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Themain goal of this paper is to study themotion of two associated ruled surfaces in Euclidean 3-space𝐸3. In particular, themotion
of Bishop Frenet offsets of ruled surfaces is investigated. Additionally, the characteristic properties for such ruled surfaces are given.
Finally, an application is presented and plotted using computer aided geometric design.

1. Introduction

Motion is to add the time element to our curves and surfaces.
Motion theory has received a great deal of attention from
mathematical physics, biology, dynamical systems, image
processing, and computer vision. The problem is interesting
since we may set two different subjects on the same theoreti-
cal basis. One is a geometrical interpretation of integrable sys-
tems. Connections between the differential geometry of curve
motions and the integrable systems have been discussed.The
analysis is extended to more general types of motion and
other integrable systems [1–3].The other is surface dynamics,
the dynamics of shapes in physical and biological systems, as
in crystal growth.

A variety of dynamics of shapes in physics, chemistry, and
biology aremodeled in terms of motion of surfaces and inter-
faces, and some dynamics of shapes are reduced to motion
of curves. These models are specified by velocity fields or
acceleration fields which are local or nonlocal functionals of
the intrinsic quantities of curves. In physics, it is very interest-
ing to describe motions of patterns such as interfaces, wave
fronts, and defects [4]. Applications include kinematics of
interfaces in crystal growth [5, 6], deformation of vortex fila-
ments in inviscid fluid, and viscous fingering in a Hele-Shaw
cell [7, 8]. The subject of how space curves or surfaces evolve
in time is of great interest and has been investigated by many
authors [9–22].

Classical differential geometry of the curves may be sur-
rounded by the topics of general helices, involute-evolute

curve couples, spherical curves, and Bertrand curves. Such
special curves are investigated and used in some real world
problems like mechanical design or robotics by the well-
known Frenet-Serret equations because we think of curves
as the path of a moving particle in the Euclidean space [23].
Thereafter researchers aimed to determine another moving
frame for a regular curve. In 1975, Bishop pioneered “Bishop
frame” by means of parallel vector fields. This special frame
is also called a “parallel” or “alternative” frame of the curves
[24].

A practical application of Bishop frame is that it is used
in the area of biology and computer graphics. For example, it
may be possible to compute information about the shape of
sequences ofDNAusing a curve defined byBishop frame.The
Bishop frame may also provide a new way to control virtual
cameras in computer animations [25]. Nowadays a good deal
of research has been done on Bishop frames in Euclidean
space [26, 27], inMinkowski space [28, 29], and in dual space
[30]. Recently, the authors in [31] introduced a new version
of the Bishop frame and called it a “type 2 Bishop frame” and
this special frame is extended to studymany surfaces [32, 33].

Studies related to offset profiles date back to the nine-
teenth century. Offsets curves play an important role in areas
of CAD/CAM, robotics, cam design, and many industrial
applications. In particular they are used in mathematical
modeling of cutting paths milling machines.The classic work
in this area is that of Bertrand [34], who studied curve pairs
which have common principal normals. Such curves are
referred to as Bertrand curves and can be considered as offsets
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of one another.The theory of the Mannheim curves has been
extended in the three-dimensional Euclidean space by [35,
36].

Recently, there have been a number of studies of offsets
ruled surfaces [37, 38], studied Bertrand and Mannheim off-
sets of ruled surfaces. Pottmann et al. [39] presented classical
and circular offsets of rational ruled surfaces. More recently,
Soliman et al. [40] studied geometric properties and invari-
ants of Mannheim offsets of timelike ruled surface with
timelike ruling.

The aim of this paper is to use the new version of type 2
Bishop frame which is studied in [23, 31, 41] and Frenet frame
to construct offsets base curves of two ruled surfaces. Thus,
the kinematics of such surfaces in terms of their intrinsic geo-
metric formulas are established. An application of these
surfaces and their motions is considered and plotted.

2. Geometry of Motion Curves
and Surfaces in 𝐸3

2.1. Motion of Curves. Let 𝛼 : 𝐼 → 𝐸
3 be an arbitrary curve

in 𝐸3. Recall that the curve 𝛼 is said to be of unit speed if
⟨𝛼

,𝛼

⟩ = 1, where ⟨, ⟩ is the standard scalar (inner) product

of 𝐸3. Denote by {T(𝑠),N(𝑠),B(𝑠)} the moving Frenet frame
along the unit speed curve 𝛼. Then the Frenet formulas are
given by [42]

𝜕

𝜕𝑠

[
[

[

T
N
B

]
]

]

=
[
[

[

0 𝜅 0

−𝜅 0 𝜏

0 −𝜏 0

]
]

]

[
[

[

T
N
B

]
]

]

. (1)

Here, T, N, and B are the tangent, the principal normal, and
the binormal vector fields of the curve 𝛼, respectively. 𝜅(𝑠)
and 𝜏(𝑠) are called curvature and torsion of the curve 𝛼,
respectively.

In the rest of the paper, we suppose everywhere that 𝜅 ̸= 0

and 𝜏 ̸= 0.
Let 𝛼∗ = 𝛼∗(𝑠) be a unit speed regular curve in 𝐸3. The

type 2 Bishop formulas of 𝛼∗(𝑠) are defined by [23, 31, 41]

𝜕

𝜕𝑠

[
[

[

T∗

N∗

B∗
]
]

]

=
[
[

[

0 0 −𝑘
1

0 0 −𝑘
2

𝑘
1
𝑘
2
0

]
]

]

[
[

[

T∗

N∗

B∗
]
]

]

. (2)

Here, T∗, N∗, and B∗ are the tangent, the principal normal,
and the binormal vector fields of the curve 𝛼∗, respectively.

The Bishop frame or parallel transport frame is an alter-
native to the Frenet frame. Thus, the matrix relation between
type 2 Bishop and Frenet-Serret frames can be expressed as

[
[

[

T∗

N∗

B∗
]
]

]

=
[
[

[

sin 𝜃 (𝑠) cos 𝜃 (𝑠) 0
− cos 𝜃 (𝑠) sin 𝜃 (𝑠) 0

0 0 1

]
]

]

[
[

[

T
N
B

]
]

]

. (3)

Here, the type 2 Bishop curvatures are defined by

𝑘
1 (𝑠) = −𝜏 cos 𝜃 (𝑠) ,

𝑘
2
(𝑠) = −𝜏 sin 𝜃 (𝑠) .

