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Boundary value problems arise while modeling various physical and engineering reality. In this communication we investigate
windowed Fourier frames focusing two-point BVPs. We approximate BVPs using windowed Fourier frames. We present some
numerical results to demonstrate the efficiency of such frame functions to approximate BVPs.

1. Introduction

Numerical approximation of various ordinary and partial dif-
ferential equations is of ongoing interest [1–5]. There are sev-
eral popular schemes to approximate such models. Schemes
based on special functions are increasingly popular [6].

The windowed Fourier transform (Gabor transform) has
been a widely used tool in signal processing. This technique
uses a single window function to Fourier-transform a signal
locally.This process is repeatedwhile shifting thewindow thr-
ough the real line. This single window shifting and modula-
tionmechanism of the Gabor transform produces some und-
esirable effects [5]. A set of frame functions, the windowed
Fourier frames (WFFs), have been used to serve such purpose
as well [5].

In recent time, WFFs have been popularly used for solv-
ing partial differential equations (PDE) [7]. In [7], the authors
consider an elliptic PDE and develop an efficient solver using
a combination of the symbol of the operator andWFFs.They
discuss window functions, discretisation, and implementati-
ons in detail.They also study the efficiency of using such fun-
ctions.

The author develops a general recipe for higher order
BVPs in [2].He considers Tchebychev polynomials to approx-
imate BVPs by reducing the order. In fact, the higher order
BVPs problems have been converted to first-order BVPs to
approximate the problem using global polynomials effici-
ently. The author exhibits some numerical results to demon-
strate the efficiency of the proposed scheme.

Here, in this paper, we focus on approximating the solu-
tions of two-point boundary value problems using windowed
Fourier frames. We motivate ourselves to develop a scheme
based on windowed frame functions to approximate various
operators in a spare way for one-dimensional academic prob-
lems (with an aim to approximate higher dimensional oper-
ators using WFFs in the near future). One needs a single
window function to generate a family of windowed Fourier
frame functions. Thus presentation of the operator becomes
neat and simple. The advantage of using windowed frame
functions is that they have a flexibility to use for various pur-
pose; the windowed Fourier transformation operator gener-
ates a spare differential operator which is easy to store; as a
result computations become simple (compared to the spec-
tral collocation/global polynomial approximations for the
differential operator). The superiority of the technique has
been well discussed in [5, 8]. In this paper we use tight frames
to approximate a function, its derivatives, as well as various
inner products. Then we apply the frame representations to
approximate the solutions of the BVPs.

This paper is organized as follows.

(i) We start by discussing WFFs with some properties,
followed by an approximation of a function using
WFFs in Section 2.

(ii) We discuss representation of various operators using
WFFs in Section 3.
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(iii) In Section 4 we approximate some two-point BVPs
using WFFs.

(iv) We finish with a conclusion in Section 5.

2. A Short Review of Frames

In this section we review in short frames, windowed Fourier
frame functions, and the windowed Fourier frame transfor-
mation (WFFT) (to approximate any function𝑓(𝑥)).We start
by discussing frames and windowed Fourier frames.Then we
discuss construction of an efficient window function briefly
and use this function to construct windowed Fourier frames.

A frame is a family of vectors {𝜙
𝑛
}
𝑛∈Γ

that characterizes
any function 𝑓 from its inner product {⟨𝑓, 𝜙

𝑛
⟩}
𝑛∈Γ

. It is
possible to recover a vector 𝑓 in a Hilbert space H from its
inner products with a family of vectors {𝜙

𝑛
}
𝑛∈Γ

. The index
set Γ might be finite or infinite and one can define a frame
operator 𝑈 so that

𝑈𝑓 [𝑛] = ⟨𝑓, 𝜙
𝑛
⟩ , ∀𝑛 ∈ Γ. (1)

Theorem 1. The sequence {𝜓
𝑛
}
𝑛∈Γ

is a frame ofH if there exist
two constants 𝐴 > 0, 𝐵 > 0 such that for any 𝑓 ∈ H

𝐴
𝑓

2

≤ ∑
𝑛∈Γ

⟨𝑓, 𝜓𝑛⟩

2

≤ 𝐵
𝑓

2

. (2)

If this condition is satisfied then 𝑈 is called a frame operator.
When 𝐴 = 𝐵 the frame is said to be tight [5, 9].

