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Anonlinear car-followingmodelwith driver’s reaction time is studied from the synchronization transition viewpoint.We investigate
the traffic congestion from the view of chaos system synchronization transition. Our result shows that the uniformflow corresponds
to the complete synchronization and the stop-and-go congested state corresponds to the lag synchronization of the vehicles. An
analytical criterion for synchronization manifolds stability is obtained; the analytical result and the numerical result are consistent.
The synchronization transition is also trigged by the driver’s reaction time. We analyze the car-following model by the use of the
nonlinear analysis method and derive the modified KdV equation describing the kink density wave.

1. Introduction

Traffic jams are very annoying in our life and have been
studied by many physicists [1]; however, the precise mech-
anism for generation and propagation of traffic jams is
still not clearly understood. Some traffic models have been
established to study the dynamics of traffic flow, such as
car-following models, cellular automaton models, gas kinetic
models, and hydrodynamic models [2].

Car-following models or microscopic models describe
the behaviors of individual vehicles, which are described by
ordinary differential equation or delay differential equation.
Recently, one more widely used car-following model is the
optimal velocitymodel [3, 4]; by this kind ofmodel, the effects
of fluctuations of traffic jams are analyzed, the jamming
transitions and density waves have been invested [5–9], and
the bifurcation phenomena of the oscillating solution are also
explored by using numerical continuations techniques [10–
12]. Another popular car-following model is the intelligent
driver model that was introduced by Treiber et al. [13, 14];
in this model, all parameters have a clear physical meaning;
congested traffic states have been empirically observed and
microscopically simulated. Many models are able to explain

uniform flow as well as stop-and-go waves; however, the
transition [15–28] between the two qualitatively different
solutions is still not clarified.

According to the car-following model theory, for each
individual vehicle, an equation of motion is the analogue of
Newton’s equation for each individual particle in a system of
interacting classical particles. In Newtonian mechanics, the
acceleration may be regarded as the response of the particle
to the stimulus, and it receives in the form of force which
includes both the external force and those arising from its
interaction with the other particles in the system. In traffic
system, each driver can respond to the surrounding traffic
conditions only by accelerating or decelerating the vehicle;
so, the basic philosophy of the car-following theories can be
summarized by the equation [Response]𝑘 − [Stimulus]𝑘 for
the 𝑘th vehicle (𝑘 = 1, 2, . . .).

We know, for a chaotic system, the appearances and
robustness of chaotic synchronization states have been estab-
lished by means of different coupling schemes [29], one of
which is Pecora and Carroll method (unidirectional coupling
or drive-response coupling).

In this paper, we regard the car-following system as a
drive-response coupling chaotic system; we make use of
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chaotic systems synchronization transition [30–34] method
to study the synchronization transition of microscopicmove-
ment of the vehicles and further reveal the relationship
between synchronization transition and traffic congestion.
First, we use the long wave expansion method to give an
analytical criterion for synchronizationmanifolds stability. In
order to verify the analytical result, we useDDE-BIFTOOL to
perform a two-parameter bifurcation analysis of the model;
due to the demands on the CPU time and the memory, the
investigation was restricted to the setting of 𝑁 = 15 vehicles,
and the analytical result is consistent with the numerical
result. Second, we find different transition region in two-
parameter plane and the vehicles display different motion.
Third, we consider how the driver’s reaction time impacts on
the synchronization transition. Finally, we analyze the car-
following model by the use of the nonlinear analysis method
andwe derive themodifiedKdV equation describing the kink
density wave.

The layout of this paper is organized as follows. We
introduce the car-following model in Section 2 and derive
analytical criteria for synchronization manifolds stability in
Section 3. Numerical simulation is in Section 4. Nonlinear
analysis is in Section 5. In Section 6, we present the main
results.

2. Car-Following Model

Here, we consider a single lane of traffic with identical
vehicles; displacements and velocities are denoted as 𝑥𝑘(𝑡)

and V𝑘(𝑡), respectively; the spacing of adjacent vehicle is called
headway (ℎ𝑘(𝑡)). For the sake of simplicity, we suppose that𝑁

vehicles are placed on a circular road of length (∑𝑁
𝑘=1

ℎ𝑘 = 𝐿).
The headway consists of the condition

ℎ̇𝑘 (𝑡) = V𝑘+1 (𝑡) − V𝑘 (𝑡) . (1)

The acceleration of the 𝑘th vehicle is given by

V̇𝑘 (𝑡) = 𝛼 [𝑉 (ℎ𝑘 (𝑡 − 𝜏)) − V𝑘 (𝑡)] . (2)

The 𝛼 is called the sensitivity of the vehicles and the 𝜏 is
driver’s reaction time. The function 𝑉(ℎ) is optimal velocity
function; it has the following properties.

