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This work is devoted to the study of a general class of anisotropic problems involving 𝑝⃗(⋅)-Laplace operator. Based on the variational
method, we establish the existence of a nontrivial solution without Ambrosetti-Rabinowitz type conditions.

1. Introduction

The elliptic problems in anisotropic form concerning the
Sobolev space with variable exponents have recently attracted
the attention of many mathematicians; see [1–13] and the
references therein. Such equations arise in connection with
the equations describing electromagnetic fields and the
plasma physics; see [14, 15] and various applications like
those in thermorheological fluids [16], elastic mechanics [17],
and image restoration [18]. They also appear in biology;
see, for instance, Bendahmane et al. in [19], as a model
for the propagation of epidemic diseases in heterogeneous
domains.

In the present paper, we study the anisotropic nonlinear
elliptic problem of the form

−

𝑁

∑

𝑖=1

𝜕
𝑥𝑖
𝑎
𝑖
(𝑥, 𝜕
𝑥𝑖
𝑢) + |𝑢|

𝑝𝑀(𝑥)−2
𝑢 = 𝑓 (𝑥, 𝑢) ,

for 𝑥 ∈ Ω,

𝑁

∑

𝑖=1

𝑎
𝑖
(𝑥, 𝜕
𝑥𝑖
𝑢) ]
𝑖
= 0 for 𝑥 ∈ 𝜕Ω,

(1)

where Ω ⊂ R𝑁 (𝑁 ≥ 2) is a bounded open set with smooth
boundary and ]

𝑖
are the components of the outer normal

unit vector and for 𝑖 ∈ {1, . . . , 𝑁}, for all 𝑥 ∈ Ω, 𝑝
𝑀

=

max{𝑝
1
(𝑥), . . . , 𝑝

𝑁
(𝑥)}, where the exponents 𝑝

𝑖
: Ω → R

are continuous functions such that inf
𝑥∈Ω

𝑝
𝑖
(𝑥) > 1.

We assume that the functions 𝑓 and 𝑎
𝑖
: Ω × R𝑁 → R

are Carathéodory and satisfying the following conditions for
all 𝑖 ∈ {1, 2, . . . , 𝑁}.

(A1) There exists a positive constant 𝑐
𝑖
such that 𝑎

𝑖
fulfills

󵄨

󵄨

󵄨

󵄨

𝑎
𝑖 (
𝑥, 𝜉)

󵄨

󵄨

󵄨

󵄨

≤ 𝑐
𝑖
(𝑏
𝑖 (
𝑥) +

󵄨

󵄨

󵄨

󵄨

𝜉

󵄨

󵄨

󵄨

󵄨

𝑝𝑖(𝑥)−1
) , (2)

for all𝑥 ∈ Ω and all 𝜉 ∈ R𝑁, where 𝑏
𝑖
∈ 𝐿

𝑝
󸀠

𝑖
(⋅)
(Ω) (with

1/𝑝
𝑖
(𝑥) + 1/𝑝

󸀠

𝑖
(𝑥) = 1) is a nonnegative function and

𝐴
𝑖
: Ω × R𝑁 → R is the mapping which verifies

𝐴
𝑖 (
𝑥, 𝜉) = ∫

𝜉𝑖

0

𝑎
𝑖
(𝑥, 𝜉
1
, . . . , 𝜉

𝑖−1
, 𝑠, 𝜉
𝑖+1

, . . . , 𝜉
𝑁
) 𝑑𝑠.

(3)

(A2) There exists 𝑑
𝑖
> 0 such that

𝑑
𝑖

󵄨

󵄨

󵄨

󵄨

𝜉

󵄨

󵄨

󵄨

󵄨

𝑝𝑖(𝑥)
≤ 𝑝
𝑖 (
𝑥) 𝐴 𝑖 (

𝑥, 𝜉)
(4)

for all 𝑥 ∈ Ω and all 𝜉 ∈ R.
(A3) Themonotonicity condition

[𝑎
𝑖 (
𝑥, 𝑠) − 𝑎

𝑖 (
𝑥, 𝑡)] (𝑠 − 𝑡) > 0 (5)

takes place for all 𝑥 ∈ Ω and all 𝑠, 𝑡 ∈ R with 𝑠 ̸= 𝑡.

Example 1. We take

𝑎
𝑖 (
𝑥, 𝑠) = |𝑠|

𝑝𝑖(𝑥)−2
𝑠, ∀𝑖 ∈ {1, . . . , 𝑁} , (6)
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and then the operator

𝑁

∑

𝑖=1

𝜕
𝑥𝑖
𝑎
𝑖
(𝑥, 𝜕
𝑥𝑖
𝑢) (7)

becomes in particular 𝑝⃗(⋅)-Laplace operator

Δ
𝑝⃗(𝑥) (

𝑢) =

𝑁

∑

𝑖=1

𝜕
𝑥𝑖

(

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕
𝑥𝑖
𝑢

󵄨

󵄨

󵄨

󵄨

󵄨

𝑝𝑖(𝑥)−2

𝜕
𝑥𝑖
𝑢) . (8)

This is why operators (7) are often known as generalized 𝑝⃗(⋅)-
Laplace type operators.

On the other hand, the anisotropic equations with the
variable exponent growth conditions enable the study of
equations with more complicated nonlinearities since the
differential operator Δ

𝑝⃗(𝑥)
(𝑢) allows a distinct behavior for

partial derivatives in various directions.
This paper is organized as follows. In Section 2, we give

the necessary notations; we also include some useful results
involving the variable exponent Sobolev spaces in order to
facilitate the reading of the paper. Finally, in Section 3, we
prove the existence of nontrivial solution.

2. Preliminaries and Main Result

We introduce the setting of our problem with some auxiliary
results. For convenience, we only recall some basic facts
which will be used later; we refer to [20, 21].

