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Based on the biological resource management of natural resources, a stage-structured predator-prey model with Holling type III
functional response, birth pulse, and impulsive harvesting at different moments is proposed in this paper. By applying comparison
theorem and some analysis techniques, the global attractivity of predator-extinction periodic solution and the permanence of this
system are studied. At last, examples and numerical simulations are given to verify the validity of the main results.

1. Introduction

In recent decades, with the increase of population and the
development of science and technology, human acceler-
ated the exploitation of natural resources. Many harvesting
predator-prey models have been studied. The dynamic rela-
tionship between predators and their preys has long been
and will continue to be one of the dominant themes in
both ecology and mathematical ecology due to its universal
existence and importance; see [1–6] and the references cited
therein. On the other hand, in the real world, many species
usually go through two or even more life stages as they
proceed from birth to death. Thus, it is practical to introduce
the stage structure into predator-prey models; see [7–12].
For example, Wei and Wang [13] considered the following
predator-prey system with stage structure:
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(𝑡 − 𝜏) ,
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𝑥 (𝑡 − 𝜏) 𝑦

2
(𝑡 − 𝜏) − 𝑟
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(1)

where 𝑥(𝑡), 𝑦
1
(𝑡), and 𝑦

2
(𝑡) denote the densities of prey

population and immature and mature individual predators
at time 𝑡, respectively. The meanings of all parameters may

refer to [13]. Authors obtained the sufficient conditions of the
persistence for system (1).

However, it is well known that many evolution processes
are characterized by the fact that at certain moments their
stage changes abruptly. For example, for IPM strategy on
ecosystem, the predators are released periodically every time
𝑇, and periodic catching or spraying pesticide is also applied.
Hence, the predator and prey experience a change of state
abruptly. Consequently, it is natural to assume that these
processes act in the form of impulse. Impulsivemethods have
been applied in almost every field of applied sciences. For
example, many population models assume that the popula-
tions are born throughout the year, whereas it is often the case
thatmany species give birth only during a single period of the
year; that is, births occur in regular pulses. Hence, the authors
Z. Xiang, D. Long, and X. Y. Song gave a single population
logistic model with birth pulse and impulsive harvesting at
different moments as follows:

�̇� (𝑡) = − 𝜇𝑥 (𝑡) , 𝑡 ̸= (𝑛 + 𝑙) 𝑇, 𝑡 ̸= (𝑛 + 1) 𝑇,

Δ𝑥 (𝑡) = 𝑟𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾

) , 𝑡 = (𝑛 + 𝑙) 𝑇,

Δ𝑥 (𝑡) = − 𝑝𝑥 (𝑡) , 𝑡 = (𝑛 + 1) 𝑇, 𝑛 ∈ 𝑍

+
,

(2)

where 𝑥(𝑡) represents the density of the resource population
at time 𝑡. Parameter 𝑟 is the intrinsic growth rate, the positive
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constant 𝐾 is referred to as the environmental carrying
capacity, and parameter 𝜇 is the death rate of resource
population. Parameter 𝑝 denotes the harvest rate of resource
population. For more details of the biological meaning of
system (2), we can refer to [14–17].

In addition, in the description of dynamical interactions
on predators and their preys, a crucial element of all models
is the classic definition of a predator’s functional response. A
functional response of the predator to the prey density refers
to the change in the density of prey attached per unit time per
predator as the prey density changes. For example, Zhang et
al. [18] suggested a function

𝜑 (𝑥) =

𝑥

2

𝑐 + 𝑥

2
,

(3)

called Holling type III. It is monotonic in the first quadrant,
that is, if the prey population increases, then the consumption
rate of prey per predator will increase too. And√𝑐 is the half-
saturation constant. The field of research on the dynamics
of impulsive predator-prey model with functional response
seems to be a new increasingly interesting area, which draws
many scholars’ attention.

Moreover, by the picture of ocean’s food-chain, we know
that small fish can prey on fish larvae as a predator; also it can
be eaten by the higher predator as a prey (see [19]). Hence,
according to the nature of biological resourcemanagement, it
is interesting to investigate impulsive harvesting on prey and
mature predator (e.g., the small fish and higher predator in
the ocean’s food-chain) simultaneously at some fixed time.

Based on the above discussion, we consider the stage-
structured predator-prey model with Holling type III func-
tional response, birth pulse, and impulsive harvesting at
different moments as follows:

�̇� (𝑡) = −𝛽
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(𝑡) − 𝑑

4
𝑦

2

2
(𝑡) ,

𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,

𝑥 (𝑡

+
) = 𝑥 (𝑡) + 𝑟𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾

) ,

𝑦

1
(𝑡

+
) = 𝑦

1
(𝑡) ,

𝑦

2
(𝑡

+
) = 𝑦

2
(𝑡) ,

𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

𝑥 (𝑡

+
) = (1 − 𝑝

1
) 𝑥 (𝑡) ,

𝑦

1
(𝑡

+
) = 𝑦

1
(𝑡) ,

𝑦

2
(𝑡

+
) = (1 − 𝑝

2
) 𝑦

2
(𝑡) ,

𝑡 = 𝑛𝑇,
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2
(𝑠) , 𝜙

3
(𝑠)) ∈ 𝐶 ([−𝜏, 0] , 𝑅

3

+
) ,

𝜙

𝑖
(0) > 0, 𝑖 = 1, 2, 3,

(4)

where 𝑥(𝑡) denotes the density of the prey and 𝑦

1
(𝑡), 𝑦
2
(𝑡)

represent the immature and mature predator densities,
respectively. Parameters 𝑟, 𝐾, 𝛽, 𝜆, 𝑑