(4)

It can be also deduced as

𝜃

= 𝜅 =

𝑓


1 + 𝑓2
, 𝑓 =

𝑘
2

𝑘
1

. (5)

The frame {T∗,N∗,B∗} is properly oriented, and 𝜏 and 𝜃(𝑠) =
∫
𝑠

0
𝜅(𝑠)𝑑𝑠 are polar coordinates for the curve 𝛼∗ = 𝛼∗(𝑠). We

will call the set {T∗,N∗,B∗, 𝑘
1
, 𝑘
2
} type 2 Bishop invariants of

the curve 𝛼∗ = 𝛼∗(𝑠).
Using Frenet formulas (1) many geometries [1–3, 9, 15–

19] studied connections between integrable evolution and the
motion of curves in a 3-dimensional Euclidean space. They
considered that 𝛼 = 𝛼(𝑠, 𝑡) denote a point on a space curve at
the time 𝑡. The conventional geometrical model is specified
by the velocity fields

𝜕𝛼

𝜕𝑡
= V1T + V2N + V3B, (6)

whereT,N, andB are the unit tangent, normal, and binormal
vectors along the curve and V1, V2, and V3 are the tangential,
normal, and binormal velocities, respectively. Velocity fields
are functionals of the intrinsic quantities of curves, for
example, curvature, 𝜅, torsion 𝜏, and their 𝑠 derivatives.

The time evolution equations for Frenet frame T, N, and
B are given by

𝜕

𝜕𝑡

[
[

[

T
N
B

]
]

]

=
[
[

[

0 𝑎
12

𝑎
13

−𝑎
12

0 𝑎
23

−𝑎
13
−𝑎
23

0

]
]

]

[
[

[

T
N
B

]
]

]

, (7)

where

𝑎
12
= (

𝜕V2

𝜕𝑠
− 𝜏V3 + 𝜅V1) ,

𝑎
13
= (

𝜕V3

𝜕𝑠
+ 𝜏V2) ,

𝑎
23
= (

1

𝜅

𝜕𝑎
13

𝜕𝑠
+
𝜏

𝜅
𝑎
12
) .

(8)

Using type 2 Bishop frame, Kiziltuğ [41] considered the flow
of the curve 𝛼∗ as the following:

𝜕𝛼
∗

𝜕𝑡
= V∗1T∗ + V∗2N∗ + V∗3B∗, (9)
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and in view of type 2 Bishop formulas (2), Kiziltuğ [41]
obtained the time evolution equations for such frame as fol-
lows:

𝜕

𝜕𝑡

[
[

[

T∗

N∗

B∗
]
]

]

=
[
[

[

0 𝑎
∗

12
𝑎
∗

13

−𝑎
∗

12
0 𝑎
∗

23

−𝑎
∗

13
−𝑎
∗

23
0

]
]

]

[
[

[

T∗

N∗

B∗
]
]

]

, (10)

where

𝑎
∗

12
= (

𝜕V∗2

𝜕𝑠
+ 𝑘
2
V∗3) ,

𝑎
∗

13
= (

𝜕V∗3

𝜕𝑠
− 𝑘
1
V∗1 − 𝑘

2
V∗2) ,

𝑎
∗

23
= (

1

𝑘
1

𝜕𝑎
∗

13

𝜕𝑠
+
𝑘
2

𝑘
1

𝑎
∗

12
) .

(11)

2.2. Motion of Surfaces. Here, and in the sequel, we assume
that the indices {𝑖, 𝑗, 𝑘, 𝑙, 𝑚} run over the ranges {1, 2}. The
Einstein summation conventionwill be used; that is, repeated
indices, with one upper index and one lower index, denoted
summation over its range.

Let our surface,moving in 3-dimensional Euclidean space
𝐸
3, be given at time 𝑡 by the position vector

𝑋 = 𝑥
𝛾
𝑒
𝛾
, 𝛾 = 1, 2, 3, (12)

where 𝑥𝛾 = 𝑥𝛾(𝑢𝑖, 𝑡) are the Cartesian coordinates in some
fixed in time Cartesian frame 𝑒

𝛾
and 𝑢𝑖 are convective curvi-

linear coordinates.Then, the two tangent vectors and the unit
normal vector to the surface are given by

𝐸
𝑖
= 𝑋
,𝑖
, 𝑖 =

𝜕

𝜕𝑢𝑖
,

𝐸
3
=
𝐸
1
× 𝐸
2

√𝑔
,

(13)

respectively. Thus, the metric 𝑔
𝑖𝑗
and the coefficients of the

second fundamental form ℎ
𝑖𝑗
are given by

𝑔
𝑖𝑗
= ⟨𝐸
𝑖
, 𝐸
𝑗
⟩ ,

𝑔 = Det (𝑔
𝑖𝑗
) ,

ℎ
𝑖𝑗
= ⟨𝐸
3
, 𝐸
𝑖,𝑗
⟩ = ⟨𝐸

3
, 𝑋
,𝑖𝑗
⟩ ,

(14)

where ⟨, ⟩ is the Euclidean inner product.
Thus, the Gaussian curvature 𝐺 and the mean curvature

𝐻 are given by

𝐺 =

Det (ℎ
𝑖𝑗
)

Det (𝑔
𝑖𝑗
)

,

𝐻 =
1

2
tr (𝑔𝑖𝑗ℎ

𝑗𝑘
) ,

(15)

respectively, where (𝑔𝑘𝑙) is the associated contravariant met-
ric tensor field of the covariant metric tensor field (𝑔

𝑘𝑙
); that

is, 𝑔𝑖𝑘𝑔
𝑗𝑘
= 𝛿
𝑖

𝑗
.

As one moves along the surface (at a fixed time), the tan-
gent and normal vectors change according to the Gauss-
Weingarten equations,

𝜕

𝜕𝑢𝑗

[
[
[
[
[
[

[

𝐸
1

𝐸
2

.