For 𝑟 ∈ 𝐶
+
(Ω), we introduce the Lebesgue space with

variable exponent defined by

𝐿

𝑟(⋅)
(Ω) = {𝑢 :

𝑢 is a measurable real-valued function,

∫

Ω

|𝑢 (𝑥)|

𝑟(𝑥)
𝑑𝑥 < ∞} ,

(9)

where

𝐶
+
(Ω) = {𝑟 ∈ 𝐶 (Ω;R) : inf

𝑥∈Ω

𝑟 (𝑥) > 1} . (10)

This space, endowed with the Luxemburg norm,

‖𝑢‖
𝐿
𝑟(⋅)
(Ω)

= inf {𝜇 > 0 : ∫

Ω

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢 (𝑥)

𝜇

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑟(𝑥)

𝑑𝑥 ≤ 1} , (11)

is a separable and reflexive Banach space. We also have an
embedding result.

Proposition 2. Assume thatΩ is bounded and 𝑟
1
, 𝑟
2
∈ 𝐶
+
(Ω)

such that 𝑟
1

≤ 𝑟
2
in Ω. Then, the embedding 𝐿

𝑟2(⋅)
(Ω) 󳨅→

𝐿

𝑟1(⋅)
(Ω) is continuous.

Furthermore, the Hölder-type inequality
󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

Ω

𝑢 (𝑥) V (𝑥) 𝑑𝑥

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 2 ‖𝑢‖
𝐿
𝑟(⋅)
(Ω)

‖V‖
𝐿
𝑟
󸀠
(⋅)
(Ω)

(12)

holds for all 𝑢 ∈ 𝐿

𝑟(⋅)
(Ω) and V ∈ 𝐿

𝑟
󸀠
(⋅)
(Ω), where 𝐿

𝑟
󸀠
(⋅)
(Ω) is

the conjugate space of 𝐿𝑟(⋅)(Ω), with 1/𝑟(𝑥) + 1/𝑟

󸀠
(𝑥) = 1.

Moreover, we denote

𝑟

+
= sup
𝑥∈Ω

𝑟 (𝑥) ,

𝑟

−
= inf
𝑥∈Ω

𝑟 (𝑥)

(13)

and, for 𝑢 ∈ 𝐿

𝑟(⋅)
(Ω), we have the following properties:

‖𝑢‖
𝐿
𝑟(⋅)
(Ω)

< 1 (= 1; > 1) ⇐⇒

∫

Ω

|𝑢 (𝑥)|

𝑟(𝑥)
𝑑𝑥 < 1 (= 1; > 1) ;

(14)

‖𝑢‖
𝐿
𝑟(⋅)
(Ω)

> 1 󳨐⇒

‖𝑢‖

𝑟
−

𝐿
𝑟(⋅)
(Ω)

≤ ∫

Ω

|𝑢 (𝑥)|

𝑟(𝑥)
𝑑𝑥 ≤ ‖𝑢‖

𝑟
+

𝐿
𝑟(⋅)
(Ω)

;

(15)

‖𝑢‖
𝐿
𝑟(⋅)
(Ω)

< 1 󳨐⇒

‖𝑢‖

𝑟
+

𝐿
𝑟(⋅)
(Ω)

≤ ∫

Ω

|𝑢 (𝑥)|

𝑟(𝑥)
𝑑𝑥 ≤ ‖𝑢‖

𝑟
−

𝐿
𝑟(⋅)
(Ω)

;

(16)

‖𝑢‖
𝐿
𝑟(⋅)
(Ω)

󳨀→ 0 (󳨀→ ∞) ⇐⇒

∫

Ω

|𝑢 (𝑥)|

𝑟(𝑥)
𝑑𝑥 󳨀→ 0 (󳨀→ ∞) .

(17)

To recall the definition of the isotropic Sobolev space with
variable exponent, 𝑊1,𝑟(⋅)(Ω), we set

𝑊

1,𝑟(⋅)
(Ω)

= {𝑢 ∈ 𝐿

𝑟(⋅)
(Ω) : 𝜕

𝑥𝑖
𝑢 ∈ 𝐿

𝑟(⋅)
(Ω) , ∀𝑖 ∈ {1, . . . , 𝑁}} ,

(18)

endowed with the norm

‖𝑢‖
𝑊
1,𝑟(⋅)
(Ω)

= ‖𝑢‖
𝐿
𝑟(⋅)
(Ω)

+

𝑁

∑

𝑖=1

󵄩

󵄩

󵄩

󵄩

󵄩

𝜕
𝑥𝑖
𝑢

󵄩

󵄩

󵄩

󵄩

󵄩𝐿
𝑟(⋅)
(Ω)

. (19)

The space (𝑊

1,𝑟(⋅)
(Ω), ‖ ⋅ ‖

𝑊
1,𝑟(⋅)
(Ω)

) is a separable and reflexive
Banach space.

Now, we consider 𝑝⃗ : Ω → R𝑁 to be the vectorial
function

𝑝⃗ (𝑥) = (𝑝
1 (

𝑥) , . . . , 𝑝𝑁 (𝑥)) (20)

with 𝑝
𝑖
∈ 𝐶
+
(Ω) for all 𝑖 ∈ {1, . . . , 𝑁} and we put

𝑝
𝑀 (𝑥) = max {𝑝

1 (
𝑥) , . . . , 𝑝𝑁 (𝑥)} ,

𝑝
𝑚 (𝑥) = min {𝑝

1 (
𝑥) , . . . , 𝑝𝑁 (𝑥)} .