It is well established that it is possible to reconstruct
a signal 𝑓 from its frame transformation 𝑈𝑓[𝑛] using the
concept of pseudo inverse which is a bounded operator
expressed with a dual frame [5]. Note that a pseudo inverse
is denoted by �̃�−1 and satisfies �̃�−1 = (𝑈∗𝑈)−1𝑈∗ where 𝑈∗
is the adjoint of𝑈. If𝑈 is a frame operator with frame bounds
𝐴 and 𝐵 then ‖�̃�−1‖ ≤ 1/√𝐴. The pseudo inverse of a frame
operator is related to a dual fame family, which is expressed
by the following result.

Theorem 2 (see [5]). Let {𝜓
𝑛
}
𝑛∈Z be a frame with bounds 𝐴

and 𝐵. The dual frame defined by

�̃�
𝑛
= (𝑈∗𝑈)

−1

𝜓
𝑛

(3)

satisfies

1

𝐵

𝑓

2

≤ ∑
𝑛∈Γ

⟨𝑓, �̃�𝑛⟩

2

≤
1

𝐴

𝑓

2

, ∀𝑓 ∈ H,

𝑓 = �̃�−1𝑈𝑓 = ∑
𝑛∈Γ

⟨𝑓, 𝜓
𝑛
⟩ �̃�
𝑛
= ∑
𝑛∈Γ

⟨𝑓, �̃�
𝑛
⟩𝜓
𝑛
.

(4)

Then the frame is tight (i.e., 𝐴 = 𝐵). Here 𝑈∗ is adjoint of 𝑈
and �̃�−1 is the pseudo inverse of 𝑈.

We discuss windowed Fourier frame and its transforma-
tion next. For 𝑥, 𝜔 ∈ R, the translation can be defined by
𝑇
𝑥
𝑓(𝑡) = 𝑓(𝑡 −𝑥) and modulation operator can be defined as

𝑀
𝜔
𝑓(𝑡) = 𝑒2𝜋𝑖𝜔𝑡𝑓(𝑡). Operators of the form 𝑇

𝑥
𝑀
𝜔
or𝑀
𝜔
𝑇
𝑥

are called time-frequency shifts. Given a nonzero window
function 𝑔 ∈ 𝐿2(R) and lattice parameters 𝛼, 𝛽 > 0, the set
of time-frequency shifts G(𝑔, 𝛼, 𝛽) = {𝑇

𝛼𝑘
𝑀
𝛽𝑛
𝑔 : 𝑘, 𝑛 ∈ Z}

is called a Gabor system. If G(𝑔, 𝛼, 𝛽) is a frame for 𝐿2(R), it
is called Gabor frame, Weyl-Heisenberg frame, or windowed
Fourier frame [8]. From nowwewill be denoting such frames
by the windowed Fourier frames. Figure 1 shows a sample
window function and its Fourier transform. Gabor frame can
be constructed using

𝑔
𝑛,𝑘
(𝑡) = 𝑔 (𝑡 − 𝑛) exp (𝑖2𝜋𝑘𝑡) , 𝑛 ∈ Z, 𝑘 ∈ Z. (5)

A detailed construction process of window functions can be
found in [7].

Theorem 3 (see [5]). Let 𝑔 be a window whose support is
included in [−𝜋/𝜉

0
, 𝜋/𝜉
0
], 𝜉
0
> 0. If

2𝜋

𝜉
0

∞

∑
𝑛=−∞

𝑔 (𝑡 − 𝑛𝑢0)

2

= 𝐴 > 0, 𝑢
0
∈ R, (6)

for all 𝑡 ∈ R, then {𝑔
𝑛,𝑘
}
(𝑛,𝑘)∈Z2 is a tight frame with a frame

bound equal to 𝐴.

Thus construction of a window function is important. So
we aim to present some ideas to designwindow functions. Let
us first give a brief explanation of forming awindow function.
Consider an interval [𝑎, 𝑏], 𝑎, 𝑏 ∈ R and 𝑎 < 𝑏 < ∞. We want
to form a function 𝑔 so that 𝑔(𝑥) = 0 if 𝑥 ∉ [𝑎, 𝑏] and there
exists 𝑎 < 𝑎

1
< 𝑏
1
< 𝑏 such that we have the following.

Property 1 𝑔(𝑥) is increasingmonotonically in [𝑎, 𝑎
1
].