1
, 𝑑
2
, 𝑑
3
, and 𝑑

4
are

positive constants, where 𝑟 is the intrinsic growth rate of
the prey, 𝐾 denotes the capacity rate, concerned with the
maintaining of the evolution of the population, 𝛽 represents
the predation rate of predator, 𝜆 is the conversion rate
that translated into predator population increase, 𝑑

1
, 𝑑
2
,

and 𝑑

3
denote the death rate of prey, immature predator,

and mature predator, respectively, and 𝑑

4
is the intrinsic-

specific competition rate of the mature predator. Parameter
𝜏 represents a constant time from immaturity to maturity.
Parameters 𝑝

1
, 𝑝
2
denote the harvesting rates of prey and

mature predator at 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑍

+
, respectively, 𝑍

+
=

{1, 2, . . .}, and 𝑇 is the period of the impulsive effect.
It is well known that, in the sustainable development of

natural resources, it is very important to study the sustainable
survival of species. So, in this paper, we aim to investigate the
global attractivity of predator-extinction periodic solution
and the permanence of system (4). From the biological point
of view, we only consider (4) in the biological meaning region

𝐷 = {(𝑥 (𝑡) , 𝑦

1
(𝑡) , 𝑦

2
(𝑡)) : 𝑥 (𝑡) ≥ 0, 𝑦

1
(𝑡) ≥ 0, 𝑦

2
(𝑡) ≥ 0} .

(5)

This paper is organized as follows. Firstly, some prelim-
inaries are given in Section 2. In Section 3, the sufficient
conditions for the global attractivity of predator-extinction
periodic solution are obtained. The permanence of system
(4) is investigated in Section 4. In Section 5, we present some
examples and simulations to illustrate our results. At last, a
brief conclusion is given in Section 6.

2. Preliminaries

In this section, some definitions and lemmas are introduced.
Let 𝑅
+
= [0,∞) and 𝑅

3

+
= {𝑥 ∈ 𝑅

3
, 𝑥 ≥ 0}. Denote𝑓 =

(𝑓

1
, 𝑓

2
, 𝑓

3
)

𝑇 to be themap defined by the right hand of system
(4). Let 𝑉 : 𝑅

+
× 𝑅

3

+
→ 𝑅

+
; then 𝑉 is said to belong to class

𝑉

0
, if

(i) 𝑉 is continuous in ((𝑛 − 1)𝑇, (𝑛 + 𝑙 − 1)𝑇] × 𝑅

3

+
and

((𝑛 + 𝑙 − 1)𝑇, 𝑛𝑇] × 𝑅

3

+
for each 𝑥 ∈ 𝑅

3

+
, 𝑛 ∈ 𝑁,

lim
(𝑡,𝑦)→ ((𝑛+𝑙−1)𝑇

+
,𝑥)
𝑉(𝑡, 𝑦) = 𝑉((𝑛 + 𝑙 − 1)𝑇

+
, 𝑥) and

lim
(𝑡,𝑦)→ (𝑛𝑇

+
,𝑥)
𝑉(𝑡, 𝑦) = 𝑉(𝑛𝑇

+
, 𝑥) exists,

(ii) 𝑉 is locally Lipschitzian in 𝑥.

Definition 1. Let𝑉 ∈ 𝑉

0
, and (𝑡, V) ∈ ((𝑛−1)𝑇, (𝑛+𝑙−1)𝑇]×𝑅3

+

and ((𝑛+𝑙−1)𝑇, 𝑛𝑇]×𝑅3
+
, the upper right derivative of𝑉(𝑡, V)

with respect to the impulsive differential system (4) is defined
as

𝐷

+
𝑉 (𝑡, V) = lim

ℎ→0
+

sup 1
ℎ

[𝑉 (𝑡 + ℎ, V + ℎ𝑓 (𝑡, V)) − 𝑉 (𝑡, V)] .

(6)
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The solution of (4), denote by V = (𝑥(𝑡), 𝑦

1
(𝑡), 𝑦

2
(𝑡))

𝑇, is
a piecewise continuous function V : 𝑅

+
→ 𝑅

3

+
, V(𝑡) is

continuous on ((𝑛 − 1)𝑇, (𝑛 + 𝑙 − 1)𝑇] × 𝑅3
+
and

((𝑛 + 𝑙 − 1) 𝑇, 𝑛𝑇] × 𝑅

3

+
(𝑛 ∈ 𝑁, 0 ≤ 𝑙 ≤ 1) . (7)

Obviously the existence and uniqueness of solutions of (4) is
guaranteed by the smoothness properties of𝑓, which denotes
the map defined by the right hand of system (4).

The following lemmas are useful for the proof of themain
results.

Lemma 2 (see [5, 7]). Consider the following differential
equation:

�̇� (𝑡) = 𝑎𝑥 (𝑡 − 𝜏) − 𝑏𝑥 (𝑡) − 𝑐𝑥

2
(𝑡) , (8)

where 𝑎, 𝑏, 𝑐, and 𝜏 are positive constants and 𝑥(𝑡) > 0 for
𝑡 ∈ [−𝜏, 0]. We have the following:

(i) if 𝑎 < 𝑏, then lim
𝑡→+∞

𝑥(𝑡) = 0;

(ii) if 𝑎 > 𝑏, then lim
𝑡→+∞

𝑥(𝑡) = (𝑎 − 𝑏)/𝑐.

Lemma 3 (see [14]). Consider the following system:

�̇� (𝑡) = − 𝑤𝑢 (𝑡) , 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,

𝑢 (𝑡

+
) = 𝑢 (𝑡) + 𝑟𝑢 (𝑡) (1 −

𝑢 (𝑡)

𝐾

) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

𝑢 (𝑡

+
) = (1 − 𝑝) 𝑢 (𝑡) , 𝑡 = 𝑛𝑇.