(a) 𝑉(ℎ) is a nonnegative, continuous, and monotone
increasing function.

(b) 𝑉(ℎ) → V0 as ℎ → ∞.

(c) There exists a jam headway ℎstop such that 𝑉(ℎ) = 0

for ℎ ∈ [0, ℎstop].

The dimensional parameter OV function [12] is

𝑉 (ℎ) =

{{{

{{{

{

0, ℎ ≤ ℎstop,

V0
(ℎ − ℎstop)

3

ℎ3stop + (ℎ − ℎstop)
3

, ℎ > ℎstop.
(3)

We introduce the rescaled variables ℎ̂ = ℎ/ℎstop, �̂� =

V0(𝑡/ℎstop); the OV function becomes

𝑉 (ℎ̂) =

{{{

{{{

{

0, ℎ̂ ≤ 1,

(ℎ̂ − 1)
3

1 + (ℎ̂ − 1)
3

, ℎ̂ > 1.
(4)

Model (1) and model (2) are transformed into

̇̂
ℎ𝑘 (�̂�) = V̂𝑘+1 (�̂�) − V̂𝑘 (�̂�) ,

̇̂V𝑘 (�̂�) = �̂� [�̂� (ℎ̂𝑘 (�̂� − 𝜏)) − V̂𝑘 (�̂�)] .

(5)

Here �̂� = 𝛼ℎstop/V0, 𝜏 = 𝜏V0/ℎstop; in the remainder of
this paper we take the rescaled OV function and model. In
order to express simplicity, the OV function and model are
expressed:

𝑉 (ℎ) =

{{

{{

{

0, ℎ ≤ 1,

(ℎ − 1)
3

1 + (ℎ − 1)
3

, ℎ > 1,
(6)

ℎ̇𝑘 (𝑡) = V𝑘+1 (𝑡) − V𝑘 (𝑡) , (7)

V̇𝑘 (𝑡) = 𝛼 [𝑉 (ℎ𝑘 (𝑡 − 𝜏)) − V𝑘 (𝑡)] . (8)

3. Synchronization Transition

The synchronization manifold of the system (7) and (8) is

𝑋
1

(ℎ1, V1) = 𝑋
2

(ℎ2, V2) = ⋅ ⋅ ⋅ = 𝑋
𝑁

(ℎ𝑁, V𝑁) . (9)

The system ((7), (8)) possesses uniform flow equilibrium

ℎ1 = ℎ2 = ⋅ ⋅ ⋅ = ℎ𝑁 = ℎ
∗

=
𝐿

𝑁
,

V1 = V2 = ⋅ ⋅ ⋅ = V𝑁 = V∗ = 𝑉 (ℎ
∗

) .

(10)

All vehicles reach complete synchronization. The stability
of the synchronization manifolds will change when the
parameter ℎ

∗ is varied. To see whether the synchronization
manifold of the system ((7), (8)) is stable or not, we add a
small perturbation

ℎ𝑘 (𝑡) = ℎ
∗

+ ℎ̃𝑘 (𝑡) , V𝑘 (𝑡) = V∗ + Ṽ𝑘 (𝑡) . (11)

According to (7) and (8), we can calculate a linearized
equation with respect to the uniform flow (10).The linearized
equation is

̇̃
ℎ𝑘 (𝑡) = Ṽ𝑘+1 (𝑡) − Ṽ𝑘 (𝑡) ,

̇̃V𝑘 (𝑡) = 𝛼𝑉


(ℎ
∗

) ℎ̃𝑘 (𝑡 − 𝜏) − 𝛼Ṽ𝑘 (𝑡) .

(12)

Indeed, we have ℎ̃𝑘(𝑡) = 𝑥𝑘+1(𝑡) − 𝑥𝑘(𝑡), ̇̃𝑥𝑘+1(𝑡) = Ṽ𝑘(𝑡),
and ̇̃

ℎ𝑘+1(𝑡) = Ṽ𝑘+1(𝑡) − Ṽ𝑘(𝑡).
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Figure 1: Stability diagram in the (ℎ
∗

, 𝛼) plane for (a) 𝜏 = 0.2 and for (b) 𝜏 = 1.

Orosz et al. have used the dynamical system approach
and numerical continuation technique to give out the sta-
ble curves, but the numerical continuation method (DDE-
BIFTOOL) needs a lot of CPU time and the memory; below,
we can find a simple method to analyze the linear stability of
the synchronization manifold [10].