(21)

The anisotropic space with variable exponent is

𝑋 = 𝑊

1,𝑝⃗(⋅)
(Ω) = {𝑢 ∈ 𝐿

𝑝𝑀(⋅)
(Ω) : 𝜕

𝑥𝑖
𝑢

∈ 𝐿

𝑝𝑖(⋅)
(Ω) , ∀𝑖 ∈ {1, . . . , 𝑁}}

(22)
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and it is endowed with the norm

‖𝑢‖ = ‖𝑢‖
𝑊
1,𝑝⃗(⋅)
(Ω)

= ‖𝑢‖
𝐿
𝑝𝑀(⋅)(Ω)

+

𝑁

∑

𝑖=1

󵄩

󵄩

󵄩

󵄩

󵄩

𝜕
𝑥𝑖
𝑢

󵄩

󵄩

󵄩

󵄩

󵄩𝐿
𝑝𝑖(⋅)(Ω)

. (23)

The space (𝑊

1,𝑝⃗(⋅)
(Ω), ‖ ⋅ ‖

𝑊
1,𝑝⃗(⋅)
(Ω)

) is a reflexive Banach
space. Furthermore, an embedding theorem takes place for
all the exponents that are strictly less than a variable critical
exponent, which is introduced with the help of the notations

𝑝 (𝑥) =

𝑁

∑

𝑁

𝑖=1
1/𝑝
𝑖 (
𝑥)

,

𝑟

⋆
(𝑥) =

{

{

{

𝑁𝑟 (𝑥)

[𝑁 − 𝑟 (𝑥)]

, if 𝑟 (𝑥) < 𝑁,

∞, if 𝑟 (𝑥) ≥ 𝑁.

(24)

Proposition 3. Let Ω ⊂ R𝑁 be a bounded open set for all
𝑖 = 1, 2, . . . , 𝑁 and 𝑝

𝑖
∈ 𝐶
+
(Ω) for all 𝑖 ∈ {1, . . . , 𝑁}.

If 𝑞 ∈ 𝐶(Ω;R), 1 ≤ 𝑞(𝑥) < max{𝑝∗(𝑥), 𝑝
𝑀
(𝑥)} for all

𝑥 ∈ Ω, then one has the compact and continuous embedding
𝑊

1,𝑝⃗(⋅)
(Ω) 󳨅→ 𝐿

𝑞(⋅)
(Ω).

Remark 4. Wemake the following notations:

F
1
= {𝑖 ∈ {1, . . . , 𝑁} :

󵄩

󵄩

󵄩

󵄩

󵄩

𝜕
𝑥𝑖
𝑢
𝑛

󵄩

󵄩

󵄩

󵄩

󵄩𝐿
𝑝𝑖(⋅)(Ω)

≤ 1} ,

F
2
= {𝑖 ∈ {1, . . . , 𝑁} :

󵄩

󵄩

󵄩

󵄩

󵄩

𝜕
𝑥𝑖
𝑢
𝑛

󵄩

󵄩

󵄩

󵄩

󵄩𝐿
𝑝𝑖(⋅)(Ω)

> 1} .

(25)

Then, by (14), (15), and (16),

𝑁

∑

𝑖=1

∫

Ω

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕
𝑥𝑖
𝑢
𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

𝑝𝑖(𝑥)

𝑑𝑥 = ∑

𝑖∈F1

∫

Ω

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕
𝑥𝑖
𝑢
𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

𝑝𝑖(𝑥)

𝑑𝑥

+ ∑

𝑖∈F2

∫

Ω

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕
𝑥𝑖
𝑢
𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

𝑝𝑖(𝑥)

𝑑𝑥

≥ ∑

𝑖∈F1

󵄩

󵄩

󵄩

󵄩

󵄩

𝜕
𝑥𝑖
𝑢
𝑛

󵄩

󵄩

󵄩

󵄩

󵄩

𝑝
+

𝑀

𝐿
𝑝𝑖(⋅)

+ ∑

𝑖∈F2

󵄩

󵄩

󵄩

󵄩

󵄩

𝜕
𝑥𝑖
𝑢
𝑛

󵄩

󵄩

󵄩

󵄩

󵄩

𝑝
−

𝑚

𝐿
𝑝𝑖(⋅)

≥

𝑁

∑

𝑖=1

󵄩

󵄩

󵄩

󵄩

󵄩

𝜕
𝑥𝑖
𝑢
𝑛

󵄩

󵄩

󵄩

󵄩

󵄩

𝑝
−

𝑚

𝐿
𝑝𝑖(⋅)

− ∑

𝑖∈F1

󵄩

󵄩

󵄩

󵄩

󵄩

𝜕
𝑥𝑖
𝑢
𝑛

󵄩

󵄩

󵄩

󵄩

󵄩

𝑝
−

𝑚

𝐿
𝑝𝑖(⋅)

.

(26)

Thus,

𝑁

∑

𝑖=1

∫

Ω

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕
𝑥𝑖
𝑢
𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

𝑝𝑖(𝑥)

𝑑𝑥 ≥

𝑁

∑

𝑖=1

󵄩

󵄩

󵄩

󵄩

󵄩

𝜕
𝑥𝑖
𝑢
𝑛

󵄩

󵄩

󵄩

󵄩

󵄩

𝑝
−

𝑚

𝐿
𝑝𝑖(⋅)

− 𝑁. (27)

Definition 5. One defines the weak solution for problem (1)
as a function 𝑢 ∈ 𝑋 satisfying

∫

Ω

𝑁

∑

𝑖=1

𝑎
𝑖
(𝑥, 𝜕
𝑥𝑖
𝑢) 𝜕
𝑥𝑖
V 𝑑𝑥 + ∫

Ω

|𝑢|

𝑝𝑀(𝑥)−2
𝑢V 𝑑𝑥

− ∫

Ω

𝑓 (𝑥, 𝑢) V 𝑑𝑥 = 0,

(28)

for all V ∈ 𝑋.

We suppose the following hypotheses.

(F1) There exist 𝐶 > 0 and 𝑞 ∈ 𝐶
+
(Ω) with 𝑝

+

𝑀
< 𝑞

−
≤

𝑞

+
< 𝑝

∗
(𝑥) for all 𝑥 ∈ Ω, such that 𝑓 verifies
󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥, 𝑠)

󵄨

󵄨

󵄨

󵄨

≤ 𝐶 (1 + |𝑠|

𝑞(𝑥)−1
) (29)

for all 𝑥 ∈ Ω and all 𝑠 ∈ R.
(F2) lim

|𝑡|→∞
(𝑓(𝑥, 𝑡)𝑡/|𝑡|

𝑝
+

𝑀
) = ∞ uniformly for 𝑥 ∈ Ω.