.

.

𝐸
3

]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

Γ
𝑘

𝑖𝑗

.

.

. ℎ
𝑖𝑗

⋅ ⋅ ⋅
.
.
. ⋅ ⋅ ⋅

ℎ
𝑘

𝑗

.

.

. 0

]
]
]
]
]
]

]

[
[
[
[
[
[

[

𝐸
1

𝐸
2

.

.

.

𝐸
3

]
]
]
]
]
]

]

, ℎ
𝑘

𝑗
= 𝑔
𝑘𝑖
ℎ
𝑖𝑗
, (16)

where Γ𝑘
𝑖𝑗
are called the Christoffel symbols of the 2nd kind,

which are given as

Γ
𝑘

𝑖𝑗
=
1

2
𝑔
𝑘𝑙
(

𝜕𝑔
𝑗𝑙

𝜕𝑢𝑖
+
𝜕𝑔
𝑖𝑙

𝜕𝑢𝑗
−

𝜕𝑔
𝑖𝑗

𝜕𝑢𝑙
) . (17)

From the compatibility conditions of (16), we get the Gauss-
Codazzi equations,

𝑅
𝑖𝑗𝑘𝑙
= ℎ
𝑖𝑘
ℎ
𝑗𝑙
− ℎ
𝑖𝑙
ℎ
𝑗𝑘
,

∇
𝑖
ℎ
𝑗𝑘
= ∇
𝑗
ℎ
𝑖𝑘
,

(18)

where 𝑅
𝑖𝑗𝑘𝑙

is the Riemann tensor and ∇
𝑖
is the covariant

derivative,

∇
𝑖
𝑓
𝑗
= 𝑓
𝑗,𝑖
− Γ
𝑘

𝑖𝑗
𝑓
𝑘
,

∇
𝑖
𝑓
𝑗
= 𝑓
𝑗

,𝑖
+ Γ
𝑗

𝑘𝑖
𝑓
𝑘
,

∇
𝑖
∇
𝑗
𝑓 = 𝑓

,𝑖𝑗
− Γ
𝑘

𝑖𝑗
𝑓
,𝑘
.

(19)

Nakayama et al. [11, 14, 21, 22] introduced the dynamics of the
surface, where the velocity of the surface is expressed by

𝜕𝑋

𝜕𝑡
= 𝑉
𝛾
𝐸
𝛾
,

𝑉
𝛾
= 𝑉
𝛾
(𝑢
𝛼

, 𝑡) ,

𝛾 = 1, 2, 3,

(20)

where𝑉𝑖 and𝑉3 are the tangential and the normal velocities,
respectively.

Using (13), (16), and (20) we can obtain the time evolution
equations for the local frame,

𝜕

𝜕𝑡

[
[
[
[
[
[

[

𝐸
1

𝐸
2

.

.

.

𝐸
3

]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

−𝑉
3
ℎ
𝑘

𝑖
+ ∇
𝑖
𝑉
𝑘

.

.

. 𝑉
3

,𝑖
+ 𝑉
𝑗
ℎ
𝑖𝑗

⋅ ⋅ ⋅
.
.
. ⋅ ⋅ ⋅

−𝑔
𝑘𝑖
(𝑉
3

,𝑖
+ 𝑉
𝑗
ℎ
𝑖𝑗
)
.
.
. 0

]
]
]
]
]
]

]

[
[
[
[
[
[

[

𝐸
1

𝐸
2

.

.

.

𝐸
3

]
]
]
]
]
]

]

.

(21)
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Thus, using (13), (16), one can see that the time evolution
equations for 𝑔

𝑖𝑗
and ℎ
𝑖𝑗
are given by

𝜕𝑔
𝑖𝑗

𝜕𝑡
= −2ℎ

𝑖𝑗
𝑉
3
+ ∇
𝑗
𝑉
𝑖
+ ∇
𝑖
𝑉
𝑗
, (22)

𝜕ℎ
𝑖𝑗

𝜕𝑡
= ∇
𝑖
∇
𝑗
𝑉
3
− ℎ
𝑖𝑘
ℎ
𝑘

𝑗
𝑉
3
+ ℎ
𝑖𝑘
∇
𝑗
𝑉
𝑘
+ ℎ
𝑗𝑘
∇
𝑖
𝑉
𝑘

+ 𝑉
𝑘
∇
𝑗
ℎ
𝑖𝑘
,

(23)

respectively.

2.3. Bishop Frenet Offsets of Ruled Surfaces. In view of relation
(3) and inspired by the concepts of Bertrand and Mannheim
offsets of ruled surfaces [35–38], we can reformulate the fol-
lowing definitions of Bishop Frenet offsets for ruled surfaces.

A pair of curves 𝛼∗ and 𝛼 are said to be Bishop Frenet
curves if there exists a one-to-one correspondence between
their points such that both curves have a common binormal
vector at their corresponding points (B∗ = B). Such curves
will be referred to as “Bishop Frenet offsets.”

Thus, we canwrite the relation between the curves 𝛼∗ and
𝛼 as

𝛼
∗
= 𝛼 + 𝜓 (𝑠)B, (24)

where 𝜓 = 𝜓(𝑠) is distance between corresponding points on
the curves 𝛼∗ and 𝛼.

If we take the derivative of the above equation and adopt
the relation B∗ = B, we can see that 𝜓 = 0. On the other
hand, from the distance function between twopoints, we have

𝑑 (𝛼
∗
,𝛼) =

𝛼
∗
− 𝛼
 =
𝜓 (𝑠)B

 = 𝜓 ≻ 0. (25)

Thus, we can say that 𝜓 is a nonzero positive constant.
The ruled surface X∗ is said to be Bishop Frenet offset of

the ruled surface X if there exists a one-to-one correspon-
dence between their rulings such that the binormal vector B
of the base curve of X is the binormal vector B∗ of the base
curve of X∗. In this case, (X,X∗) is called a pair of Bishop
Frenet ruled surfaces.