Physical Approach. Let 𝑥𝑘(𝑡) = 𝐴𝑒
𝑖𝑘𝜃+𝜆𝑡, 𝜆 ∈ 𝐶, 𝜃 ∈ (0, 2𝜋);

the characteristic equation is given by

[𝜆
2

+ 𝛼𝜆 + 𝛼𝑉


(ℎ
∗

) 𝑒
−𝜆𝜏

]
𝑁

− [𝛼𝑉


(ℎ
∗

) 𝑒
𝑖𝜃𝑘−𝜆𝜏

]
𝑁

= 0.

(13)

We know that the leading term of 𝜆 is of order 𝑖𝜃.When 𝑖𝜃 →

0, 𝜆 → 0. We can derive the long wave expansion of 𝜆, which
is determined order by order around 𝑖𝜃 ≈ 0. By expanding

𝜆 = 𝜆1 (𝑖𝜃) + 𝜆2(𝑖𝜃)
2

+ 𝜆3(𝑖𝜃)
3

+ ⋅ ⋅ ⋅ , (14)

the first- and second-order terms of 𝜆 are obtained:

𝜆1 = 𝑉


(ℎ
∗

) ,

𝜆2 =
𝑉


(ℎ
∗

)

2
(1 − 2𝜏𝑉


(ℎ
∗

) − 2
𝑉


(ℎ
∗

)

𝛼
) .

(15)

If 𝜆2 is a positive value, the synchronization manifold is
stable; if 𝜆2 is a negative value, the synchronization manifold
is unstable.

By 𝜆2 > 0, we get

1 − 2𝜏𝑉


(ℎ
∗

) − 2
𝑉


(ℎ
∗

)

𝛼
> 0. (16)

Equation (16) is the analytical criterion for synchronization
manifold stability.

If the number of the vehicles is large, to obtain the stable
boundary curve by the numerical continuations method
requires a lot of time. In order to compare with numerical
method, we now focus on the case of 𝑁 = 15 vehicles. For
𝜏 > 0, the stable boundary curve is shown in Figure 1. We use
the numerical continuation techniques (DDEBIFTOOL) to
get the blue curve and we get the analytical curve (red curve)
according to (16). We can find that the blue curve and the red
curve completely overlap, and this shows that our analytical
approach is correct. In Section 4 numerical simulations also
verify our conclusion.

When the stability of the synchronizationmanifold is lost,
we can get 𝑥𝑘(𝑡) = 𝐴 sin(𝜔𝑡+(2𝑗𝜋/𝑁)𝑘), Ṽ𝑘(𝑡) = 𝐴𝜔 cos(𝜔𝑡+

(2𝑗𝜋/𝑁)𝑘), 2𝑗𝜋/𝑁 = 𝜃, and Ṽ𝑘(𝑡) = Ṽ𝑘+1(𝑡 − (𝑇per/𝑁)), and
𝑇per = 2𝑗𝜋/𝜔 is the period. For two adjacent vehicles, the
speed of the two vehicles has a certain time delay; the vehicles
will get lag synchronization.

Figure 1(a) shows that the synchronization manifold
is stable above the sable boundary curve and the vehi-
cles can achieve complete synchronization; the synchro-
nization manifold is unstable below the stable boundary
curve and the vehicles can achieve lag synchronization.
The synchronization transition of the vehicles arises when
the sensitivity (𝛼) is fixed and the headway (ℎ∗) varies
from the right to the left through the critical curve.
Figure 1(b) shows that the unstable region is unbounded for
𝜏 > 0.595.

Below we focus on the synchronization transition of the
vehicles. If 0 ≤ 𝜏 ≤ 0.595, according to Figure 2, by adding a
vertical line across the top point ((1.79, 2.53)) of the critical
curve, we can divide the whole region into three regions,
region I, region II, and region III. Region I and region II are
stable; region III is unstable. If 𝜏 > 0.595, the region is divided
analogous to the situation when 0 ≤ 𝜏 ≤ 0.595, as is shown in
Figure 1(b).
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Figure 2: The synchronization transition area.

4. Numerical Simulation

In Figure 3, we show the space-time evolutions of the vehicles’
velocity (V𝑖) and location (𝑥𝑖) plotted against time (𝑡). We
consider the velocity of the first and the second vehicles, the
location of fifteen vehicles. First, we take a point in region III
where 𝜏 = 0.2, 𝛼 = 0.5, ℎ

∗
= 4, V = 0.97, and 𝑁 = 15. The

corresponding velocity-time plot and the space-time plot are
shown in Figures 3(a) and 3(b). In region III, the headway
is larger and the length of the road is longer; all vehicles
travel with the same high speed.This is a freelymoving phase.
Second, we take a point in region II where 𝜏 = 0.2, 𝛼 = 0.5,
ℎ
∗

= 2, V = 0.5, and 𝑁 = 15. The corresponding velocity-
time history plot and the space-time plot are shown in Figures
3(c) and 3(d). The vehicles travel with stop-and-go state and
get lag synchronization; the velocity of the adjacent vehicles
has a certain time delay. Last, we take a point in region Iwhere
𝜏 = 0.2, 𝛼 = 0.5, ℎ∗ = 1.2, V = 0.008, and𝑁 = 15. Figures 3(e)
and 3(f) show the velocity-time history plot and the space-
time relation; the vehicles travel with a low speed close to
zero and get complete synchronization, that is, a uniformly
congested phase.