(F3) 𝑓(𝑥, 𝑠) = 𝑂(|𝑠|

𝑝
+

𝑀
−1

) uniformly for 𝑥 ∈ Ω.
(F4) There exist two positive constants 𝛼 and 𝛽 such that

𝜓
1 (

𝑥, 𝑡) ≤ 𝛼𝜓
1 (

𝑥, 𝑠) ≤ 𝛽𝜓
2 (

𝑥, 𝑠) , ∀0 ≤ 𝑡 ≤ 𝑠, (30)

where

𝜓
1 (

𝑥, 𝑡) = 𝑓 (𝑥, 𝑡) 𝑡 − 𝑝

−

𝑚
𝐹 (𝑥, 𝑡) ,

𝜓
2 (

𝑥, 𝑡) = 𝑓 (𝑥, 𝑡) 𝑡 − 𝑝

+

𝑀
𝐹 (𝑥, 𝑡) ,

(31)

with 𝐹(𝑥, 𝑡) = ∫

𝑡

0
𝑓(𝑥, 𝑠)𝑑𝑠.

(A4) 𝑝

+

𝑀
𝐴
𝑖
(𝑥, 𝜉) ≥ 𝑎

𝑖
(𝑥, 𝜉)𝜉 ≥ 𝑝

−

𝑚
𝐴
𝑖
(𝑥, 𝜉) ≥ 0 for all 𝑥 ∈ Ω

and all 𝜉 ∈ R.

The function 𝑓(𝑥, 𝑡) = |𝑡|

𝑞(𝑥)−2
𝑡, where 𝑝

+

𝑀
< 𝑞

−
≤ 𝑞

+
<

𝑝 ∗ (𝑥) is an example of functions verifying the assumptions
(F1)–(F4). In fact, we have

𝐹 (𝑥, 𝑡) =

|𝑡|

𝑞(𝑥)

𝑞 (𝑥)

,

𝑓 (𝑥, 𝑡) 𝑡 = |𝑡|

𝑞(𝑥)
,

(32)

and then we get

𝜓
1 (

𝑥, 𝑡) = (1 −

𝑝

−

𝑚

𝑞 (𝑥)

) |𝑡|

𝑞(𝑥)
,

𝜓
2 (

𝑥, 𝑡) = (1 −

𝑝

+

𝑀

𝑞 (𝑥)

) |𝑡|

𝑞(𝑥)
,

(33)

whichmeans that (F4) is satisfied sincewehave𝜓
1
(𝑥, 𝑡)which

is nondecreasing in 𝑡 ≥ 0 and then 𝜓
1
(𝑥, 𝑡) ≤ 𝜓

1
(𝑥, 𝑠) when

0 ≤ 𝑡 ≤ 𝑠, so we take 𝛼 = 1. Taking into account that 𝜓
1
, 𝜓
2
≥

0, it follows that

𝜓
1 (

𝑥, 𝑡)

𝜓
2 (

𝑥, 𝑡)

≤

𝑞

+
− 𝑝

−

𝑚

𝑞

−
− 𝑝

+

𝑀

= 𝛽. (34)

Obviously the other assumptions are held.
We report our main result.
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Theorem6. Under conditions (A1)–(A4) and (F1)–(F4), prob-
lem (1) has at least a nontrivial weak solution.

The purpose of this work is to improve the results of the
above-mentioned papers andmany others, without assuming
the Ambrosetti-Rabinowitz type conditions (A-R) used, for
instance, in [1–3, 10], where in (A-R) there exist 𝜃 > 𝑝

+

𝑀
,𝐴 > 0

such that for any 𝑥 ∈ Ω and 𝑡 ≥ 𝐴 we have

0 ≤ 𝜃𝐹 (𝑥, 𝑡) ≤ 𝑓 (𝑥, 𝑡) 𝑡. (35)

In fact, it is known that (F4) is much weaker than the (A-
R) condition in the constant exponent case (see, for instance,
[22]). We will use the mountain pass theorem with Cerami
condition which is weaker than (PS) condition used, for
example, in [4, 6].

The energy functional corresponding to (1) is defined as
𝜙 : 𝑋 → R,

𝜙 (𝑢) = ∫

Ω

𝑁

∑

𝑖=1

𝐴
𝑖
(𝑥, 𝜕
𝑥𝑖
𝑢) 𝑑𝑥 + ∫

Ω

1

𝑝
𝑀 (𝑥)

|𝑢|

𝑝𝑀(𝑥)
𝑑𝑥

− ∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥.

(36)

By a standard argument, we can see that the functional 𝜙 is
well defined and of class𝐶1, with its Gâteaux derivative being
described by

⟨𝜙

󸀠
(𝑢) , V⟩ = ∫

Ω

𝑁

∑

𝑖=1

𝑎
𝑖
(𝑥, 𝜕
𝑥𝑖
𝑢) 𝜕
𝑥𝑖
V 𝑑𝑥

+ ∫

Ω

|𝑢|

𝑝𝑀(𝑥)−2
𝑢V 𝑑𝑥

− ∫

Ω

𝑓 (𝑥, 𝑢) V 𝑑𝑥,

(37)

for all 𝑢, V ∈ 𝑋.
Putting

𝐼 (𝑢) = ∫

Ω

𝑁

∑

𝑖=1

𝐴
𝑖
(𝑥, 𝜕
𝑥𝑖
𝑢) 𝑑𝑥

+ ∫

Ω

1

𝑝
𝑀 (𝑥)

|𝑢|

𝑝𝑀(𝑥)
𝑑𝑥,

𝐽 (𝑢) = −∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥.