(9)

Then, system (9) has a positive periodic solution 𝑢

∗
(𝑡) with

period 𝑇, which is globally stable, where

𝑢

∗
(𝑡) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝑒

𝑤𝑙𝑇
(

1 + 𝑟

𝑟

𝐾 −

𝑒

𝑤𝑇

(1 − 𝑝) 𝑟

𝐾) 𝑒

−𝑤(𝑡−(𝑛−1)𝑇)
,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝑙 − 1) 𝑇] ,

𝑒

𝑤𝑇

1 − 𝑝

(

1 + 𝑟

𝑟

𝐾 −

𝑒

𝑤𝑇

(1 − 𝑝) 𝑟

𝐾) 𝑒

−𝑤(𝑡−(𝑛+𝑙−1)𝑇)
,

𝑡 ∈ ((𝑛 + 𝑙 − 1) 𝑇, 𝑛𝑇] ,

(10)

if 𝑝 < 1 − (𝑒

𝑤𝑇
/(1 + 𝑟)).

Lemma 4. There is a positive constant M such that 𝑥(𝑡) ≤

𝑀/𝜆,𝑦
1
(𝑡) ≤ 𝑀, and𝑦

2
(𝑡) ≤ 𝑀 for every solution (𝑥(𝑡), 𝑦

1
(𝑡),

𝑦

2
(𝑡)) of system (4) with all 𝑡 sufficiently large, where 𝜆 is a

positive constant defined in system (4).

Proof. Define 𝑉(𝑡) = 𝜆𝑥(𝑡) + 𝑦

1
(𝑡) + 𝑦

2
(𝑡).

If 𝑡 ̸= (𝑛 + 𝑙 − 1)𝑇, 𝑡 ̸= 𝑛𝑇, we let 𝑑 = min{𝑑
1
, 𝑑

2
, 𝑑

3
}; then

𝐷

+
𝑉 (𝑡) + 𝑑𝑉 (𝑡) = −𝜆 (𝑑

1
− 𝑑) 𝑥 (𝑡) − (𝑑

2
− 𝑑) 𝑦

1
(𝑡)

− (𝑑

3
− 𝑑) 𝑦

2
(𝑡) − 𝑑

4
𝑦

2

2
(𝑡) ≤ 0,

(11)

If 𝑡 = (𝑛 + 𝑙 − 1)𝑇, we have

𝑉 ((𝑛 + 𝑙 − 1) 𝑇

+
) = 𝑉 ((𝑛 + 𝑙 − 1) 𝑇) + 𝜆𝑟𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾

)

≤ 𝑉 ((𝑛 + 𝑙 − 1) 𝑇) +

𝜆𝑟𝐾

4

,

(12)

and if 𝑡 = 𝑛𝑇, it is clear that 𝑉(𝑛𝑇+) ≤ 𝑉(𝑛𝑇).
Then, by Lemma 2.2 of [20], for all 𝑡 ≥ 0, we have

𝑉 (𝑡) ≤ 𝑉 (0

+
) 𝑒

−𝑑
1
𝑡
+

𝜆𝑟𝐾

4

𝑒

−𝑑(𝑡−𝑇)

1 − 𝑒

−𝑑𝑇

+

𝜆𝑟𝐾

4

𝑒

𝑑𝑇

𝑒
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→

𝜆𝑟𝐾

4

𝑒

𝑑𝑇

𝑒

𝑑𝑇
− 1

, 𝑡 → ∞.

(13)

Therefore, there exists a positive constant

𝑀 =

𝜆𝑟𝐾

4

𝑒

𝑑𝑇

𝑒

𝑑𝑇
− 1

(14)

such that 𝑥(𝑡) ≤ 𝑀/𝜆, 𝑦
1
(𝑡) ≤ 𝑀, and 𝑦

2
(𝑡) ≤ 𝑀 for 𝑡 large

enough. This completes the proof.

3. Global Attractivity of a Predator-Extinction
Periodic Solution

In this section, we will demonstrate the existence and global
attractivity of a predator-extinction periodic solution, in
which the predator individuals are entirely absent from the
population permanently; that is, 𝑦

1
(𝑡) = 0 and 𝑦

2
(𝑡) = 0 for

all 𝑡 ≥ 0.
Firstly, by Lemma 3, we can easily obtain the existence of

predator-extinction periodic solution for system (4).

Theorem 5. System (4) has a predator-extinction periodic
solution (𝑥

∗
(𝑡), 0, 0) which is globally stable; that is, for 𝑡 ∈

((𝑛 − 1)𝑇, 𝑛𝑇] and any solution (𝑥(𝑡), 𝑦

1
(𝑡), 𝑦

2
(𝑡)) of system

(4), we have 𝑥(𝑡) → 𝑥

∗
(𝑡) as 𝑡 → ∞, where

𝑥

∗
(𝑡)=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝑒

𝑑
1
𝑙𝑇
(

1 + 𝑟

𝑟

𝐾 −

𝑒

𝑑
1
𝑇

(1 − 𝑝

1
) 𝑟

𝐾) 𝑒

−𝑑
1
(𝑡−(𝑛−1)𝑇)

,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝑙 − 1) 𝑇] ,

𝑒

𝑑
1
𝑇

1 − 𝑝

1

(

1 + 𝑟

𝑟

𝐾 −

𝑒

𝑑
1
𝑇

(1 − 𝑝

1
) 𝑟

𝐾) 𝑒

−𝑑
1
(𝑡−(𝑛+𝑙−1)𝑇)

,

𝑡 ∈ ((𝑛 + 𝑙 − 1) 𝑇, 𝑛𝑇] ,

(15)

and 𝑥∗(0+) = 𝑒

𝑑
1
𝑙𝑇
(((1 + 𝑟)/𝑟)𝐾 − (𝑒

𝑑
1
𝑇
/(1 − 𝑝

1
)𝑟)𝐾).