Thus, we can write the parametric representation of the
ruled surfaces X and X∗ as follows:

X (𝑠, V) = 𝛼 (𝑠) + VB (𝑠) , ‖B‖ = 1, V ∈ 𝑅, (26)

X∗ (𝑠, V) = 𝛼∗ (𝑠) + VB∗ (𝑠) , B
∗ = 1, V ∈ 𝑅,

or X∗ (𝑠, V) = 𝛼 (𝑠) + (𝜓 + V)B (𝑠) , B∗ = B,
(27)

where 𝛼 and 𝛼∗ are the base curves ofX andX∗, respectively.

3. Motion of Frenet Ruled Surface

In this section, the fundamental quantities 𝑔
𝑖𝑗
, ℎ
𝑖𝑗
and their

evolution of ruled surfaces (26) and (28) are obtained, respec-
tively. Thus the Gaussian, mean curvatures, and their evolu-
tion of such surfaces are given. For this purpose, let a ruled
surface generated by the binormal vector B of the Frenet
frame, moving in 3-dimensional Euclidean space 𝐸3, be given
at time 𝑡 by the parametrization [11]:

X (𝑠, V, 𝑡) = 𝛼 (𝑠, 𝑡) + VB (𝑠, 𝑡) , (28)

where X(𝑠, V, 0) = X(𝑠, V), 𝛼(𝑠, 0) = 𝛼(𝑠), and B(𝑠, 0) = B(𝑠).

3.1. Curvatures of X. From (26) and using Serret-Frenet
formulas (1) it is easily checked that the coefficients of the first
fundamental form 𝑔

𝑖𝑗
of X are given by

𝑔
11
= 𝜆,

𝑔
22
= 1,

𝑔
12
= 0,

𝑔 = Det (𝑔
𝑖𝑗
) = 𝜆,

(29)

where 𝜆 = 1 + V2𝜏2 ≻ 0.
Using (13), the unit normal vector field to the surfaceX is

given by

𝐸
3
= −

1

√𝜆

(V𝜏T + N) . (30)

This leads to the coefficients of the second fundamental form
ℎ
𝑖𝑗
of X given by

ℎ
11
= −

1

√𝜆

(𝜅 − V𝜏 + V2𝜅𝜏2) ,

ℎ
22
= 0,

ℎ
12
=
𝜏

√𝜆

,

ℎ = Det (ℎ
𝑖𝑗
) = −

𝜏
2

𝜆
,

 =
𝑑

𝑑𝑠
.

(31)

Thus, using (15) one can see that the Gaussian and mean cur-
vature functions ofX are given, respectively, by the following.

Lemma 1. Consider

𝐺 = −
𝜏
2

𝜆2
,

𝐻 =
1

2𝜆3/2
(V𝜏 − 𝜆𝜅) .

(32)

From (17) one can see that the Christoffel symbols Γ𝑘
𝑖𝑗
of X are

given by the following.
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Lemma 2. Consider

Γ
1

11
=
1

𝜆
(V2𝜏𝜏) ,

Γ
1

12
= Γ
1

21
=
1

𝜆
(V𝜏2) ,

Γ
2

11
= −V𝜏2,

(33)

and other components equal zero.

3.2. Curvatures’ Evolution of X. Actually, here and in the
sequel is a remarkable fact that when we calculate 𝜕𝑔

𝑖𝑗
/𝜕𝑡 and

𝜕ℎ
𝑖𝑗
/𝜕𝑡 ofX, we have to compute the velocities𝑉𝛾 ofX. Thus,

using (6), (7), and (20) with the assumption that velocities of
the curve 𝛼 are V1 = 0, V2 = 𝜅, and V3 = 𝜏, one can see that
the tangential velocities 𝑉𝑖 and the normal velocity 𝑉3 of X
are given by the following.

Corollary 3. Consider

𝑉
1
=
1

𝜆
[V2𝜏𝜆

1
− V𝜆
2
− V𝜅𝜏] ,

𝑉
2
= 𝜏,

𝑉
3
=
1

√𝜆

[V𝜆
1
+ V2𝜏𝜆

2
− 𝜅] ,

(34)

where 𝜆
1
= (1/𝜅)(2𝜏𝜅


+ 𝜅𝜏

+ 𝜏

− 𝜏
3
) and 𝜆

2
= 𝜅𝜏 + 𝜏

.
Using (19), (33), and (34) one can obtain the following:

∇
1
𝑉
1
=

V
𝜅2𝜆2

{V𝜏𝜅𝜆
3
𝜆
4
− 𝜅
2
[𝜏
3
(2V𝜅 − V3𝜏 + 1)

+ 𝜏 (2𝜅

− V (𝜏 + 3V𝜏2)) + 𝜏 − V𝜏2

+ V2𝜏2 (𝜏 + 2V𝜏2) + V2𝜏5]

+ V𝜅 [2𝜏2 (𝜅 − V2𝜏𝜏) + 2V2𝜏4𝜅] + 𝜏3 (V2𝜏(3)

− 2 (V2𝜅 + 2) 𝜏) + 𝜏 (4𝜅𝜏 + 𝜏(3)) − V2𝜏5𝜏

+ 2𝜅
3
(2V2𝜏2 − 1) 𝜏} ,

∇
1
𝑉
2
=
1

𝜅𝜆2
{V𝜏 (V2𝜏2 − 2) 𝜆

4
− 𝜅 (V3𝜏3 − 2V2𝜏2

− 2V𝜏 + 1) 𝜏 + 𝜅2 (4V2𝜏3 − 2𝜏)} ,

∇
2
𝑉
1
=
1

𝜅𝜆
{V3𝜏3𝜆

4
+ 𝜅 (V3𝜏3 + 1) 𝜏 − 2V2𝜅2𝜏3} ,

∇
2
𝑉
2
= 0,

(35)

where 𝜆
3
= 1 + V𝜏2 and 𝜆

4
= −2𝜏𝜅


− 𝜏

+ 𝜏
3.

Based on the above results, we have the following.