(38)

Proposition 7. (i) By (A3), the functional 𝐼󸀠 is of (𝑆
+
) type;

that is, if 𝑢
𝑛

⇀ 𝑢 and lim sup
𝑛→∞

⟨𝐼

󸀠
(𝑢
𝑛
) − 𝐼

󸀠
(𝑢), 𝑢
𝑛
− 𝑢⟩,

then 𝑢
𝑛

→ 𝑢 in 𝑋.
(ii) From (F1), the functional 𝐽󸀠 is weakly strongly continu-

ous; that is, 𝑢
𝑛
⇀ 𝑢 ⇒ 𝐽

󸀠
(𝑢
𝑛
) → 𝐽

󸀠
(𝑢).

The proof of the first assertion (i) is similar to that in [2].
The second assertion is well known.

3. Proof of the Main Result

We will use the mountain pass theorem (see [23–25]), so we
start by the condition of geometry in the formof the following
lemma.

Lemma8. (a)There exists V ∈ 𝑋with V > 0 such that𝜙(𝑡V) →

−∞ as 𝑡 → ∞.
(b) There exist 𝑟, 𝜎 > 0 such that 𝜙(𝑢) ≥ 𝜎 for ‖𝑢‖ = 𝑟.

Proof. (a) From (F2), we may choose a constant 𝐾 > 0 such
that

𝐹 (𝑥, 𝑠) > 𝐾 |𝑠|

𝑝
+

𝑀 uniformly in 𝑥 ∈ Ω, |𝑠| > 𝐶
𝐾
.

(39)

Let 𝑡 > 1 large enough and V ∈ 𝑋 with V > 0, and from
(A1) and (39) we get

𝜙 (𝑡V) = ∫

Ω

𝑁

∑

𝑖=1

𝐴
𝑖
(𝑥, 𝜕
𝑥𝑖
𝑡V) 𝑑𝑥

+ ∫

Ω

1

𝑝
𝑀 (𝑥)

|𝑡V|𝑝𝑀(𝑥) 𝑑𝑥 − ∫

Ω

𝐹 (𝑥, 𝑡V) 𝑑𝑥

≤ 𝑡

𝑁

∑

𝑖=1

∫

Ω

𝑐
𝑖

󵄨

󵄨

󵄨

󵄨

𝑏
𝑖 (
𝑥)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕
𝑥𝑖
V
󵄨

󵄨

󵄨

󵄨

󵄨

𝑑𝑥

+ 𝑡

𝑝
+

𝑀

𝑁

∑

𝑖=1

∫

Ω

𝑐
𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕
𝑥𝑖
V
󵄨

󵄨

󵄨

󵄨

󵄨

𝑝𝑖(𝑥)

𝑝
𝑖 (
𝑥)

𝑑𝑥

+ 𝑡

𝑝
+

𝑀
∫

Ω

1

𝑝
𝑀 (𝑥)

|V|𝑝𝑀(𝑥) 𝑑𝑥

− ∫

Ω

𝐹 (𝑥, 𝑡V) 𝑑𝑥

≤ max
1≤𝑖≤𝑁

𝑐
𝑖
2𝑡

𝑁

∑

𝑖=1

󵄩

󵄩

󵄩

󵄩

𝑏
𝑖

󵄩

󵄩

󵄩

󵄩𝐿
𝑝
󸀠

𝑖
(⋅)
(Ω)

󵄩

󵄩

󵄩

󵄩

󵄩

𝜕
𝑥𝑖
V
󵄩

󵄩

󵄩

󵄩

󵄩𝐿
𝑝𝑖(⋅)(Ω)

+ 𝑡

𝑝
+

𝑀max
1≤𝑖≤𝑁

𝑐
𝑖

1

𝑝

−

𝑚

𝑁

∑

𝑖=1

∫

Ω

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕
𝑥𝑖
V
󵄨

󵄨

󵄨

󵄨

󵄨

𝑝𝑖(𝑥)

𝑑𝑥

+ 𝑡

𝑝
+

𝑀
1

𝑝

−

𝑀

∫

Ω

|V|𝑝𝑀(𝑥) 𝑑𝑥

− ∫

|𝑡V|>𝐶𝐾
𝐹 (𝑥, 𝑡V) 𝑑𝑥 − ∫

|𝑡V|≤𝐶𝐾
𝐹 (𝑥, 𝑡V) 𝑑𝑥

≤ 2𝑡max
1≤𝑖≤𝑁

𝑐
𝑖

𝑁

∑

𝑖=1

󵄩

󵄩

󵄩

󵄩

𝑏
𝑖

󵄩

󵄩

󵄩

󵄩𝐿
𝑝
󸀠

𝑖
(⋅)
(Ω)

󵄩

󵄩

󵄩

󵄩

󵄩

𝜕
𝑥𝑖
V
󵄩

󵄩

󵄩

󵄩

󵄩𝐿
𝑝𝑖(⋅)(Ω)

+ 𝑡

𝑝
+

𝑀

max
1≤𝑖≤𝑁

𝑐
𝑖

𝑝

−

𝑚

𝑁

∑

𝑖=1

∫

Ω

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕
𝑥𝑖
V
󵄨

󵄨

󵄨

󵄨

󵄨

𝑝𝑖(𝑥)

𝑑𝑥

+ 𝑡

𝑝
+

𝑀
1

𝑝

−

𝑀

∫

Ω

|V|𝑝𝑀(𝑥) 𝑑𝑥 − 𝐾𝑡

𝑝
+

𝑀
∫

Ω

|V|𝑝
+

𝑀
𝑑𝑥

− ∫

|𝑡V|≤𝐶𝐾
𝐹 (𝑥, 𝑡V) 𝑑𝑥
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≤ 2𝑡max
1≤𝑖≤𝑁

𝑐
𝑖

𝑁

∑

𝑖=1

󵄩

󵄩

󵄩

󵄩

𝑏
𝑖

󵄩

󵄩

󵄩

󵄩𝐿
𝑝
󸀠

𝑖
(⋅)
(Ω)