Property 2 𝑔(𝑥) = 1 in [𝑎
1
, 𝑏
1
].

Property 3 𝑔(𝑥) is decreasingmonotonically in [𝑏
1
, 𝑏].

Property 4 𝑔2(𝑥) + 𝑔2((𝑎 + 𝑏)/2 − 𝑥) = 1 for all 𝑥 ∈
[𝑎, 𝑏].

2.1. Computation of a Function and Sparsity. Now we can
define 𝑓(𝑥) as

𝑓 (𝑥) = ∑
𝑗,𝑘

𝐶
𝑗,𝑘
𝑔
𝑗,𝑘
(𝑥) , (7)

where 𝑔
𝑗,𝑘

are the Fourier windowed frames and 𝐶
𝑗,𝑘

are
frame coefficients given by 𝐶

𝑗,𝑘
= ⟨𝑓, 𝑔

𝑗,𝑘
⟩. Here many of the

frame coefficients 𝐶
𝑗,𝑘

are very close to 0 (see an example in
Figure 2) and thus the coefficient matrix is sparse if we use
𝑔
𝑗,𝑘

frames. To define windowed Fourier frames we consider
the following steps. We fix

(i) the number of windows = 𝐾,

(ii) the number of points on each window = 𝑁
𝑙
,

(iii) 𝑁 = 𝐾𝑁
𝑙
/2,

(iv) the window function 𝑤(𝑥) = sin((𝜋/2)(𝑒−𝑐/𝑥/(𝑒−𝑐/𝑥 +
𝑒−𝑐/(1−𝑥)))), where 𝑥 ∈ [0, 2).
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Figure 1: The figure shows window function 𝑔(𝑡) = √1/𝜋 cos(𝑡/2)1
[−𝜋,𝜋]

(𝑡), its Fourier transform 𝑔, and log(|𝑔|).
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Figure 2: This figure shows frame coefficients |𝐶
𝑗,𝑘
| (sorted) for

𝑓 = exp(𝑖𝜙(𝑥)) where 𝜙(𝑥) = −𝑥2 + 𝑥. Here we have considered
64 window functions with 128 grid points on each window.

We plot a cartoon of an original function 𝑓 and 𝑓 recovered
(𝑓rec) from its frame coefficients with sparsity set up

𝐶
𝑗,𝑘

= {
𝐶
𝑗,𝑘

if 𝐶𝑗,𝑘
 ≥ 10−4,

0 otherwise,
(8)

in Figure 3. From this computation we notice at the approx-
imation is accuracy as |𝑓(⋅) − 𝑓rec(⋅)| ≤ 𝐶∗

1
10−5, 𝐶∗

1
> 0.

We notice that a large number of windowed Fourier frame
coefficients are numerically zero or very small. This result
motivates us to perform further study on the computation of
operators using WFF functions.

3. Computation of Operators Using Windowed
Fourier Frames

Here we intend to define and compute the solution 𝑢(𝑥)
of a differential equation using the frame transformation of

the initial function 𝑢
0
(𝑥) over a bounded interval [𝐴, 𝐵].

Actually we intend to present some operators over a bounded
interval [𝐴, 𝐵] to facilitate the approximation of several
BVPs with boundary conditions at 𝑥 = 𝐴 and 𝑥 = 𝐵.
Let us approximate functions 𝑢

0
(𝑥) and 𝑢(𝑥) by 𝑢

0
(𝑥) =

∑
𝑗,𝑘
𝐵
𝑗,𝑘
𝑔
𝑗,𝑘
(𝑥) where 𝐵

𝑗,𝑘
= ⟨𝑢
0
, 𝑔
𝑗,𝑘
⟩ are frame coefficients

and

𝑢 (𝑥) = ∑
𝑗,𝑘

𝐶
𝑗,𝑘
𝑔
𝑗,𝑘
(𝑥) , (9)

where 𝐶
𝑗,𝑘

= ⟨𝑢, 𝑔
𝑗,𝑘
⟩ are frame coefficients, respectively. We

define 𝑢(𝑥) = L𝑢
0
where L is an operator. It is our goal to

find the matrix that maps 𝐵
𝑗,𝑘

to 𝐶
𝑗,𝑘

and to find a way to
compute the matrices. Here

𝑢 = L𝑢
0
(𝑥) = L(∑

𝑗,𝑘

𝐵
𝑗,𝑘
𝑔
𝑗,𝑘
(𝑥)) = ∑

𝑗,𝑘

𝐵
𝑗,𝑘
L𝑔
𝑗,𝑘
(𝑥)