Next, we give the conditions on the global attractivity of the
predator-extinction periodic solution (𝑥∗(𝑡), 0, 0) of the system
(4).

Theorem 6. The predator-extinction periodic solution (𝑥∗(𝑡),
0, 0) of system (4) is globally attractive, if

(A
1
) 1 − 𝑝

1
− (𝑒

𝑑
1
𝑇
/(1 + 𝑟)) > 0,

(A
2
) 𝜆𝛽𝑒−𝑑2𝜏(𝜌2/(𝑐 + 𝜌2)) < 𝑑

3
.
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Proof. Let (𝑥(𝑡), 𝑦
1
(𝑡), 𝑦

2
(𝑡)) be any solution of system (4);

from the first, the fourth, and the seventh equations of system
(4), we have

�̇� (𝑡) ≤ − 𝑑

1
𝑥 (𝑡) , 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,

𝑥 (𝑡

+
) = 𝑥 (𝑡) + 𝑟𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾

) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

𝑥 (𝑡

+
) = (1 − 𝑝

1
) 𝑥 (𝑡) , 𝑡 = 𝑛𝑇.

(16)

Consider the auxiliary system of (16) as follows:
�̇�

1
(𝑡) = − 𝑑

1
𝑧

1
(𝑡) , 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,

𝑧

1
(𝑡

+
) = 𝑧

1
(𝑡) + 𝑟𝑧

1
(𝑡) (1 −

𝑧

1
(𝑡)

𝐾

) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

𝑧

1
(𝑡

+
) = (1 − 𝑝

1
) 𝑧

1
(𝑡) , 𝑡 = 𝑛𝑇.

(17)
By Lemma 3 and condition (A

1
), we have

𝑧

∗

1
(𝑡)=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝑒

𝑑
1
𝑙𝑇
(

1 + 𝑟

𝑟

𝐾 −

𝑒

𝑑
1
𝑇

(1 − 𝑝

1
) 𝑟

𝐾) 𝑒

−𝑑
1
(𝑡−(𝑛−1)𝑇)

,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝑙 − 1) 𝑇] ,

𝑒

𝑑
1
𝑇

1 − 𝑝

1

(

1 + 𝑟

𝑟

𝐾 −

𝑒

𝑑
1
𝑇

(1 − 𝑝

1
) 𝑟

𝐾) 𝑒

−𝑑
1
(𝑡−(𝑛+𝑙−1)𝑇)

,

𝑡 ∈ ((𝑛 + 𝑙 − 1) 𝑇, 𝑛𝑇] ,

(18)
which is unique and positive periodic solution of system (17)
and is globally attractive. Applying comparison theorem of
impulsive differential equation [21], there exist 𝑛

1
∈ 𝑍

+
and a

sufficiently small constant 𝜀
1
> 0 such that

𝑥 (𝑡) ≤ 𝑧

1
(𝑡) ≤ 𝑧

∗

1
(𝑡) + 𝜀

1

≤

𝑒

𝑑
1
𝑇

1 − 𝑝

1

(

1 + 𝑟

𝑟

𝐾 −

𝑒

𝑑
1
𝑇

(1 − 𝑝

1
) 𝑟

𝐾) + 𝜀

1

Δ

= 𝜌,

(19)

for 𝑡 ≥ (𝑛

1
− 1)𝑇.

From inequality (19), we can obtain

̇𝑦

2
(𝑡) ≤ 𝜆𝛽𝑒

−𝑑
2
𝜏 𝜌

2

𝑐 + 𝜌

2
𝑦

2
(𝑡 − 𝜏) − 𝑑

3
𝑦

2
(𝑡) − 𝑑

4
𝑦

2

2
(𝑡) ,

𝑡 ̸= 𝑛𝑇,

𝑦

2
(𝑡

+
) = (1 − 𝑝

2
) 𝑦

2
(𝑡) ≤ 𝑦

2
(𝑡) , 𝑡 = 𝑛𝑇.

(20)
Consider the auxiliary system of (20):

�̇�

2
(𝑡) = 𝜆𝛽𝑒

−𝑑
2
𝜏 𝜌

2

𝑐 + 𝜌

2
𝑧

2
(𝑡 − 𝜏) − 𝑑

3
𝑧

2
(𝑡) − 𝑑

4
𝑧

2

2
(𝑡) .

(21)

Applying Lemma 2, (A
2
), and comparison theorem, we have

𝑧

2
(𝑡) → 0 as 𝑡 → ∞. Then, for any small constant 𝜀

2
> 0,

there exists 𝑡
1
> 0, such that
𝑦

2
(𝑡) ≤ 𝑧

2
(𝑡) ≤ 𝜀

2
, 𝑡 > 𝑡

1
. (22)

By the second equation of system (4) and (22), we have

̇𝑦

1
(𝑡) ≤ 𝜆𝛽

𝜌

2

𝑐 + 𝜌

2
𝜀

2
− 𝑑

2
𝑦

1
(𝑡) .

(23)

Consider the auxiliary system of (23) as follows:

�̇�

3
(𝑡) = 𝜆𝛽

𝜌

2

𝑐 + 𝜌

2
𝜀

2
− 𝑑

2
𝑧

3
(𝑡) .