In Figure 4 the stability under different time delay influ-
ence is compared. We know that the unstable region is
bounded for 0 ≤ 𝜏 < 3/4

3√2 ≈ 0.595; when 𝜏 > 0.595,
the unstable region is unbounded. We find that the unstable
region becomes larger as the time delay increases.

In Figure 5 we consider the time delay effect on the
synchronization transition. For 𝜏 = 0, the vehicles travel
with the same speed and they get complete synchronization.
For 𝜏 = 0.4, the vehicles get lag synchronization and travel
with moderate amplitude. If the time delay is increased to
1, the vehicles travel with large amplitude. If the time delay
continues to increase, the traffic is completely congested.

According to the analytical stability condition (23), the
stability of the synchronizationmanifold is strictly dependent
on the three parameters (𝛼, 𝜏, ℎ

∗
).

5. Nonlinear Analysis

We analyze the car-following model by the use of the
nonlinear analysis method. We derive the modified KdV
equation describing the kink density wave. We now consider
long-wavelength models in the traffic flow on coarse-grained
scales. The simplest way to describe the long-wavelength
models is the long wave expansion. We consider the slowly
varying behavior at long wavelengths near the critical point
(ℎ
∗

𝑐
, 𝛼𝑐). We assume that the value of V𝑘(𝑡) is determined

adiabatically by ℎ𝑘.This statement is expressed by the relation

V𝑘 (𝑡) = V (ℎ𝑘, ℎ𝑘+1, ℎ𝑘−1, . . .) . (17)

We define the headway as

ℎ𝑘 (𝑡) = ℎ
∗

𝑐
+ 𝜀ℎ̃ (𝑍, 𝑇) , (18)

and 𝑍 and 𝑇 are a scaled position and time defined by

𝑍 = 𝜀 (𝑘 + 𝑏𝑡) , 𝑇 = 𝜀
3
𝑝𝑡. (19)

Then, from (18), V𝑘(𝑡) is expressed as

V𝑘 (𝑡) = V (𝜀ℎ̃ (𝑍, 𝑇) , 𝜀ℎ̃ (𝑍 + 2𝜀, 𝑇) , 𝜀ℎ̃ (𝑍 − 2𝜀, 𝑇) , . . .) .

(20)

Since 𝜀 is a small parameter, a Taylor expansion can be applied
to terms like ℎ̃(𝑍 + 2𝜀, 𝑇) in (20). This leads to the expression

V𝑘 (𝑡) = Ṽ (𝜀ℎ̃ (𝑍, 𝑇) , 𝜀
2
𝜕𝑍ℎ̃ (𝑍, 𝑇) , 𝜀

3
𝜕
2

𝑍
ℎ̃ (𝑍, 𝑇) , . . .) . (21)

Here, Ṽ remains unknown; we determine it by assuming the
form

Ṽ =

∞

∑
𝑛=0

𝜀
𝑛Ṽ(𝑛) (ℎ̃ (𝑍, 𝑇) , 𝜕𝑍ℎ̃ (𝑍, 𝑇) , 𝜕

2

𝑍
ℎ̃ (𝑍, 𝑇) , . . .) . (22)

From the form of (22), we find the terms Ṽ(𝑛) are expressed as

Ṽ(0) = Ṽ0

Ṽ(1) = Ṽ1ℎ̃

Ṽ(2) = Ṽ20ℎ̃
2

+ Ṽ21𝜕𝑍ℎ̃

Ṽ(3) = Ṽ30ℎ̃
3

+ Ṽ31𝜕𝑍ℎ̃
2

+ Ṽ32𝜕
2

𝑍
ℎ̃

Ṽ(4) = Ṽ40ℎ̃
4

+ Ṽ41𝜕𝑍ℎ̃
3

+ Ṽ42𝜕
2

𝑍
ℎ̃
2

+ Ṽ43𝜕
3

𝑍
ℎ̃

...