Corollary 4. The evolution equations for the metric tensor 𝑔
𝑖𝑗

of X are given by

𝜕𝑔
11

𝜕𝑡
=

2

𝜅2𝜆2
{V2𝜏𝜅𝜆𝜆

4
− V𝜅2 [𝜏3 (2V2𝜅 − V3𝜏 + 1)

+ 𝜏 (2𝜅

− V (𝜏 + 3V𝜏2)) + 𝜏 + V4𝜏4𝜏 − V𝜏2

+ 𝜏

+ V2𝜏2 (𝜏 + 2V𝜏2 + 2𝜏) + V2𝜏5]

+ V2𝜅 [2𝜏2 (𝜅 − V2𝜏𝜏) + 2V2𝜏4𝜅

+ 𝜏
3
(V2𝜏(3) − 2 (V2𝜅 + 2) 𝜏)

+ 𝜅
3
(4V3𝜏2𝜏 − 2V𝜏 + V6𝜏6 + 3V4𝜏4 + 3𝜆𝜏)]} ,

𝜕𝑔
12

𝜕𝑡
=
𝜏

𝜅𝜆2
{−V (V4𝜏4 + 2) 𝜆

4
+ 𝜅 (V5𝜏4𝜏

+ V2𝜏 (3𝜏 − 4𝜏) + 2V𝜏 − 2V4𝜏4 − 2) − 2𝜅2 (V4𝜏4

− 𝜆)} ,

𝜕𝑔
22

𝜕𝑡
= 0.

(36)

In view of (19), (31), and (34), one can obtain

∇
1
∇
1
𝑉
3
=

1

𝜅3𝜆5/2
{V2𝜅4 [−V3𝜏𝜏5 + V4 (𝜏𝜏 − 𝜏2) 𝜏4

+ 2V2 (2𝜏𝜏 − 3𝜏2) 𝜏2 − 3V𝜏𝜏3 + 3 (𝜏2 + 𝜏𝜏)]

+ 𝜏
4V6 [𝜅𝜏2 + (𝜅𝜏 + 𝜏(3)) 𝜏 − 𝜏𝜏]

− 𝜏
2V5 [𝜅𝜏4 + 𝜏𝜏3 − 𝜏(3)𝜏2 + 4𝜏𝜏𝜏 − 3𝜏3]

+ 𝜏V4 [(𝜅 − 𝜏) 𝜏3 + (𝜏2 + 8𝜅𝜏 + 2𝜏(3)) 𝜏2

+ 2𝜏

𝜏

𝜏 − 4𝜏

3
]

− V3 [(𝜏𝜏3 + (𝜏2 − 2𝜏(3)) 𝜏2 + 4𝜏𝜏𝜏 + 𝜏3)]} ,

∇
1
∇
2
𝑉
3
= ∇
2
∇
1
𝑉
3
=

1

𝜅2𝜆5/2
{𝜆𝜅

𝜆
4

+ 𝜅
2
[V5𝜏5 (𝜏𝜅 + 𝜏) + V3𝜏2 (4𝜏2𝜅 + 3𝜏𝜏 − 𝜏2)

+ V (𝜏2 (3𝜅 − 𝜏) + 2𝜏𝜏 + 2𝜏2) + 𝜏 − V4𝜏5𝜏

+ V2𝜏 (𝜏𝜏 − 2𝜏2𝜏 − 3𝜏2)] + 𝜅 [2𝜏𝜅

+ V𝜏2 (−2𝜏𝜅 − 𝜏 + 𝜏3) + 2𝜅𝜏
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+ V2𝜏 (2𝜏2𝜅 + 𝜏 (𝜏(3) − 4𝜅𝜏) − 3𝜏𝜏) + 𝜏(3)

− 3𝜏
2
𝜏

] + V𝜅3𝜏 (V4𝜏4𝜏 + V2𝜏2𝜏 + 6𝜏 − V3𝜏5

− 3V𝜏3)}

∇
2
∇
2
𝑉
3
=

𝜏

𝜅𝜆5/2
{3V𝜏𝜆

4
− 𝜅 (V2𝜏2 + 3V𝜏 − 2) 𝜏

+ 𝜅
2
(3𝜏 − 3V2𝜏3)} ,

∇
1
ℎ
11
=
1

𝜆
{V2𝜏𝜏 (𝜅𝜆 − V𝜏) − V𝜏3 − 𝜆𝜅 − 2V2𝜅𝜏𝜏

+ V𝜏} ,

∇
2
ℎ
11
=
1

𝜆
{V2𝜏𝜏 (𝜅𝜆 − V𝜏) − V𝜏3 + 𝜏𝜆} ,

∇
1
ℎ
12
=
1

𝜆
{𝜏

− 𝜅 (V3𝜏4 + V𝜏2)} ,

∇
2
ℎ
12
=
1

𝜆
{V𝜏2 (𝜅𝜆 − V𝜏)} ,

∇
1
ℎ
21
= 𝜏

+ V𝜏3,

∇
2
ℎ
21
= V𝜏3,

∇
1
ℎ
22
= ∇
2
ℎ
22
= 0.

(37)

Using (23) and combining (31), ((34) and (35)) with (37), we
have the following.

Corollary 5. The evolution equations for ℎ
𝑖𝑗
of X are given by

𝜕ℎ
11

𝜕𝑡
=

1

𝜅3𝜆5/2
{V2 (−V3𝜏𝜏5 + V4 (𝜏𝜏 − 𝜏2) 𝜏4

− 3V𝜏𝜏3 + 2V2 (2𝜏𝜏 − 3𝜏2) 𝜏2 + 3 (𝜏2 + 𝜏𝜏))

+ 𝜏
4V6 (𝜅𝜏2 + (𝜅𝜏 + 𝜏(3)) 𝜏 − 𝜏𝜏)

− 𝜏
2V5 (𝜅𝜏4 + 𝜏𝜏3 − 𝜏(3)𝜏2 + 4𝜏𝜏𝜏 − 3𝜏3)