(24)

Integrating (24), one can easily get 𝑧
3
(𝑡) = 𝜆𝛽(𝜌

2
/𝑑

2
(𝑐 +

𝜌

2
))𝜀

2
as 𝑡 → ∞. Then, for any small constant 𝜀

3
> 0, there

exists 𝑡
2
> 0 such that

𝑦

1
(𝑡) ≤ 𝑧

3
(𝑡) ≤ 𝜆𝛽

𝜌

2

𝑑

2
(𝑐 + 𝜌

2
)

𝜀

2
+ 𝜀

3
, 𝑡 > 𝑡

2
. (25)

According to the first, the fourth, and the seventh equations
of (4), we have

�̇� (𝑡) ≥ − (𝛽𝜉𝜀

2
+ 𝑑

1
) 𝑥 (𝑡) , 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,

𝑥 (𝑡

+
) = 𝑥 (𝑡) + 𝑟𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾

) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

𝑥 (𝑡

+
) = (1 − 𝑝

1
) 𝑥 (𝑡) , 𝑡 = 𝑛𝑇,

(26)

where 𝜉 = max{√𝑐/2𝑐, 𝜌/(𝑐 + 𝜌

2
)}. Again, consider the

auxiliary system of (26):

�̇�

4
(𝑡) = − 𝑑

1
𝑧

4
(𝑡) , 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,

𝑧

4
(𝑡

+
) = 𝑧

4
(𝑡) + 𝑟𝑧

4
(𝑡) (1 −

𝑧

4
(𝑡)

𝐾

) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

𝑧

4
(𝑡

+
) = (1 − 𝑝

1
) 𝑧

4
(𝑡) , 𝑡 = 𝑛𝑇.

(27)

In view of Lemma 3, system (27) has a unique positive
periodic solution as follows:

𝑧

∗

4
(𝑡) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝑒

(𝛽𝜉𝜀
2
+𝑑
1
)𝑙𝑇
(

1 + 𝑟

𝑟

𝐾 −

𝑒

(𝛽𝜉𝜀
2
+𝑑
1
)𝑇

(1 − 𝑝

1
) 𝑟

𝐾)

×𝑒

−(𝛽𝜉𝜀
2
+𝑑
1
)(𝑡−(𝑛−1)𝑇)

,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝑙 − 1) 𝑇] ,

𝑒

(𝛽𝜉𝜀
2
+𝑑
1
)𝑇

1 − 𝑝

1

(

1 + 𝑟

𝑟

𝐾 −

𝑒

(𝛽𝜉𝜀
2
+𝑑
1
)𝑇

(1 − 𝑝

1
) 𝑟

𝐾)

×𝑒

−(𝛽𝜉𝜀
2
+𝑑
1
)(𝑡−(𝑛+𝑙−1)𝑇)

,

𝑡 ∈ ((𝑛 + 𝑙 − 1) 𝑇, 𝑛𝑇] .

(28)

Similarly, for any arbitrary small constant 𝜀
1
> 0, there exists

𝑡

3
> 0 such that 𝑥(𝑡) ≥ 𝑧

∗

4
(𝑡) − 𝜀

1

Δ

= 𝛿. Let 𝜀
2
→ 0; then,

𝑧

∗

4
(𝑡) → 𝑥

∗
(𝑡), and

𝑥 (𝑡) ≥ 𝑥

∗
(𝑡) − 𝜀

1
. (29)

It follows from (29) and (19) that 𝑥(𝑡) → 𝑥

∗
(𝑡) as 𝑡 → ∞.

Let 𝜀
2
, 𝜀

3
→ 0; then, we have 𝑦

1
(𝑡) → 0, 𝑦

2
(𝑡) → 0 as 𝑡

sufficiently large enough. The proof is complete.

4. Permanence of System (4)
In the real world, from the principle of ecosystem balance and
saving resources, we only need to control the predator under
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the economic threshold level andnot to eradicate the predator
totally. Thus, we focus on the permanence of system (4).

First, we give the definition of permanence.

Definition 7. System (4) is said to be persistent if there
exist positive constants 𝑚 and 𝑀 such that every positive
solution (𝑥(𝑡), 𝑦

1
(𝑡), 𝑦

2
(𝑡)) of system (4) satisfies 𝑚 ≤

𝑥(𝑡), 𝑦

1
(𝑡), 𝑦

2
(𝑡) ≤ 𝑀 for 𝑡 sufficiently large enough.

Theorem 8. System (4) is permanent, if the following condi-
tions hold:
(A
3
) 𝜆𝛽𝑒

−𝑑
2
𝜏
(𝑞

2
/(𝑐 + 𝑞

2
)) − 𝑑

3
−𝑀𝑑

4
> 0,

(A
4
) 1 − 𝑝

1
> 𝑒

((𝛽𝑀/𝜆𝑐)𝑚
∗

2
+𝑑
1
)𝑇
/(1 + 𝑟),

where 𝑀, 𝑚∗
2
, and 𝑞 are defined in (14), (34), and (39),

respectively.

Proof. It is obvious that the third equation of system (4) can
be rewritten as follows:

̇𝑦

2
(𝑡) = (𝜆𝛽𝑒

−𝑑
2
𝜏 𝑥

2
(𝑡)

𝑐 + 𝑥

2
(𝑡)

− 𝑑

3
− 𝑑

4
𝑦

2
(𝑡)) 𝑦

2
(𝑡)

− 𝜆𝛽𝑒

−𝑑
2
𝜏 𝑑

𝑑𝑡

∫

𝑡

𝑡−𝜏

𝑥

2
(𝜃)

𝑐 + 𝑥

2
(𝜃)

𝑦

2
(𝜃) 𝑑𝜃.