(23)

where Ṽ0, Ṽ1, Ṽ20, Ṽ21, Ṽ30, Ṽ31, Ṽ32, Ṽ40, Ṽ41, Ṽ42, Ṽ43, and so forth
are constants, which are calculated in the following way. First,
we substitute (22) (using (23)) into (8), where ̇V𝑘 is expressed
as a function of ℎ̃,

̇V𝑘 = 𝜀
2Ṽ1𝑏𝜕𝑍ℎ̃ + 𝜀

3
(𝑏Ṽ20ℎ̃

2
+ 𝑏Ṽ21𝜕

2

𝑍
ℎ̃)

+ 𝜀
4

(𝑝Ṽ1𝜕𝑇ℎ̃ + 𝑏Ṽ30ℎ̃
3

+ 𝑏Ṽ31𝜕
2

𝑍
ℎ̃
2

+ 𝑏Ṽ32𝜕
3

𝑍
ℎ̃)

+ 𝜀
5

(𝑝Ṽ20𝜕𝑇ℎ̃
2

+ 𝑝Ṽ21𝜕𝑍,𝑇ℎ̃ + 𝑏Ṽ40ℎ̃
4

+𝑏Ṽ41𝜕
2

𝑍
ℎ̃
3

+ 𝑏Ṽ42𝜕
3

𝑍
ℎ̃
2

+ 𝑏Ṽ43𝜕
4

𝑍
ℎ̃) + ⋅ ⋅ ⋅ .

(24)
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Figure 3: Plot of the velocity and the location of vehicles against time in different regions. We consider the speeds of the first two cars and
the location of fifteen cars. The blue curve represents the speed of the first car and the black curve represents the speed of the second car. (a)
and (b): region III, 𝜏 = 0.2, 𝛼 = 0.5, ℎ

∗
= 4, V = 0.97. (c) and (d): region II, 𝜏 = 0.2, 𝛼 = 0.5, ℎ

∗
= 2, V = 0.5. (e) and (f): region I, 𝜏 = 0.2,

𝛼 = 0.5, ℎ
∗

= 1.2, V = 0.008.
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Figure 4: Stability diagram on the (ℎ
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, 𝛼) plane on delay impact. (a) 𝜏 = 0, 0.1, 0.2, 0.3. (b) 𝜏 = 1, 2, 3, 5.

According to (18), we get the expression about ℎ𝑘(𝑡 − 𝜏)

ℎ𝑘 (𝑡 − 𝜏) = ℎ
∗

𝑐
+ 𝜀ℎ̃ (𝑍 (𝑡 − 𝜏) , 𝑇 (𝑡 − 𝜏)) . (25)

By expanding (25) to the fifth order of 𝜀, we get

ℎ𝑘 (𝑡 − 𝜏) = ℎ
∗

𝑐
+ 𝜀ℎ̃ − 𝜀

2
𝑏𝜏𝜕𝑍ℎ̃ + 𝜀

3 (𝑏𝜏)
2

2
𝜕
2

𝑍
ℎ̃

− 𝜀
4
𝑝𝜏𝜕𝑇ℎ̃ − 𝜀

4 (𝑏𝜏)
3

6
𝜕
3

𝑍
ℎ̃

+ 𝜀
5
𝑏𝑝𝜏
2
𝜕
2

𝑍,𝑇
ℎ̃ + 𝜀
5 (𝑏𝜏)
4

24
𝜕
4

𝑍
ℎ̃.

(26)

Let

ℎ𝑘 (𝑡 − 𝜏) = ℎ
∗

𝑐
+ 𝑞, (27)

where

𝑞 = 𝜀ℎ̃ − 𝜀
2
𝑏𝜏𝜕𝑍ℎ̃ + 𝜀

3 (𝑏𝜏)
2

2
𝜕
2

𝑍
ℎ̃ − 𝜀
4
𝑝𝜏𝜕𝑇ℎ̃

− 𝜀
4 (𝑏𝜏)
3

6
𝜕
3

𝑍
ℎ̃ + 𝜀
5
𝑏𝑝𝜏
2
𝜕
2

𝑍,𝑇
ℎ̃ + 𝜀
5 (𝑏𝜏)
4

24
𝜕
4

𝑍
ℎ̃.

(28)

We expand the optimal velocity function at the turning point:

𝑉 (ℎ𝑘 (𝑡 − 𝜏))

= 𝑉 (ℎ
∗

𝑐
) + 𝑉


(ℎ
∗

𝑐
) 𝑞 +

𝑉


(ℎ
∗

𝑐
)

2!
𝑞
2

+
𝑉


(ℎ
∗

𝑐
)

3!
𝑞
3

+
𝑉
(4)

(ℎ
∗

𝑐
)

4!
𝑞
4

+
𝑉
(5)

(ℎ
∗

𝑐
)

5!
𝑞
5
,

𝑉 (ℎ𝑘 (𝑡 − 𝜏))