󵄩

󵄩

󵄩

󵄩

󵄩

𝜕
𝑥𝑖
V
󵄩

󵄩

󵄩

󵄩

󵄩𝐿
𝑝𝑖(⋅)(Ω)

+ 𝑡

𝑝
+

𝑀

max
1≤𝑖≤𝑁

𝑐
𝑖

𝑝

−

𝑚

𝑁

∑

𝑖=1

∫

Ω

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕
𝑥𝑖
V
󵄨

󵄨

󵄨

󵄨

󵄨

𝑝𝑖(𝑥)

𝑑𝑥

+ 𝑡

𝑝
+

𝑀
1

𝑝

−

𝑀

∫

Ω

|V|𝑝𝑀(𝑥) 𝑑𝑥 − 𝐾𝑡

𝑝
+

𝑀
∫

Ω

|V|𝑝
+

𝑀
𝑑𝑥

+ 𝐶
1
,

(40)

where 𝐶
1

> 0 is a constant, taking 𝐾 sufficiently large to
ensure that

max
1≤𝑖≤𝑁

𝑐
𝑖

𝑝

−

𝑚

𝑁

∑

𝑖=1

∫

Ω

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕
𝑥𝑖
V
󵄨

󵄨

󵄨

󵄨

󵄨

𝑝𝑖(𝑥)

𝑑𝑥 +

1

𝑝

−

𝑀

∫

Ω

|V|𝑝𝑀(𝑥) 𝑑𝑥

− 𝐾∫

Ω

|V|𝑝
+

𝑀
𝑑𝑥 < 0

(41)

which implies that

𝜙 (𝑡V) 󳨀→ −∞ as 𝑡 󳨀→ +∞. (42)

(b) By (A2), for ‖𝑢‖ < 1, we have

𝜙 (𝑢) ≥

min
1≤𝑖≤𝑁

𝑑
𝑖

𝑝

+

𝑀

∫

Ω

𝑁

∑

𝑖=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕
𝑥𝑖
𝑢

󵄨

󵄨

󵄨

󵄨

󵄨

𝑝𝑖(𝑥)

𝑑𝑥

+

1

𝑝

+

𝑀

∫

Ω

|𝑢|

𝑝𝑀(𝑥)
𝑑𝑥 − ∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

≥

min
1≤𝑖≤𝑁

𝑑
𝑖

𝑝

+

𝑀

𝑁

∑

𝑖=1

󵄩

󵄩

󵄩

󵄩

󵄩

𝜕
𝑥𝑖
𝑢

󵄩

󵄩

󵄩

󵄩

󵄩

𝑝
+

𝑀

𝐿
𝑝𝑖(⋅)(Ω)

+

1

𝑝

+

𝑀

‖𝑢‖

𝑝
+

𝑀

𝐿
𝑝𝑀(⋅)(Ω)

− ∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

≥

min
1≤𝑖≤𝑁

𝑑
𝑖

(𝑁 + 1)

𝑝
+

𝑚
𝑝

+

𝑀

‖𝑢‖

𝑝
+

𝑀
− ∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥.

(43)

On the other side, from (F1),

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥, 𝑢)

󵄨

󵄨

󵄨

󵄨

≤ 𝜀 |𝑢|

𝑝
+

𝑀
−1

+ 𝐶 (𝜀) |𝑢|

𝑞(𝑥)−1
,

∀ (𝑥, 𝑢) ∈ Ω × R.

(44)

By the continuous embedding from 𝑋 into 𝐿

𝑞(𝑥)
(Ω) and

𝐿

𝑝
+

𝑀
(Ω), there exist 𝑐

1
, 𝑐
2
> 0, such that

‖𝑢‖

𝐿
𝑝
+

𝑀 (Ω)
≤ 𝑐
1 ‖

𝑢‖ ,

‖𝑢‖

𝐿
𝑞
+

(Ω)
≤ 𝑐
2 ‖

𝑢‖ ,

‖𝑢‖

𝐿
𝑞
−

(Ω)
≤ 𝑐
2 ‖

𝑢‖

(45)

for all 𝑢 ∈ 𝑋. Hence,

∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥 ≤ ∫

Ω

𝜀

𝑝

+

𝑀

|𝑢|

𝑝
+

𝑀
𝑑𝑥

+ ∫

Ω

𝐶 (𝜀)

𝑞 (𝑥)

|𝑢|

𝑞(𝑥)
𝑑𝑥

≤ 𝜀𝑐

𝑝
+

𝑀

1
‖𝑢‖

𝑝
+

𝑀
+ 𝑐

𝑞
−

2

𝐶 (𝜀)

𝑞

−
‖𝑢‖

𝑞
−

(46)

for all 𝑥 ∈ Ω and all 𝑢 ∈ R.
Therefore,

𝜙 (𝑢) ≥ (

min
1≤𝑖≤𝑁

(𝑑
𝑖
, 1)

2 (𝑁 + 1)

𝑝
+

𝑚
𝑝

+

𝑀

− 𝐶 (𝜀) 𝑐

𝑞
−

2
‖𝑢‖

𝑞
−
−𝑝
+

𝑀

− 𝜀𝑐

𝑝
+

𝑀

1
)‖𝑢‖

𝑝
+

𝑀
,

(47)

since 1 < 𝑝

+

𝑀
< 𝑞

−.Then for 𝑟 sufficiently small, we take𝜎 > 0

such that

𝜙 (𝑢) ≥ 𝜎, ∀𝑢 ∈ 𝑋 with ‖𝑢‖ = 𝑟. (48)

Definition 9. A sequence (𝑧
𝑛
) is called a Cerami sequence if

𝜙(𝑧
𝑛
) is bounded and (1 + ‖𝑧

𝑛
‖)𝜙

󸀠
(𝑧
𝑛
) → 0.

Lemma 10. If 𝑐 ∈ R, then any sequence of Cerami (𝐶)
𝑐
of 𝜙 is

bounded.