(30)

Define𝑉(𝑡) = 𝑦

2
(𝑡) + 𝜆𝛽𝑒

−𝑑
2
𝜏
∫

𝑡

𝑡−𝜏
(𝑥

2
(𝜃)/(𝑐 + 𝑥

2
(𝜃)))𝑦

2
(𝜃)𝑑𝜃.

By computation, we have

̇

𝑉 (𝑡) = (𝜆𝛽𝑒

−𝑑
2
𝜏 𝑥

2
(𝑡)

𝑐 + 𝑥

2
(𝑡)

− 𝑑

3
− 𝑑

4
𝑦

2
(𝑡)) 𝑦

2
(𝑡) . (31)

Applying Lemma 4, we have

̇

𝑉 (𝑡) > (𝜆𝛽𝑒

−𝑑
2
𝜏 𝑥

2
(𝑡)

𝑐 + 𝑥

2
(𝑡)

− 𝑑

3
−𝑀𝑑

4
)𝑦

2
(𝑡) . (32)

By hypothesis (A
3
), for the arbitrary small constant 𝜀

4
> 0,

we have

𝜆𝛽𝑒

−𝑑
2
𝜏

(𝑞 + 𝜀

4
)

2

𝑐 + (𝑞 + 𝜀

4
)

2
> 𝑑

3
+𝑀𝑑

4
. (33)

Let𝑚∗
2
be determined by the following equation:

1 + 𝑟

𝑟

𝐾 −

𝑒

(𝛽(𝑀/𝑐𝜆)𝑚
∗

2
+𝑑
1
)𝑇

(1 − 𝑝

1
) 𝑟

𝐾 =
√

𝑐 (𝑑

3
+𝑀𝑑

4
)

𝜆𝛽𝑒

−𝑑
2
𝜏
− 𝑑

3
−𝑀𝑑

4

.

(34)

Then, for any 𝑡
4
> 0, it is impossible that 𝑦

2
(𝑡) < 𝑚

∗

2
for all

𝑡 > 𝑡

4
. Suppose that the claim is invalid; then, there exists

𝑡

4
> 0 such that 𝑦

2
(𝑡) < 𝑚

∗

2
for all 𝑡 > 𝑡

4
. It follows from the

first equation of system (4) that

�̇� (𝑡) ≥ − (𝛽

𝑀

𝑐𝜆

𝑚

∗

2
+ 𝑑

1
)𝑥 (𝑡) , 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,

𝑥 (𝑡

+
) = 𝑥 (𝑡) + 𝑟𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾

) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

𝑥 (𝑡

+
) = (1 − 𝑝

1
) 𝑥 (𝑡) , 𝑡 = 𝑛𝑇,

(35)

for all 𝑡 > 𝑡

4
. Consider the auxiliary system of (35) as follows:

�̇�

5
(𝑡) =− (𝛽

𝑀

𝜆𝑐

𝑚

∗

2
+ 𝑑

1
) 𝑧

5
(𝑡) , 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,

𝑧

5
(𝑡

+
) = 𝑧

5
(𝑡) + 𝑟𝑧

5
(𝑡) (1 −

𝑧

5
(𝑡)

𝐾

) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

𝑧

5
(𝑡

+
) = (1 − 𝑝

1
) 𝑧

5
(𝑡) , 𝑡 = 𝑛𝑇.

(36)
By hypothesis (A

4
), we can obtain from Lemma 3 that

𝑧

∗

5
(𝑡) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝑒

(𝛽(𝑀/𝑐𝜆)𝑚
∗

2
+𝑑
1
)𝑙𝑇
(

1 + 𝑟

𝑟

𝐾 −

𝑒

(𝛽(𝑀/𝑐𝜆)𝑚
∗

2
+𝑑
1
)𝑇

(1 − 𝑝

1
) 𝑟

𝐾)

×𝑒

−(𝛽(𝑀/𝑐𝜆)𝑚
∗

2
+𝑑
1
)(𝑡−(𝑛−1)𝑇)

,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝑙 − 1) 𝑇] ,

𝑒

(𝛽(𝑀/𝑐𝜆)𝑚
∗

2
+𝑑
1
)𝑇

1 − 𝑝

1

(

1 + 𝑟

𝑟

𝐾 −

𝑒

(𝛽(𝑀/𝑐𝜆)𝑚
∗

2
+𝑑
1
)𝑇

(1 − 𝑝

1
) 𝑟

𝐾)

×𝑒

−(𝛽(𝑀/𝑐𝜆)𝑚
∗

2
+𝑑
1
)(𝑡−(𝑛+𝑙−1)𝑇)

,

𝑡 ∈ ((𝑛 + 𝑙 − 1) 𝑇, 𝑛𝑇] ,

(37)
which is the unique positive periodic solution of system
(36) and is globally asymptotically stable. By the comparison
theorem of impulsive differential equation, we know there
exists 𝑡

5
(> 𝑡

4
+ 𝜏) such that 𝑥(𝑡) ≥ 𝑧

∗

5
(𝑡) − 𝜀

4
.

On the other hand, for all 𝑡 ≥ 𝑡

5
, we have

𝑧

∗

5
(𝑡) ≥

{

{

{

{

{

{

{

{

{

{

{

1 + 𝑟

𝑟

𝐾 −

𝑒

(𝛽(𝑀/𝑐𝜆)𝑚
∗

2
+𝑑
1
)𝑇

(1 − 𝑝

1
) 𝑟

𝐾

(

1 + 𝑟

𝑟

𝐾 −

𝑒

(𝛽(𝑀/𝑐𝜆)𝑚
∗

2
+𝑑
1
)𝑇

(1 − 𝑝

1
) 𝑟

𝐾)

𝑒

(𝛽(𝑀/𝑐𝜆)𝑚
∗

2
+𝑑
1
)𝑙𝑇

(1 − 𝑝

1
)

}

}

}

}

}

}

}

}

}

}

}

≥

1 + 𝑟

𝑟

𝐾 −

𝑒

(𝛽(𝑀/𝑐𝜆)𝑚
∗

2
+𝑑
1
)𝑇

(1 − 𝑝

1
) 𝑟

𝐾

Δ

= 𝜎.