= 𝑉 (ℎ
∗

𝑐
) + 𝜀ℎ̃𝑉


(ℎ
∗

𝑐
)

+ 𝜀
2

(
𝑉


(ℎ
∗

𝑐
)

2
ℎ̃
2

− 𝑏𝜏𝑉


(ℎ
∗

𝑐
) 𝜕𝑍ℎ̃)

+ 𝜀
3

[
𝑉


(ℎ
∗

𝑐
)

3!
ℎ̃
3

− 𝑉


(ℎ
∗

𝑐
) 𝑏𝜏ℎ̃𝜕𝑍ℎ̃

+
(𝑏𝜏)
2

2
𝑉


(ℎ
∗

𝑐
) 𝜕
2

𝑍
ℎ̃]

+ 𝜀
4

[−
(𝑏𝜏)
3

6
𝑉


(ℎ
∗

𝑐
) 𝜕
3

𝑍
ℎ̃ − 𝑝𝜏𝑉


(ℎ
∗

𝑐
) 𝜕𝑇ℎ̃

+
𝑏
2
𝜏
2

2
𝑉


(ℎ
∗

𝑐
) (𝜕𝑍ℎ̃)

2

+
𝑏
2
𝜏
2

2
ℎ̃𝑉


(ℎ
∗

𝑐
) 𝜕
2

𝑍
ℎ̃

−
1

2
(ℎ̃)
2

𝑏𝜏𝑉


(ℎ
∗

𝑐
) 𝜕𝑍ℎ̃ +

𝑉
(4)

(ℎ
∗

𝑐
)

4!
ℎ̃
4
] + ⋅ ⋅ ⋅ .

(29)
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Figure 5: Plot of the velocity and the location of vehicles against time in different regions. We consider the speeds of the first two cars and
the location of fifteen cars. The blue curve represents the speed of the first car and the black curve represents the speed of the second car. The
initial condition is set for 𝛼 = 2, ℎ

∗
= 1.6, V = 0.18. (a) and (b): 𝜏 = 0.2. (c) and (d): 𝜏 = 0.4. (e) and (f): 𝜏 = 1.
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Then

𝑉 (ℎ𝑘 (𝑡 − 𝜏)) − V𝑘 = 𝑉 (ℎ
∗

𝑐
) − Ṽ0 + 𝜀𝑝1 + 𝜀

2
𝑝2 + 𝜀

3
𝑝3 + 𝜀

4
𝑝4,

(30)

where

𝑝1 = ℎ̃𝑉


(ℎ
∗

𝑐
) − ℎ̃Ṽ1,

𝑝2 =
𝑉


(ℎ
∗

𝑐
)

2
ℎ̃
2

− 𝑏𝜏𝑉


(ℎ
∗

𝑐
) 𝜕𝑍ℎ̃ − Ṽ20ℎ̃

2
− Ṽ21𝜕𝑍ℎ̃,

𝑝3 =
𝑉


(ℎ
∗

𝑐
)

3!
ℎ̃
3

− 𝑉


(ℎ
∗

𝑐
) 𝑏𝜏ℎ̃𝜕𝑍ℎ̃ +

(𝑏𝜏)
2

2
𝑉


(ℎ
∗

𝑐
) 𝜕
2

𝑍
ℎ̃

− Ṽ30ℎ̃
3

− Ṽ31𝜕𝑍ℎ̃
2

− Ṽ32𝜕
2

𝑍
ℎ̃,

𝑝4 = −
(𝑏𝜏)
3

6
𝑉


(ℎ
∗

𝑐
) 𝜕
3

𝑍
ℎ̃ − 𝑝𝜏𝑉


(ℎ
∗

𝑐
) 𝜕𝑇ℎ̃

+
𝑏
2
𝜏
2

2
𝑉


(ℎ
∗

𝑐
) (𝜕𝑍ℎ̃)

2

+
𝑏
2
𝜏
2

2
ℎ̃𝑉


(ℎ𝑐) 𝜕
2

𝑍
ℎ̃

−
1

2
(ℎ̃)
2

𝑏𝜏𝑉


(ℎ
∗

𝑐
) 𝜕𝑍ℎ̃ +

𝑉
(4)

(ℎ
∗

𝑐
)

4!
ℎ̃
4

− Ṽ40ℎ̃
4

− Ṽ41𝜕𝑍ℎ̃
3

− Ṽ42𝜕
2

𝑍
ℎ̃
2

− Ṽ43𝜕
3

𝑍
ℎ̃.