+ 𝜏V4 (𝜅 − 𝜏) 𝜏3 + (𝜏2 + 8𝜅𝜏 + 2𝜏(3)) 𝜏2

+ (2𝜏

𝜏

𝜏 − 4𝜏

3
) V4 − (𝜏𝜏3 + (𝜏2 − 2𝜏(3))) 𝜏2

+ (4𝜏

𝜏

𝜏 + 𝜏
3
) V3 − (𝜅 + 𝜏) 𝜏2 + (7𝜅𝜏

+ 𝜏
(3)
) 𝜏 + 3𝜏


𝜏
V2 + (𝜅𝜏2 + 𝜏(3)) V − 𝜅} ,

𝜕ℎ
22

𝜕𝑡
=

𝜏

𝜅𝜆5/2
{V𝜏 (V2𝜏2 + 4) 𝜆

4
− 𝜅 (V4𝜏4 + V3𝜏3

+ 2V2𝜏2 + 4V𝜏 − 2) 𝜏 − 𝜏𝜅2 (V4𝜏4 + 3V2𝜏2 − 4)} ,

𝜕ℎ
12

𝜕𝑡
=

1

𝜅2𝜆5/2
{𝜆𝜅

𝜆
4
+ 𝜅
2
[V5𝜏5 (𝜏𝜅 + 𝜏)

+ V3𝜏2 (4𝜏2𝜅 + 3𝜏𝜏 − 𝜏2)

+ V (𝜏2 (3𝜅 − 𝜏) + 2𝜏𝜏 + 2𝜏2) + 𝜏 − V4𝜏5𝜏

+ V2𝜏 (𝜏𝜏 − 2𝜏2𝜏 − 3𝜏2)] + 𝜅𝜏𝜏𝜆 (𝜅𝜆 − V𝜏)

⋅ (V𝜆
4
+ V𝜅 (V𝜏 + 1)) + 𝜅2 (V2𝜏2 − 1)} .

(38)

Taking (15) into account and using the above results one could
have the evolution of the Gaussian and mean curvatures of X
as follows:

𝜕𝐺

𝜕𝑡
=
𝜕

𝜕𝑡
[

Det (ℎ
𝑖𝑗
)

Det (𝑔
𝑖𝑗
)

] ,

𝜕𝐻

𝜕𝑡
=
1

2

𝜕

𝜕𝑡
[tr (𝑔𝑖𝑗ℎ

𝑗𝑘
)] ,

(39)

respectively.

4. Motion of Bishop Frenet Offset of
Ruled Surface

In this section, the fundamental quantities 𝑔∗
𝑖𝑗
and ℎ∗

𝑖𝑗
of

Bishop Frenet offsetX∗ are obtained.The velocities𝑉∗𝛾 ofX∗
are obtained.Thus the formulas of the evolution of the 1st and
2nd fundamental quantities of X∗ are derived. For this pur-
pose, let a Bishop Frenet offset of ruled surface generated by
binormal vector B∗ of the type 2 Bishop frame, moving in
3-dimensional Euclidean space 𝐸3, be given at time 𝑡 by the
parametrization [1]:

X∗ (𝑠, V, 𝑡) = 𝛼∗ (𝑠, 𝑡) + VB∗ (𝑠, 𝑡) , (40)

where X∗(𝑠, V, 0) = X∗(𝑠, V), 𝛼∗(𝑠, 0) = 𝛼∗(𝑠), and B∗(𝑠, 0) =
B∗(𝑠).

4.1. Curvatures of X∗. From (27) and using Bishop formulas
(2) it is easily checked that the coefficients of the first funda-
mental form 𝑔∗

𝑖𝑗
of Bishop Frenet offset are given by

𝑔
∗

11
= 𝜆
∗
,

𝑔
∗

22
= 1,

𝑔
∗

12
= 0,

𝑔
∗
= Det (𝑔

𝑖𝑗
) = 𝜆
∗
,

(41)

where 𝜆∗ = {(1 + V𝑘
1
)
2
+ V2𝑘2
2
} ≻ 0 and 𝑘

1
, 𝑘
2
are the type 2

Bishop curvatures of the curve 𝛼∗ given from (4).
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Using (13), the unit normal vector field of the Bishop
Frenet offset X∗ is given by

𝐸
∗

3
=

1

√𝜆∗
{V𝑘
2
T∗ − (1 + V𝑘

1
)N∗} . (42)

This leads to the coefficients of the second fundamental form
ℎ
∗

𝑖𝑗
of Bishop Frenet offset given by

ℎ
∗

11
=

1

√𝜆∗
{V2 (𝑘

1
𝑘
2
− 𝑘
1
𝑘


2
) − V𝑘

2
} ,

ℎ
∗

22
= 0,

ℎ
∗

12
= −

𝑘
2

√𝜆∗
,

ℎ
∗
= Det (ℎ∗

𝑖𝑗
) = −

𝑘
2

2

𝜆∗
.

(43)

According to (15) one can get the Gaussian and mean curva-
tures of Bishop Frenet offset X∗, respectively, as follows.

Lemma 6. Consider

𝐺
∗
= −

𝑘
2

2

𝜆∗2
,

𝐻
∗
=

1

2𝜆∗3/2
{V (V𝑘

2
𝑘


1
− (V𝑘
1
+ 1) 𝑘



2
)} .

(44)

From (17), one can obtain the Christoffel symbols Γ∗𝑘
𝑖𝑗

of Bishop
Frenet offset X∗ as follows.

Lemma 7. Consider

Γ
∗1

11
=
1

𝜆∗
{V ((V𝑘

1
+ 1) 𝑘



1
+ V𝑘
2
𝑘


2
)} ,

Γ
∗1

12
= Γ
∗1

21
=
1

𝜆∗
{V (𝑘2
1
+ 𝑘
2

2
) + 𝑘
1
} ,

Γ
∗2

11
= −𝜆
∗
Γ
∗1

12
,

(45)

and other components equal zero.

4.2. Curvatures’ Evolution of X∗. By a similar manner to
Section 3.1, to calculate 𝜕𝑔∗

𝑖𝑗
/𝜕𝑡 and 𝜕ℎ∗

𝑖𝑗
/𝜕𝑡, we have to com-

pute the velocities 𝑉∗𝛾 of X∗. Thus, using (9), (10), and (20)
with the assumption that velocities of the curve 𝛼∗ are V∗1 =
0, V∗2 = 𝑘

1
, and V∗3 = 𝑘

2
, one can get the tangential velocities

𝑉
∗𝑖 and the normal velocity 𝑉3 of X∗ as the following.