Proof. Let (𝑢
𝑛
)
𝑛
be a (𝐶)

𝑐
sequence of 𝜙. We claim that (𝑢

𝑛
)
𝑛

is bounded; otherwise, up to a subsequence, we may assume
that

𝜙 (𝑢
𝑛
) 󳨀→ 𝑐,

󵄩

󵄩

󵄩

󵄩

𝑢
𝑛

󵄩

󵄩

󵄩

󵄩

󳨀→ +∞,

𝜙

󸀠
(𝑢
𝑛
) 󳨀→ 0.

(49)

Putting 𝜔
𝑛
= 𝑢
𝑛
/‖𝑢
𝑛
‖, up to a subsequence, we have 𝜔

𝑛
⇀ 𝜔

in 𝑋,𝜔
𝑛

→ 𝜔 in 𝐿

𝑞(𝑥)
(Ω) and in 𝐿

𝑝
+

𝑀
(Ω), 𝜔

𝑛
(𝑥) → 𝜔(𝑥).

Almost everywhere 𝑥 ∈ Ω.
Here, two cases appear, when 𝜔 ̸≡ 0, since we know that

⟨𝜙

󸀠
(𝑢
𝑛
), 𝑢
𝑛
⟩ = 𝑜(‖𝑢

𝑛
‖), that means

∫

Ω

𝑁

∑

𝑖=1

𝑎
𝑖
(𝑥, 𝜕
𝑥𝑖
𝑢
𝑛
) 𝜕
𝑥𝑖
𝑢
𝑛
𝑑𝑥 + ∫

Ω

󵄨

󵄨

󵄨

󵄨

𝑢
𝑛

󵄨

󵄨

󵄨

󵄨

𝑝𝑀(𝑥)
𝑑𝑥

− ∫

Ω

𝑓 (𝑥, 𝑢
𝑛
) 𝑢
𝑛
𝑑𝑥 = 0.

(50)

Dividing (50) by ‖𝑢
𝑛
‖

𝑝
+

𝑀 , by using (A1), a straightforward
computation leads to

∫

Ω

𝑓 (𝑥, 𝑢
𝑛
) 𝑢
𝑛

󵄩

󵄩

󵄩

󵄩

𝑢
𝑛

󵄩

󵄩

󵄩

󵄩

𝑝
+

𝑀

𝑑𝑥 < ∞. (51)
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Meanwhile, in view of condition (F2) and Fatou’s lemma,

∫

Ω

𝑓 (𝑥, 𝑢
𝑛
) 𝑢
𝑛

󵄩

󵄩

󵄩

󵄩

𝑢
𝑛

󵄩

󵄩

󵄩

󵄩

𝑝
+

𝑀

𝑑𝑥 = ∫

Ω

𝑓 (𝑥, 𝑢
𝑛
) 𝑢
𝑛

󵄨

󵄨

󵄨

󵄨

𝜔
𝑛

󵄨

󵄨

󵄨

󵄨

𝑝
+

𝑀

󵄨

󵄨

󵄨

󵄨

𝑢
𝑛

󵄨

󵄨

󵄨

󵄨

𝑝
+

𝑀

𝑑𝑥

󳨀→ ∞,

(52)

which is contradictory.
In the case when 𝜔 ≡ 0, we choose a sequence 𝑡

𝑛
∈ [0, 1]

satisfying

𝜙 (𝑡
𝑛
𝑢
𝑛
) = max
𝑡𝑛∈[0,1]

𝜙 (𝑡𝑢
𝑛
) . (53)

If 𝜔 ≡ 0, since 𝜔
𝑛

→ 0 in 𝐿

𝑞(𝑥)
(Ω) and |𝐹(𝑥, 𝑡)| ≤ 𝐶(1 +

|𝑡|

𝑞(𝑥)
), by the continuity of theNemitskii operator, we see that

𝐹(⋅, 𝜔
𝑛
) → 0 in 𝐿

1
(Ω) as 𝑛 → +∞; therefore,

lim
𝑛→∞

∫

Ω

𝐹 (𝑥, 𝜔
𝑛
) 𝑑𝑥 = 0. (54)

Given 𝑚 > 0, since, for 𝑛 large enough, we have
‖𝑢
𝑛
‖

−1
(2𝑚𝑁𝑝

+

𝑀
)

1/𝑝
−

𝑚
∈ (0, 1), using (54) with 𝑅 =

(2𝑚𝑁𝑝

+

𝑀
)

1/𝑝
−

𝑚 , from assumption (A2), and, considering
Remark 4, we get

𝜙 (𝑡
𝑛
𝑢
𝑛
) ≥ 𝜙(

𝑅

󵄩

󵄩

󵄩

󵄩

𝑢
𝑛

󵄩

󵄩

󵄩

󵄩

𝑢
𝑛
) = 𝜙 (𝑅𝜔

𝑛
)

= ∫

Ω

𝑁

∑

𝑖=1

𝐴
𝑖
(𝑥, 𝜕
𝑥𝑖
𝑅𝜔
𝑛
) 𝑑𝑥

+ ∫

Ω

1

𝑝
𝑀 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑅𝜔
𝑛

󵄨

󵄨

󵄨

󵄨

𝑝𝑀(𝑥)
𝑑𝑥 − ∫

Ω

𝐹 (𝑥, 𝑅𝜔
𝑛
) 𝑑𝑥

≥

min
1≤𝑖≤𝑁

𝑑
𝑖

𝑝

+

𝑀

(

𝑁

∑

𝑖=1

󵄩

󵄩

󵄩

󵄩

󵄩

𝜕
𝑥𝑖
𝑅𝜔
𝑛

󵄩

󵄩

󵄩

󵄩

󵄩

𝑝
−

𝑚

𝐿
𝑝𝑖(⋅)(Ω)

+

󵄩

󵄩

󵄩

󵄩

𝑅𝜔
𝑛

󵄩

󵄩

󵄩

󵄩

𝑝
−

𝑚

𝐿
𝑝𝑀(⋅)(Ω)

− 𝑁) − ∫

Ω

𝐹 (𝑥, 𝑅𝜔
𝑛
) 𝑑𝑥 ≥

1

𝑝

+

𝑀

⋅ min {1, min
1≤𝑖≤𝑁

𝑑
𝑖
}(

󵄩

󵄩

󵄩

󵄩

𝑅𝜔
𝑛

󵄩

󵄩

󵄩

󵄩

𝑝
−

𝑚

𝑝

+

𝑀

− 𝑁)

− ∫

Ω

𝐹 (𝑥, 𝑅𝑤
𝑛
) 𝑑𝑥 ≥ 𝐶

0
(

𝑅

𝑝
−

𝑚

𝑝

+

𝑀

− 𝑁)

− ∫

Ω

𝐹 (𝑥, 𝑅𝑤
𝑛
) 𝑑𝑥 > 𝑚.