(38)
Thus,

𝑥 (𝑡) ≥ 𝜎 − 𝜀

4

Δ

= 𝑞, ∀𝑡 ≥ 𝑡

5
.

(39)

By (33), we have

𝜆𝛽𝑒

−𝑑
2
𝜏 𝜎

2

𝑐 + 𝜎

2
> 𝑑

3
+𝑀𝑑

4
.

(40)

Hence, by (32) and (40), we have

̇

𝑉 (𝑡) ≥ (𝜆𝛽𝑒

−𝑑
2
𝜏 𝜎

2

𝑐 + 𝜎

2
− 𝑑

3
−𝑀𝑑

4
)𝑦

2
(𝑡) , 𝑡 ≥ 𝑡

5
. (41)

Let 𝑦𝑚
2
= min

𝑡∈[𝑡
1
,𝑡
1
+𝜏]
𝑦

2
(𝑡). We will show that 𝑦

2
(𝑡) ≥ 𝑦

𝑚

2
for

all 𝑡 ≥ 𝑡

5
. Otherwise, there exists a constant 𝛼 > 0 such that

𝑦

2
(𝑡) ≥ 𝑦

𝑚

2
for 𝑡
5
≤ 𝑡 ≤ 𝑡

5
+ 𝜏 + 𝛼, 𝑦

2
(𝑡

5
+ 𝜏 + 𝛼) ≥ 𝑦

𝑚

2
, and

̇𝑦

2
(𝑡

5
+ 𝜏 + 𝛼) < 0. However, by the third equation of system

(4) and (40), we have

̇𝑦

2
(𝑡

5
+ 𝜏 + 𝛼) ≥ (𝜆𝛽𝑒

−𝑑
2
𝜏 𝜎

2

𝑐 + 𝜎

2
− 𝑑

3
−𝑀𝑑

4
)𝑦

𝑚

2
> 0,

𝑡 ≥ 𝑡

5
,

(42)
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Figure 1: Dynamical behavior of system (4) with 𝑟 = 2, 𝐾 = 5, 𝛽 = 1, 𝑐 = 10, 𝑑
1
= 0.5, 𝜆 = 1, 𝑑

2
= 0.4, 𝑑

3
= 0.3, 𝑑

4
= 0.1, 𝑝

1
= 0.4,

𝑝

2
= 0.1, 𝜏 = 0, 𝑇 = 1. (a) Time series of the prey population; (b) time series of the immature predator population; (c) time series of the

mature predator population.

which is a contradiction. Thus, we have 𝑦
2
(𝑡) ≥ 𝑦

𝑚

2
for all

𝑡 ≥ 𝑡

5
.

By (40) and (41), therefore,

̇

𝑉 (𝑡) > (𝜆𝛽𝑒

−𝑑
2
𝜏 𝜎

2

𝑐 + 𝜎

2
− 𝑑

3
−𝑀𝑑

4
)𝑦

𝑚

2
> 0, 𝑡 ≥ 𝑡

5
,

(43)

whichmeans that𝑉(𝑡) → ∞ as 𝑡 → ∞. It is a contradiction
with𝑉(𝑡) ≤ (𝑀/𝜆)(1+ 𝑟𝜏𝑒

−𝑑
1
𝜏
). Therefore, for any 𝑡

4
> 0, the

inequality𝑦
2
(𝑡) < 𝑚

∗

2
cannot hold for all 𝑡 ≥ 𝑡

4
. So, there exist

the following two cases:

(i) if 𝑦
2
(𝑡) ≥ 𝑚

∗

2
holds for all 𝑡 large enough, then our

goal is obtained;
(ii) if 𝑦

2
(𝑡) is oscillatory about𝑚∗

2
, let

𝑚

2
= min{

𝑚

∗

2

2

,𝑚

∗

2
𝑒

−(𝑑
3
+𝑑
4
𝑚
∗

2
)𝜏
} . (44)

We prove that 𝑦
2
(𝑡) ≥ 𝑚

2
for all 𝑡 sufficiently large. Suppose

that there exist positive constants 𝜇, 𝜂 such that 𝑦
2
(𝜇) =

𝑦

2
(𝜇 + 𝜂) = 𝑚

∗

2
and 𝑦

2
(𝑡) < 𝑚

∗

2
for all 𝜇 < 𝑡 < 𝜇 + 𝜂,

and inequality (40) holds true for 𝜇 < 𝑡 < 𝜇 + 𝜂, where
𝜇 is sufficiently large enough. Since 𝑦

2
(𝑡) is continuous and

bounded and is not affected by impulses, we conclude that
𝑦

2
(𝑡) is uniformly continuous. Hence, there exists a constant

𝑇

0
(0 < 𝑇

0
< 𝜏 and 𝑇

0
is independent of the choice of 𝜇) such

that 𝑦
2
(𝜇) > 𝑚

∗

2
/2 for 𝜇 ≤ 𝑡 ≤ 𝜇 + 𝑇

0
. If 𝜂 ≤ 𝑇

0
, our aim

is obtained. If 𝑇
0
< 𝜂 ≤ 𝜏, from the third equation of (4),

we have that, for 𝜇 < 𝑡 < 𝜇 + 𝜂, ̇𝑦

2
(𝑡) ≥ −𝑑

3
𝑦

2
(𝑡) − 𝑑

4
𝑦

2

2
(𝑡).