Corollary 8. Consider

𝑉
∗1
= −

1

𝜆∗
[V2𝑘
2
𝜆
∗

1
+ V𝜆∗
2
𝜆
∗

3
− V𝑘
1
𝑘
2
] ,

𝑉
∗2
= 𝑘
2
,

𝑉
∗3
=

1

√𝜆∗
[V𝜆∗
1
𝜆
∗

3
− V2𝑘
2
𝜆
∗

2
− 𝑘
1
𝜆
∗

3
] ,

(46)

where 𝜆∗
1
= (1/𝑘

1
)(𝑘


2
+ 𝑘
3

2
− 𝑘
1
𝑘


2
), 𝜆∗
2
= 𝑘


2
− 𝑘
1
𝑘
2
, and

𝜆
∗

3
= (1 + V𝑘

1
).

Having (19) and (33) in mind and taking into account the
above corollary and after straightforward computations we get
the following:

∇
1
𝑉
∗1
=

V
𝑘
2

1
𝜆∗2

{[−V2𝑘5
2
+ 4V3𝑘

1
𝑘
4

2
+ (𝑘


2
V3

+ 2 (𝑘


1
− 4𝑘


2
) V2 − 1) 𝑘3

2
− V2 (V𝑘

2
(𝑘


1
+ 2𝑘


2
)

+ 𝑘


2
) 𝑘
2

2
+ 𝑘


1
(4𝑘


2
V3 − 3𝑘

2
V2 + 2) + V (𝑘

2

+ V (3𝑘2
2
− 2𝑘
(3)

2
)) 𝑘
2
+ V𝑘
2
(2𝑘


1
+ 𝑘


2
) − 2V2𝑘

2
𝑘


2

− 𝑘


2
] 𝑘
2

1
− 4V𝑘
2
𝑘
3

2
+ V2 (𝑘

2
𝑘
3

2
+ 𝑘
(3)

2
𝑘
2
− 2𝑘


2
𝑘


2
) 𝑘
2

2

− 5V𝑘
1
(𝑘
3

2
+ 𝑘


2
) 𝑘
2
+ 𝑘
(3)

2
𝑘
2
+ 𝑘
1
𝑘


2
𝑘


2

+ V2𝑘
2
𝑘


1
(V2𝑘2
2
+ 1) (𝑘

3

2
+ 𝑘


2
)} ,

∇
1
𝑉
∗2
=

1

𝑘
1
𝜆∗2

{V2𝑘4
1
(V𝑘
2
− 3𝑘
2
) − V2𝑘3

1
(V𝑘
2
(𝑘


2

+ 𝑘
2

2
) − 𝑘


2
) + 𝑘
2

1
(V3𝑘2
2
𝑘


2
− V𝑘
2
+ 𝑘
2
(V3𝑘
2
+ V2𝑘
2

+ 2) + V3𝑘4
2
− 4V2𝑘3

2
) − 𝑘
1
(V3𝑘3
2
𝑘


2
− 2V𝑘
2
𝑘


2
+ 𝑘


2

+ V2𝑘
2
(𝑘


2
− 2𝑘
2
𝑘


2
+ 𝑘
3

2
)) − V3𝑘5

1
𝑘
2
+ V𝑘
2
(V2𝑘2
2

− 2) (𝑘


2
+ 𝑘
3

2
)} ,

∇
2
𝑉
∗1
=

1

𝑘
1
𝜆∗
{V [(V𝑘2

1
+ 𝑘
1
+ V𝑘2
2
) (𝑘
2

1
(2𝑘
2
− V𝑘
2
)

+ 𝑘
1
(V𝑘
2
− 1) 𝑘



2
+ V𝑘3
1
𝑘
2
− V𝑘
2
(𝑘


2
+ 𝑘
3

2
))]} ,

∇
2
𝑉
∗2
= 0.

(47)

Considering the above obtained results, we can formulate the
following.

Corollary 9. The evolution equations for the metric tensor 𝑔∗
𝑖𝑗

of X∗ are given by

𝜕𝑔
∗

11

𝜕𝑡
=

2

𝑘
2

1
𝜆∗2

{2V3𝑘2
2
+ 3V4𝑘

2
𝑘
2

2
𝑘
3

1
− 𝑘
2
𝑘
3

1

− 4V5𝑘3
2
𝑘


1
𝑘
3

1
+ 2V4𝑘3

2
𝑘


1
− 4V3𝑘

1
𝑘
3

1
+ V6𝑘4
2
𝑘


2
𝑘
3

1

− 4V4𝑘
2
𝑘
3

1
+ 5V2𝑘

2
𝑘
3

1
+ 6V4𝑘

2
𝑘
3

1
− 4V3𝑘2

2
𝑘


2
𝑘
3

1

+ 2V3𝑘
2
𝑘
3

1
+ 4V3𝑘

1
𝑘


2
− V4𝑘
2
𝑘


1
𝑘


2
− 3V2𝑘

2
𝑘
3

1

− V4𝑘2
2
𝑘


2
𝑘
3

1
+ V3𝑘
2
𝑘


2
𝑘
3

1
− V4𝑘
2
𝑘


2
𝑘
3

1
− V4𝑘
2
𝑘
3

1
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− V3𝑘5
2
𝑘
2

1
− V𝑘3
2
𝑘
2

1
+ V2𝑘2
2
𝑘
2

1
− 2V4𝑘2

2
𝑘
2

2

+ 3V3𝑘
2
𝑘
2

2
𝑘
2

1
− V6𝑘
1
𝑘
2

1
+ 4V4𝑘4

2
𝑘


1
𝑘
2

1
− 2V4𝑘

1
𝑘
2

1

+ 2V3𝑘3
2
𝑘


1
𝑘
2

1
− V2𝑘
2
𝑘


1
𝑘
2

1
+ 2V𝑘
2
𝑘


1
𝑘
2

1
+ V5𝑘4
2
𝑘


2
𝑘
2

1

− 8V3𝑘3
2
𝑘


2
𝑘
2

1
+ 2V3𝑘2

2
𝑘


2
𝑘
2

1
+ 2V2𝑘

1
𝑘


2
𝑘
2

1
} ,

𝜕𝑔
∗

12

𝜕𝑡
=

1

𝑘
1
𝜆∗2

{𝑘
2

1
[−V3𝑘4

2
(V2𝑘
2
+ 2) + V3𝑘2

2
𝑘


2
+ 2V𝑘
2

+ V2𝑘3
2
(−2V3𝑘

2
+ 3V2𝑘

2
)

+ 𝑘
2
(−2V3𝑘

2
+ 2V2𝑘
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Using (19), (43), and (46), one can get the following:
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From the foregoing results, using (23), and after straightforward
computations we conclude the following.