(31)

Then, collecting terms of equal order on both sides and
comparing coefficients of ℎ̃, ℎ̃

2
, 𝜕𝑍ℎ̃, and so forth, we obtain

Ṽ𝑛:

Ṽ0 = 𝑉 (ℎ
∗

𝑐
) ,

Ṽ1 = 𝑉


(ℎ
∗

𝑐
) ,

Ṽ20 =
𝑉


(ℎ
∗

𝑐
)

2
= 0,

Ṽ21 = −𝑏𝜏 −
𝑏Ṽ1
𝛼

,

Ṽ30 =
𝑉


(ℎ
∗

𝑐
)

6
,

Ṽ31 = 0,

Ṽ32 =
(𝑏𝜏)
2

2
𝑉


(ℎ
∗

𝑐
) −

𝑏Ṽ21
𝛼

,

Ṽ40 =
𝑉
(4)

(ℎ
∗

𝑐
)

4!
,

Ṽ41 = −
1

6
𝑏𝜏𝑉



(ℎ
∗

𝑐
) −

𝑏Ṽ30
𝛼

,

Ṽ42 = 0,

Ṽ43 = −
1

6
(𝑏𝜏)
3
𝑉


(ℎ
∗

𝑐
) −

𝑏Ṽ32
𝛼

.

(32)

Substituting Ṽ derived in this way into (7), we get a reduced
equation for ℎ̃:

̇V𝑘 = 𝜀
2
𝑏𝜕𝑍ℎ̃ + 𝜀

4
𝑝𝜕𝑇ℎ̃

= V𝑘+1 − V𝑘

= Ṽ (𝜀ℎ̃ (𝑍 + 2𝜀, 𝑇) , 𝜀
2
𝜕𝑍ℎ̃ (𝑍 + 2𝜀, 𝑇) ,

𝜀
3
𝜕
2

𝑍
ℎ̃ (𝑍 + 2𝜀, 𝑇) , . . .)

− Ṽ (𝜀ℎ̃ (𝑍, 𝑇) , 𝜀
2
𝜕𝑍ℎ̃ (𝑍, 𝑇) , 𝜀

3
𝜕
2

𝑍
ℎ̃ (𝑍, 𝑇) , . . .)

= 𝜀
2

[Ṽ1𝜕𝑍ℎ̃] + 𝜀
3

[2 (Ṽ1 + Ṽ21) 𝜕
2

𝑍
ℎ̃]

+ 𝜀
4

[
4

3
Ṽ1𝜕
3

𝑍
ℎ̃ + 2Ṽ21𝜕

3

𝑍
ℎ̃ + 2Ṽ30𝜕𝑍ℎ̃

3

+4Ṽ31(𝜕𝑍ℎ̃)
2

+ 2Ṽ32𝜕
3

𝑍
ℎ̃]

+ 𝜀
5

[
2

3
Ṽ1𝜕
4

𝑍
ℎ̃ +

4

3
Ṽ21𝜕
4

𝑍
ℎ̃ + Ṽ30 (6ℎ̃

2
𝜕
2

𝑍
ℎ̃ + 12ℎ̃(𝜕𝑍ℎ̃)

2

)

+ Ṽ408ℎ̃
3
𝜕𝑍ℎ̃ + Ṽ42 (4ℎ̃𝜕

2

𝑍
ℎ̃ + 4(𝜕𝑍ℎ̃)

2

)

+ 6Ṽ41ℎ̃
2
𝜕
2

𝑍
ℎ̃ + 2Ṽ43𝜕

4

𝑍
ℎ̃] .

(33)

By taking 𝑏 = 2Ṽ1 = 2𝑉

(ℎ
∗

𝑐
), 𝜏 = 1/2𝑉


(ℎ
∗

𝑐
) − 1/𝛼, the

second-order term of 𝜀 and the third-order term of 𝜀 are
eliminated from (33); then we get

𝜕𝑇ℎ̃ =
1

𝑝
[(

4

3
Ṽ1 + 2Ṽ21 + 2Ṽ32) 𝜕

3

𝑍
ℎ̃ + 2Ṽ30𝜕𝑍ℎ̃

3
]

+
𝜀

𝑝
[𝑐1𝜕
4

𝑍
ℎ̃ + 𝑐2𝜕

2

𝑍
ℎ̃
3

+ 𝑐3𝜕𝑍ℎ̃
4

+ 𝑐4𝜕𝑍ℎ̃𝜕𝑍ℎ̃
2
] ,

(34)

where

𝑐1 =
(2/3) Ṽ1 + (4/3) Ṽ21 + 2Ṽ32 + 2Ṽ43

𝑝
,

𝑐2 =
2 (Ṽ30 + Ṽ41)

𝑝
, 𝑐3 =

2Ṽ40
𝑝

,

𝑐4 =
6 (Ṽ30 + Ṽ41)

𝑝
.