According to the assumptions 𝑦
2
(𝜇) = 𝑚

∗

2
and 𝑦

2
(𝜇) < 𝑚

∗

2

for 𝜇 < 𝑡 < 𝜇 + 𝜂, we have ̇𝑦

2
(𝑡) ≥ −(𝑑

3
+ 𝑑

4
𝑚

∗

2
)𝑦

2
(𝑡) for 𝜇 <

𝑡 ≤ 𝜇+𝜂 ≤ 𝜇+𝜏. Then, we derive that 𝑦
2
(𝑡) ≥ 𝑚

∗

2
𝑒

−(𝑑
3
+𝑑
4
𝑚
∗

2
)𝜏.

It is clear that 𝑦
2
(𝑡) ≥ 𝑚

2
for 𝜇 ≤ 𝑡 ≤ 𝜇 + 𝜂. If 𝜂 ≥ 𝜏, then we

have 𝑦
2
(𝑡) ≥ 𝑚

2
for 𝜇 < 𝑡 ≤ 𝜇 + 𝜏. The same arguments can

be continued. We can obtain 𝑦
2
(𝑡) ≥ 𝑚

2
for 𝜇+ 𝜏 ≤ 𝑡 ≤ 𝜇+ 𝜂.

Since the interval [𝜇, 𝜇 + 𝜂] is arbitrarily chosen, we get that
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Figure 2: Dynamical behavior of system (4) with 𝑟 = 1, 𝐾 = 3, 𝛽 = 2, 𝑐 = 1, 𝑑
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3
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4
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1
= 0.3, 𝑝

2
= 0.1,

𝜏 = 1, 𝑇 = 0.1. (a) Time series of the prey population; (b) time series of the immature predator population; (c) time series of the mature
predator population.

𝑦

2
(𝑡) ≥ 𝑚

2
for 𝑡 sufficiently large. In view of our arguments

above, the choice of𝑚
2
is independent of the positive solution

of (4) which satisfies that 𝑦
2
(𝑡) ≥ 𝑚

2
for 𝑡 large enough.

Next, from the second equation of system (4), we have

̇𝑦

1
(𝑡) ≥ 𝜆𝛽𝑚

2
(1 − 𝑒

−𝑑
2
𝜏
) − 𝑑

2
𝑦

1
(𝑡) . (45)

Integrating (45) and using comparison theorem,we can easily
get

𝑦

1
(𝑡) ≥ min{𝑦

1
(0

+
) ,

𝜆𝛽𝑚

2
(1 − 𝑒

−𝑑
2
𝜏
)

𝑑

2

}

Δ

= 𝑚

1
.

(46)

On the other hand, by (29), we have 𝑥(𝑡) ≥ 𝑥

∗
(𝑡) − 𝜀

1

Δ

= 𝑚

0
.

Let𝑚 = min{𝑚
0
, 𝑚

1
, 𝑚

2
}; then, we have 𝑥(𝑡) ≥ 𝑚, 𝑦

1
(𝑡) ≥ 𝑚,

𝑦

2
(𝑡) ≥ 𝑚. By Lemma 4 and above discussion, system (4) is

permanent. This completes the proof.

5. Examples and Numerical Simulations
In this section, we give some examples and numerical
simulations to show the effectiveness of the main results.

In system (4), we let 𝑟 = 2,𝐾 = 5, 𝛽 = 1, 𝑐 = 10, 𝑑
1
= 0.5,

𝜆 = 1, 𝑑
2
= 0.4, 𝑑

3
= 0.3, 𝑑

4
= 0.1, 𝑝

1
= 0.4, 𝑝

2
= 0.1, 𝜏 = 0,

𝑇 = 1. By computation, one can obtain that the conditions of
Theorem 6 are satisfied, so the predator-extinction periodic
solution is globally attractive, which can be shownbyFigure 1.
If 𝑟 = 1, 𝐾 = 3, 𝛽 = 2, 𝑐 = 1, 𝑑

1
= 0.5, 𝜆 = 1, 𝑑

2
= 0.3,

𝑑

3
= 0.2, 𝑑

4
= 0.1, 𝑝

1
= 0.3, 𝑝

2
= 0.1, 𝜏 = 1, 𝑇 = 0.1, then by

computation, the conditions of Theorem 8 are also satisfied;
hence, by Theorem 8, system (4) is permanent; see Figure 2.

6. Conclusion

In this paper, a stage-structured predator-prey model with
Holling type III functional response, birth pulse, and impul-
sive harvesting at different moments is proposed. By using
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comparison theorem of impulsive differential equations and
some analysis techniques, the sufficient conditions ensuring
the predator-extinction periodic solution and the perma-
nence of system (4) are obtained. Theorem 6 implies that
reducing 𝑝

1
and 𝑇 appropriately and (A

2
) can be propitious

to the global attractivity of the predator-extinction periodic
solution (𝑥∗(𝑡), 0, 0). That is, if the mature predator is caught
excessively or the immature predator is stocked too few, it will
lose the merits of exploitative mature predator population.
Similarly, we can see from Theorem 8 that reducing 𝑝

1
and

𝑇 appropriately and (A
4
) are in favor of the permanence of

system (4). It implies that reasonable harvesting on mature
predator and appropriate protecting on immature predator
play an important role in the permanence of system (4).
Moreover, by Theorems 6 and 8, we believe that there exists
a sharp threshold, which is beneficial for people to make
the best use of biological resources but will not break the
biological balance. It will be interesting for us to continue to
study the optimal harvesting policy of system (4) in the near
future.
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