(10)

and thus the frame coefficients 𝐶
𝑙,𝑚

to approximate 𝑢 can be
defined as

𝐶
𝑙,𝑚

= ⟨𝑢, 𝑔
𝑙,𝑚
⟩ = ⟨∑

𝑗,𝑘

𝐵
𝑗,𝑘
L𝑔
𝑗,𝑘
(𝑥) , 𝑔

𝑙,𝑚
⟩

= ∑
𝑗,𝑘

𝐵
𝑗,𝑘
⟨L𝑔
𝑗,𝑘
(𝑥) , 𝑔

𝑙,𝑚
⟩ ,

(11)

and the first approach of 𝐶
𝑙,𝑚

is simpler since we need to
compute the integral over the support of thewindow function
only. In practice, we are interested in the following operators:

(1) multiplication by a function,
(2) differentiation operator (derivative as an operator),

which are used to formulate PDEs and to present solutions.

3.1. L as Multiplication: L𝑔(𝑥)=𝑐(𝑥)𝑔(𝑥). We define L as
multiplication operator L𝑔(𝑥) = 𝑐(𝑥)𝑔(𝑥), where 𝑐(𝑥) is
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Figure 3: This figure shows the original function 𝑓 and recovered function from the frame coefficients (|𝐶
𝑗,𝑘
| > 𝛿 = 10−4) and the error we

made with such an approximation.

an arbitrary function. Then the matrix elements ⟨L𝑔
𝑙,𝑚
(𝑥),

𝑔
𝑗,𝑘
(𝑥)⟩ of (11) can be written as

𝑀
𝑗,𝑘;𝑙,𝑚

= ⟨𝑐 (𝑥) 𝑔
𝑙,𝑚
(𝑥) , 𝑔

𝑗,𝑘
(𝑥)⟩ , (12)

where 𝑐(𝑥) is a function which depends on 𝑥. Thus we can
think of the following three cases.

(1) When 𝑗 = 𝑙, both the windows have identical support,
and so the integral can be written as

𝑀
𝑗,𝑘;𝑙,𝑚

= 𝑒𝑖𝜉0𝑢0(𝑚−𝑘)𝑙 ∫ 𝑒−𝑖(𝑘−𝑚)𝜉0𝑥𝑐 (𝑥 + 𝑗𝑢
0
) 𝑔2 (𝑥) 𝑑𝑥

= 𝑒𝑖𝜉0𝑢0(𝑚−𝑘)𝑙 times Fourier transform of

𝑐 (𝑥 + 𝑗𝑢
0
) 𝑔2 (𝑥) .

(13)

(2) When |𝑗 − 𝑙| > 1, then the windows do not have
overlapping support, and so

𝑀
𝑗,𝑘;𝑙,𝑚

= 𝑒𝑖𝜉0𝑢0(𝑚−𝑘)𝑙

⋅ ∫ 𝑒−𝑖(𝑘−𝑚)𝜉0𝑥𝑐 (𝑥 + 𝑗𝑢
0
) 𝑔

⋅ (𝑥 − (𝑗 − 𝑙) 𝑢
0
) 𝑔 (𝑥) 𝑑𝑥 = 0.

(14)

(3) When 𝑗−𝑙 = ±1, then two successivewindows overlap
and we can compute the elements by

𝑀
𝑗,𝑘;𝑙,𝑚

= 𝑒𝑖𝜉0𝑢0(𝑚−𝑘)𝑙

⋅ ∫ 𝑒−𝑖(𝑘−𝑚)𝜉0𝑥𝑐 (𝑥 + 𝑗𝑢
0
) 𝑔

⋅ (𝑥 − (𝑗 − 𝑙) 𝑢
0
) 𝑔 (𝑥) 𝑑𝑥

= 𝑒𝑖𝜉0𝑢0(𝑚−𝑘)𝑙 times Fourier transform of

𝑐 (𝑥 + 𝑗𝑢
0
) 𝑔 (𝑥 + (𝑗 − 𝑙) 𝑥) 𝑔

0
(𝑥) .

(15)

Thus the computation of the elements becomes the frame
transformation of the functions 𝑐(𝑥)𝑔

𝑙,𝑚
(𝑥), 𝑙 = 0, 1, . . . , 𝐾−1,

𝑚 = 0, 1, . . . , 𝑁
𝑙
− 1.