Corollary 10. The evolution equations for ℎ∗
𝑖𝑗
of X∗ are given
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Regarding the above obtained results, the evolution of the Gaus-
sian 𝜕𝐺∗/𝜕𝑡 and mean curvatures 𝜕𝐻∗/𝜕𝑡 of X∗ can be
obtained using the same technique as in (39).

5. Application

In this section, we give an example of how the evolving offsets
base curves (𝛼,𝛼∗) and generators (B,B∗) of a pair (X,X∗)
of Bishop Frenet ruled surface will look like after a period of
time and the effect of the evolution on curves’ frames. This is
given through some illustrated figures. For this purpose we
consider a helix curve 𝛼 as a base curve of the ruled surface
X:

𝛼 = {cos( 𝑠
√2

) , sin( 𝑠
√2

) ,
𝑠

√2

} . (51)

Thus, its binormal vector is given by

B = 1

√2

{sin( 𝑠
√2

) , − cos( 𝑠
√2

) , 1} . (52)

Using relation (24), the parametrization of the base curve of
the ruled surface X∗ takes the following form:

𝛼
∗
=
1

√2

{𝜓 sin( 𝑠
√2

)

+ √2 cos( 𝑠
√2

) ,√2 sin( 𝑠
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) − 𝜓 cos( 𝑠
√2

) , 𝜓

+ 𝑠} .

(53)

Thus and using the parametrizations of surfaces (26), (27),
(28), and (40) we can show Figures 1, 2, and 3 as follows.

Figure 1 shows the original pair (X,X∗) of Bishop Frenet
ruled surface at 𝑡 = 0 and it is noticed that the vector B is in
direction of the vector B∗.

Figure 2 shows the evolution of the pair (X,X∗) of Bishop
Frenet ruled surface. In this case, the function cos 𝑡 affects the
pair (X,X∗) and these surfaces are plotted for different values
of the time 𝑡. The evolution of the pair (X,X∗) expands and
collapses under these values of the time 𝑡 and it is noticed that
the motion of the pair (X,X∗) conserves the motion of the
moving frames associatedwith the offsets base curves (𝛼,𝛼∗),
respectively; that is, the vector B is in direction of the vector
B∗.

Figure 3 shows the evolution of the pair (X,X∗) of Bishop
Frenet ruled surface. In this case, the function 𝑒𝑡 affects the
pair (X,X∗) and these surfaces are plotted for different values
of the time 𝑡. Also, the same result as in Figure 2 is obtained;
that is, the vector B is in direction of the vector B∗.
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Figure 1: The original pair (X,X∗), BUB∗, 𝑡 = 0, 𝜓 = 1, 𝑠 ∈ [−𝜋, 𝜋],
V ∈ [−6, 6].
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Figure 2: The evolution pair (X,X∗), BUB∗, 𝑡 = 0.8, 𝜓 = 1,
𝑠 ∈ [−𝜋, 𝜋], V ∈ [−6, 6].
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Figure 3: The evolution pair (X,X∗), BUB∗, 𝑡 = 0.3, 𝜓 = 1,
𝑠 ∈ [−𝜋, 𝜋], V ∈ [−6, 6].

6. Conclusion

Weconclude that, by changing the applied time-varying func-
tions on the pair (X,X∗), it is found that the moving frames
associated with the offsets base curves (𝛼,𝛼∗) describe a par-
allel transport frame motion. This study plays an important
role in the construction and motion of new offsets of ruled
surfaces by giving a new frame. We can apply this idea on

many different surfaces using different methods. The field is
developing rapidly, and there are a lot of problems to be solved
and more work is needed to establish different results of new
surfaces in different spaces. We hope that this idea will be
helpful to mathematicians who are specialized in this area.
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[30] M. K. Karacan, B. Bükcü, and N. Yuksel, “On the dual Bishop
Darboux rotation axis of the dual space curve,”Applied Sciences,
vol. 10, pp. 115–120, 2008.

[31] S. Yılmaz and M. Turgut, “A new version of Bishop frame and
an application to spherical images,” Journal of Mathematical
Analysis and Applications, vol. 371, no. 2, pp. 764–776, 2010.

[32] M. K. Karacan and B. Bukcu, “An alternative moving frame for
tubular surfaces around timelike curves in the Minkowski 3-
space,” Balkan Journal of Geometry and its Applications, vol. 12,
no. 2, pp. 73–80, 2007.
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l’Académie des Sciences, vol. 31, pp. 623–624, 1850.

[35] H. Liu and F. Wang, “Mannheim partner curves in 3-space,”
Journal of Geometry, vol. 88, no. 1-2, pp. 120–126, 2008.

[36] F. Wang and H. Liu, “Mannheim partner curves in 3-Euclidean
space,”Mathematics in Practice andTheory, vol. 37, no. 1, pp. 141–
143, 2007.

[37] B. Ravani and T. S. Ku, “Bertrand offsets of ruled and devel-
opable surfaces,”Computer-Aided Design, vol. 23, no. 2, pp. 145–
152, 1991.

[38] E. Kasap, K. Orbay, and I. Aydemir, “Mannheim offsets of ruled
surfaces,” Mathematical Problems in Engineering, vol. 2009,
Article ID 160917, 9 pages, 2009.
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