(35)

Let

𝑔1 =
(4/3) Ṽ1 + 2Ṽ21 + 2Ṽ32

𝑝
, 𝑔2 = −

2Ṽ30
𝑝

; (36)

if we ignore the 𝑂(𝜀) terms in (34), then (34) is transformed
into a Kdv equation

𝜕𝑇ℎ̃ = 𝑔1𝜕
3

𝑍
ℎ̃ − 𝑔2𝜕𝑍ℎ̃

3
. (37)
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In order to derive the regularized equation, we make the
following transformation for (37):

𝑇


= 𝑔1𝑇, ℎ̃ = √
𝑔1

𝑔2
ℎ̃

; (38)

then (37) is transformed into a regularized Kdv equation

𝜕𝑇 ℎ̃


= 𝜕
3

𝑍
ℎ̃


− 𝜕𝑍(ℎ̃

)
3

. (39)

If we ignore the 𝑂(𝜀) terms in (39), this is just the modified
Kdv equation with a kink solution as the desired solution

ℎ̃


0
(𝑍, 𝑇

) = √𝑐 tanh√

𝑐

2
(𝑍 − 𝑐𝑇


) . (40)

The selected value of propagation velocity 𝑐 for the kink
solution is determined from the 𝑂(𝜀) term.

Next, assuming that ℎ̃

(𝑍, 𝑇

) = ℎ̃


0
(𝑍, 𝑇

)+𝜀ℎ̃


1
(𝑍, 𝑇

), we

take into account the 𝑂(𝜀) correction:

𝑂 (𝜀) =
1

𝑝
[𝑐1𝜕
4

𝑍
ℎ̃ + 𝑐2𝜕

2

𝑍
ℎ̃
3

+ 𝑐3𝜕𝑍ℎ̃
4

+ 𝑐4𝜕𝑍ℎ̃𝜕𝑍ℎ̃
2
] ,

𝑂 (𝜀) = 𝑐


1
𝜕
4

𝑍
ℎ̃


+ 𝑐


2
𝜕
2

𝑍
(ℎ̃

)
3

+ 𝑐


3
𝜕𝑍(ℎ̃

)
4

+ 𝑐


4
𝜕𝑍ℎ̃

𝜕𝑍(ℎ̃

)
2

,

(41)

where

𝑐


1
= 𝑐1√

𝑔1

𝑔2
, 𝑐



2
= 𝑐2(√

𝑔1

𝑔2
)

3

,

𝑐


3
= 𝑐3

𝑔
2

1

𝑔2
2

, 𝑐


4
= 𝑐4(√

𝑔1

𝑔2
)

3

.

(42)

In order to determine the selected value of the propagation
velocity 𝑐 for the kink solution (37), it is necessary to satisfy
the solvability condition

(ℎ̃


0
(𝑍, 𝑇

) , 𝑀 (ℎ̃



0
(𝑍, 𝑇

)))

≡ ∫
+∞

−∞

𝑑𝑍ℎ̃


0
(𝑍, 𝑇

) 𝑀 [ℎ̃



0
(𝑍, 𝑇

)] = 0,

(43)

where

𝑀 [ℎ̃


0
(𝑍, 𝑇

)] = 𝑐



1
𝜕
4

𝑍
ℎ̃


+ 𝑐


2
𝜕
2

𝑍
(ℎ̃
3
)


+ 𝑐


3
𝜕𝑍(ℎ̃
4
)


+ 𝑐


4
𝜕𝑍ℎ̃

𝜕𝑍(ℎ̃
2
)


.

(44)

Then, we can get

ℎ̃ (𝑍, 𝑇) = √
𝑔2

𝑔1
𝑐 tanh√

𝑐

2
(𝑍 − 𝑐𝑔1𝑇) . (45)

6. Conclusion and Discussion

In this paper, we study a car-following model with driver’s
reaction time. First, we investigate the traffic congestion
from the view of chaos system synchronization transition.
Our result shows that the uniform flow corresponds to the
complete synchronization and the stop-and-go congested
state corresponds to the lag synchronization of the vehicles.
Second, we derive analytical criteria for synchronization
manifolds stability; the analytical result and the numerical
result are consistent. Third, the synchronization manifold
stability regions are further classified; we find that the vehicles
exhibit different states of motion in different regions, and the
synchronization transition can also be trigged by the driver’s
reaction time. Last, we analyze the car-following model by
the use of the nonlinear analysis method and we derive the
modified KdV equation describing the kink density wave.
Our result also shows that it is crucial to pay attention to
the behavior of individual drivers in order to understand
the emergent behavior of traffic. The driver’s reaction time
is influenced by individual differences, personality, environ-
ment, and other factors. In further work, we need to study
how to better characterize the reaction time of the drivers.
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