3.2.L𝑢 as Differential Operators 𝑑𝑢/𝑑𝑥 and 𝑑2𝑢/𝑑𝑥2. Let us
start with computing L𝑢 = 𝜕𝑢/𝜕𝑥 using windowed Fourier
frames. Consider

𝑢 (𝑥) = ∑
𝑗,𝑘

𝐶∗
𝑗,𝑘
(𝑥) 𝑔
𝑗,𝑘
(𝑥) (16)

and we find frame coefficients

𝐶∗
𝑗,𝑘

= ⟨𝑢 (𝑥) , 𝑔
𝑗,𝑘
⟩ = ∑
𝑙,𝑚

𝐶
𝑙,𝑚
⟨𝑔
𝑙,𝑚
, 𝑔
𝑗,𝑘
⟩

= ∑
𝑙,𝑚

⟨𝑢, 𝑔
𝑙,𝑚
⟩ ⟨𝑔
𝑙,𝑚
, 𝑔
𝑗,𝑘
⟩ ,

(17)
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where 𝑢(𝑥) is defined by (9). Then we can define

𝑑𝑢

𝑑𝑥
= ∑𝐶∗

𝑗,𝑘
𝑔
𝑗,𝑘

= ∑
𝑗,𝑘

∑
𝑙,𝑚

⟨𝑢, 𝑔
𝑙,𝑚
⟩⟨𝑔
𝑙,𝑚
, 𝑔
𝑗,𝑘
⟩𝑔
𝑗,𝑘
. (18)

Thus the computation that needs to be focused on is𝑀
𝑗,𝑘;𝑙,𝑚

=

⟨𝑔
𝑙,𝑚
, 𝑔
𝑗,𝑘
⟩. Now

𝑀
𝑗,𝑘;𝑙,𝑚

= ⟨
𝜕

𝜕𝑥
𝑔
𝑙,𝑚
, 𝑔
𝑗,𝑘
⟩

= ⟨𝑖𝜉
𝑚
𝑒𝑖𝜉𝑚𝑥𝑔 (𝑥 − 𝑙𝑢

0
) + 𝑒𝑖𝜉𝑚𝑥𝑔 (𝑥 − 𝑙𝑢

0
) , 𝑔
𝑗,𝑘
⟩

= 𝑖𝜉
𝑚
⟨𝑒𝑖𝜉𝑚𝑥𝑔 (𝑥 − 𝑙𝑢

0
) , 𝑔
𝑗,𝑘
⟩

+ ⟨𝑒𝑖𝜉𝑚𝑥𝑔 (𝑥 − 𝑙𝑢
0
) , 𝑔
𝑗,𝑘
⟩ = 𝐼1 + 𝐼2,

(19)

where the integral 𝐼1 is exactly the same as the integral (12)
we discussed above. 𝐼2 is also of the same form and can be
computed similarly to 𝐼1 once we know 𝑔(𝑥). Here we have
to define twomatrices, onewith a derivative (𝐼2) and the other
integral that needs to be multiplied by frequencies 𝜉

𝑚
(𝐼1).

Now

𝐼2 =
𝑁−1

∑
𝑛=0

𝑒2𝜋𝑖(𝑚−𝑘)𝑛/𝑁𝑙𝑔 [𝑛 − 𝑙𝑀] 𝑔 [𝑛 − 𝑗𝑀]

= (−1)
𝑗(𝑘−𝑚)𝐻2 (𝛼, 𝛽) ,

(20)

where

𝐻2 (𝛼, 𝛽) =
𝑁
𝑙
−1

∑
𝑛=0

𝑒−2𝜋𝑖𝛽𝑛/𝑁𝑙𝑔 [𝑛] 𝑔


[𝑛 + 𝛼𝑀] ,

𝐻2 (𝛼, 𝛽) = 0 if 𝛼 > 1 or 𝛼 < −1,

(21)

and for each 𝑗 and 𝛽, computation of 𝐻2(𝛼, 𝛽) can be
performed as of𝐻1(𝛼, 𝛽) if thewindow𝑔(𝑥) and its derivative
𝑔(𝑥) have the same support.

