: Poison’s ratio
𝜓: Kohn-Sham orbital function.
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magnetic and electronic properties of the Fe

4
N with pressure,”

Physica B: Condensed Matter, vol. 404, no. 18, pp. 2872–2875,
2009.

[17] B. C. Frazer, “Magnetic structure of Fe
4
N,” Physical Review, vol.

112, no. 3, pp. 751–754, 1958.
[18] C. A. Kuhnen, R. S. de Figueiredo, V. Drago, and E. Z. de
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