(55)

Thereby, 𝜙(𝑡
𝑛
𝑢
𝑛
) → +∞. On the other hand, we know

that 𝜙(0) = 0, 𝜙(𝑢
𝑛
) → 𝑐, so we can deduce that

𝑡
𝑛
∈ ]0, 1[ ,

⟨𝜙

󸀠
(𝑡
𝑛
𝑢
𝑛
) , 𝑡
𝑛
𝑢
𝑛
⟩ = 𝑡
𝑛

𝑑

𝑑𝑡

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝑡=𝑡𝑛

𝜙 (𝑡𝑢
𝑛
) = 0.

(56)

It yields

𝜙 (𝑡
𝑛
𝑢
𝑛
) −

1

𝑝

−

𝑚

𝜙

󸀠
(𝑡
𝑛
𝑢
𝑛
) (𝑡
𝑛
𝑢
𝑛
) 󳨀→ +∞. (57)

Therefore,

∫

Ω

𝑁

∑

𝑖=1

𝐴
𝑖
(𝑥, 𝜕
𝑥𝑖
𝑡
𝑛
𝑢
𝑛
) 𝑑𝑥

−

1

𝑝

−

𝑚

∫

Ω

𝑁

∑

𝑖=1

𝑎
𝑖
(𝑥, 𝜕
𝑥𝑖
𝑡
𝑛
𝑢
𝑛
) 𝜕
𝑥𝑖
𝑡
𝑛
𝑢
𝑛
𝑑𝑥

+ ∫

Ω

1

𝑝
𝑀 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑡
𝑛
𝑢
𝑛

󵄨

󵄨

󵄨

󵄨

𝑝𝑀(𝑥)
𝑑𝑥

−

1

𝑝

−

𝑚

∫

Ω

󵄨

󵄨

󵄨

󵄨

𝑡
𝑛
𝑢
𝑛

󵄨

󵄨

󵄨

󵄨

𝑝𝑀(𝑥)
𝑑𝑥 − ∫

Ω

𝐹 (𝑥, 𝑡
𝑛
𝑢
𝑛
) 𝑑𝑥

+ ∫

Ω

(

1

𝑝

−

𝑚

𝑓 (𝑥, 𝑡
𝑛
𝑢
𝑛
) 𝑡
𝑛
𝑢
𝑛
)𝑑𝑥 󳨀→ ∞,

(58)

so we get

∫

Ω

(

1

𝑝

−

𝑚

𝑓 (𝑥, 𝑡
𝑛
𝑢
𝑛
) (𝑡
𝑛
𝑢
𝑛
) − 𝐹 (𝑥, 𝑡

𝑛
𝑢
𝑛
)) 𝑑𝑥

󳨀→ +∞.

(59)

Moreover,

𝜙 (𝑢
𝑛
) = 𝜙 (𝑢

𝑛
) −

1

𝑝

+

𝑀

𝜙

󸀠
(𝑢
𝑛
) (𝑢
𝑛
)

≥ ∫

Ω

(

1

𝑝

+

𝑀

𝑓 (𝑥, 𝑢
𝑛
) 𝑢
𝑛
− 𝐹 (𝑥, 𝑢

𝑛
)) 𝑑𝑥.

(60)

From (A2) and (F4), there exist 𝛼, 𝛽 > 0 such that

𝜙 (𝑢
𝑛
) ≥ ∫

Ω

(

1

𝑝

+

𝑀

𝑓 (𝑥, 𝑢
𝑛
) 𝑢
𝑛
− 𝐹 (𝑥, 𝑢

𝑛
)) 𝑑𝑥

≥ 𝛼∫

Ω

(

1

𝑝

−

𝑚

𝑓 (𝑥, 𝑢
𝑛
) (𝑢
𝑛
) − 𝐹 (𝑥, 𝑢

𝑛
)) 𝑑𝑥

≥ 𝛼𝛽∫

Ω

(

1

𝑝

−

𝑚

𝑓 (𝑥, 𝑡
𝑛
𝑢
𝑛
) (𝑡
𝑛
𝑢
𝑛
) − 𝐹 (𝑥, 𝑡

𝑛
𝑢
𝑛
)) 𝑑𝑥.

(61)

Hence, 𝜙(𝑢
𝑛
) → +∞, which is impossible.

Proof of Theorem 6. According to Lemma 8 and Lemma 10,
we are to apply the mountain pass theorem, so seeing that the
sequence (𝑢

𝑛
)
𝑛
(in Lemma 10) is strongly convergent to 𝑢 ∈ 𝑋

remains and it will be done.
Now, because the Banach space 𝑋 is reflexive (cf. [2, 3]),

and regarding the boundedness of (𝑢
𝑛
)
𝑛
in 𝑋, there exists

𝑢 ∈ 𝑋 such that 𝑢
𝑛

⇀ 𝑢. Since 𝜙

󸀠 is the sum of (𝑆
+
)

type maps 𝐼

󸀠 and 𝐽

󸀠 which is weakly strongly continuous (cf.
Proposition 7),𝜙󸀠 is also of (𝑆

+
) type.Thus,𝑢

𝑛
→ 𝑢 in𝑋.
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