Next we consider

𝑢 (𝑥) = ∑
𝑗,𝑘

𝐶∗
𝑗,𝑘
(𝑥) 𝑔
𝑗,𝑘
(𝑥) , (22)

where the frame coefficients are defined by

𝐶∗
𝑗,𝑘

= ⟨𝑢 (𝑥) , 𝑔
𝑗,𝑘
⟩ = ∑
𝑙,𝑚

𝐶
𝑙,𝑚
⟨𝑔
𝑙,𝑚
, 𝑔
𝑗,𝑘
⟩, (23)

and 𝑢(𝑥) is defined by (9). Thus 𝑢(𝑥) can be presented
using frames following similar steps as of 𝑢(𝑥). Figure 4
shows a window function and its first and second derivatives
computed using central difference formula.

3.3. Inner Product of Two Derivatives. There are some cases
when the second derivative is replaced by its variational form.
Now with appropriate boundary conditions the variational
form can be written as ((𝜕/𝜕𝑥)𝑢(𝑥), (𝜕/𝜕𝑥)V(𝑥))where V(𝑥) is

−1 −0.5 0 0.5
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w(x)
w(x)

Figure 4: We show 𝑤(𝑥) = sin((𝜋/2)(𝑒−𝑐/𝑥/(𝑒−𝑐/𝑥 + 𝑒−𝑐/(1−𝑥)))),
𝑑𝑤(𝑥)/𝑑𝑥, and 𝑑2𝑤(𝑥)/𝑑𝑥2 where 𝑐 = 1.57.

a test function. We replace 𝑢(𝑥) by ∑
𝑙,𝑚
𝐶
𝑙,𝑚
𝑔
𝑙,𝑚
(𝑥) and V(𝑥)

by 𝑔
𝑗,𝑘
(𝑥), respectively. Thus we are interested in computing

(
𝜕

𝜕𝑥
𝑢 (𝑥) ,

𝜕

𝜕𝑥
𝑔
𝑗,𝑘
(𝑥))

= (∑
𝑙,𝑚

𝐶
𝑙,𝑚

𝜕

𝜕𝑥
𝑔
𝑙,𝑚
(𝑥) ,

𝜕

𝜕𝑥
𝑔
𝑗,𝑘
(𝑥))

= ∑
𝑙,𝑚

𝐶
𝑙,𝑚
(
𝜕

𝜕𝑥
𝑔
𝑙,𝑚
(𝑥) ,

𝜕

𝜕𝑥
𝑔
𝑗,𝑘
(𝑥))

= ∑
𝑙,𝑚

𝐶
𝑙,𝑚
𝑀
𝑗,𝑘;𝑙,𝑚

,

(24)

for all 𝑗 = 0, 1, . . . , 𝐾 − 1 or 𝑙 = 0, 1, . . . , 𝐾 − 1, where

𝑀
𝑙,𝑚;𝑗,𝑘

= ⟨
𝜕

𝜕𝑥
𝑔
𝑙,𝑚
(𝑥) ,

𝜕

𝜕𝑥
𝑔
𝑗,𝑘
(𝑥)⟩ . (25)

4. Numerical Solution of Two-Point BVPs

In the previous section we discuss the frame representation
of various functions and operators. Here we aim to use the
representations to approximate two-point boundary value
problems. We consider

−𝑎 (𝑥)
𝑑2𝑢 (𝑥)

𝑑𝑥2
+ 𝑏 (𝑥)

𝑑𝑢 (𝑥)

𝑑𝑥
+ 𝑐 (𝑥) 𝑢 (𝑥) = 𝑓 (𝑥) (26)
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for all 𝑥 ∈ (𝐴, 𝐵) with some boundary conditions 𝑢(𝐴) =
𝑢(𝐵) = 0. Let V be a test function; then the variational form
of the solutions can be written as

(𝑎 (𝑥)
𝑑𝑢 (𝑥)

𝑑𝑥
,
𝑑V (𝑥)
𝑑𝑥

)

+ (𝑏 (𝑥)
𝑑𝑢 (𝑥)

𝑑𝑥
, V (𝑥)) + (𝑐 (𝑥) 𝑢 (𝑥) , V (𝑥))

= (𝑓 (𝑥) , V (𝑥)) ,

(27)

and we consider 𝑢(𝑥), V(𝑥) ∈ 𝐻1
0
(Ω). Now considering

𝑢 (𝑥) = ∑
𝑙,𝑚

𝐶
𝑙,𝑚
𝑔
𝑙,𝑚
(𝑥) (28)

and replacing V(𝑥) by 𝑔
𝑗,𝑘
(𝑥)

∑
𝑙,𝑚

𝐶
𝑙,𝑚
[𝑎 (𝑥) (

𝜕

𝜕𝑥
𝑔
𝑙,𝑚
(𝑥) ,

𝜕

𝜕𝑥
𝑔
𝑗,𝑘
(𝑥))

+ 𝑐 (𝑥) (𝑔
𝑙,𝑚
(𝑥) , 𝑔

𝑗,𝑘
(𝑥))

+ 𝑏 (𝑥) (
𝜕

𝜕𝑥
𝑔
𝑙,𝑚
(𝑥) , 𝑔

𝑗,𝑘
(𝑥))]

= (𝑓 (𝑥) , 𝑔
𝑗,𝑘
) .

(29)

Thus we need to find 𝐶
𝑙,𝑚

of (29).
Now we aim to display some computational results obtai-

ned with the scheme discussed in this paper. Here we solve
some one-dimensional BVPs of the form (26) to demonstrate
the scheme.

Example 4. Let 𝑎 = 1, 𝑏(𝑥) = 0, 𝑐(𝑥) = 0, and𝑓(𝑥) = 1where
0 ≤ 𝑥 ≤ 1. The variational form (29) is then

∑
𝑙,𝑚

𝐶
𝑙,𝑚
(
𝜕𝑔
𝑙,𝑚
(𝑥)

𝜕𝑥
,
𝜕𝑔
𝑗,𝑘
(𝑥)

𝜕𝑥
) = (𝑓 (𝑥) , 𝑔

𝑗,𝑘
) (30)

which can be written as a system of linear equations with
unknowns 𝐶 as

𝑀𝐶 = 𝑓. (31)

We present the approximate solution in Figure 5.We compare
the result with that of the exact solution.

Example 5. Consider the BVP

−
𝑑2𝑢

𝑑𝑥2
+ 𝑢 = 𝑓 (𝑥) , 𝑢 (0) = 𝑢 (1) = 0, (32)

with 𝑓(𝑥) = 20𝑒𝑥, if 0 < 𝑥 ≤ 1/4, and 𝑓(𝑥) = (1/2)𝑒−𝑥, if
1/4 < 𝑥 < 1. Using similar steps as of the previous discussion
we present the approximate solution in Figure 6.
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Figure 5: Solution of the BVP: using windowed Fourier frames.
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Figure 6: Solution of the BVP: using windowed Fourier frames.

Example 6. Consider the BVP

−0.005
𝑑2𝑢

𝑑𝑥2
+ 0.1

𝑑𝑢

𝑑𝑥
+
𝑥2𝑢 (𝑥)

1 + 𝑥2
= 𝑒−(𝑥−0.5)

2

,

𝑢 (0) = 𝑢 (1) = 0.

(33)

Wepresent the approximate solution in Figure 7.We compare
the result with that of an approximation using a standard
finite difference scheme.

FromFigures 5, 6, and 7 we see that the approximate solu-
tions agreewith the exact solutions, which show the efficiency
of the numerical scheme presented in this paper.
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Figure 7: Solution of the BVP: using windowed Fourier frames and
using a standard finite difference scheme.

5. Conclusion

In the paper windowed Fourier frames have been used to
approximate two-point BVPs. From the approximation of
functions we notice that the results agree with the exact solu-
tions. We also note that a small amount of WFF coefficients
is needed to reconstruct a function, and huge storage costs
can be minimized. The scheme also does not require a lot
of knowledge concerning the behavior of the solutions. The
illustrative examples have been included to demonstrate the
validity and applicability of the technique. These examples
also exhibit the efficiency of the present method. There are
some drawbacks: design of an efficient window function is
very important. For one-dimensional problems the advantage
of using themethod is not very highly visible compared to the
other existing numerical schemes, but we have a conjecture
(our computational experiences) that this scheme can be
used for higher dimensional problem where storage is a real
problem for numerical computations. A multidimensional
approximation using WFF would be of interest which is left
as an open problem.

In this study we apply WFFs to some second-order linear
BVPs.WFFs are not limited to these problems only.There are
many linear higher order BVPs andnonlinear BVPsmodeling
scientific and engineering problems where WFFs can be
applied to approximate the solutions which are left as open
research problems.
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