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This paper investigates the finite-time chaos control of a permanent magnet synchronous motor system with complex variables.
Based on the finite-time stability theory, two control strategies are proposed to realize stabilization of the complex permanent
magnet synchronous motor system in a finite time. Two numerical simulations have been conducted to demonstrate the validity
and feasibility of the theoretical analysis.

1. Introduction

Permanentmagnet synchronousmotors (PMSMs) are widely
used in various industrial fields because of their simple struc-
ture, high efficiency, high power density, low manufacturing
cost, and large torque to inertia ratio [1]. It is well known that
the existing mathematical models of PMSMs are nonlinear,
multivariable, and strongly coupled; therefore, these systems
can exhibit complex behaviors, such as Hopf bifurcations,
limit cycles, and even chaos [2]. Furthermore, the operation
of PMSMs in industrial environment can be affected by
many uncertain factors such as unknown system parameters,
external load disturbance, friction force, and unmodeled
uncertainties. These uncertain factors can seriously degrade
the performance quality of PMSM systems [3–5]. So, it is
indispensable to study methods of controlling or suppressing
chaos in PMSM systems. Up till now, there are numerous
methods to control chaos in PMSM systems [6–15]. In [9], a
nonlinear feedback control method was proposed to control
the chaos in a PMSM system. Loŕıa [10] achieved both set-
point and tracking output regulation of PMSM systems via
a simple linear output feedback controller. Based on syn-
chronization characteristics, a continuous feedback control
method was proposed to eliminate chaotic oscillations in a

PMSM system [11]. Hou [12] investigated the guaranteed cost
control of chaos problem in a PMSM system via Takagi-
Sugeno fuzzy method approach. Choi [13] proposed a simple
adaptive controller design method for a chaotic PMSM
system based on the sliding mode control theory.

The existing methods stabilize chaotic systems asymptot-
ically; that is, the trajectories of chaotic systems converge to
zero with infinite settling time. However, from the practical
engineering point of view, it is more crucial to stabilize
chaotic systems in a finite time. Therefore, it is important to
consider the problem of finite-time stabilization of chaotic
systems. Finite-time control is a very useful technique to
achieve faster convergence speed in control systems. In
addition, the finite-time control technique has demonstrated
better robustness and disturbance rejection properties [14].
In [15], Wei and Zhang presented a nonlinear controller to
achieve finite-time chaos control in a PMSM system based
on the finite-time stability theory.

Since Fowler et al. [16] generalized the real Lorenz model
to a complex one, the complex modeling of phenomena in
nature and society has been intensively investigated. The
complex systems appear in physics and engineering fields,
such as detuned lasers, rotating fluids, disk dynamos, elec-
tronic circuits, and particle beam dynamics in high energy
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accelerators [17, 18]. Wang and Zhang proposed a complex
PMSM system by modifying cross-coupled term in [19], for
complex number voltage and complex number current exist
widely in motor systems and it is easier to analyze motor
systems with complex systems.

Motivated by the above discussion, in the present paper,
we construct controllers to stabilize a complex PMSM sys-
tem. Based on the finite-time stability theorem, two control
strategies are proposed to realize chaos control in a finite
time. Numerical simulation results show that the proposed
controllers are very effective.

2. System Descriptions

A PMSM system in a field-oriented rotor can be described by
the following equation [20]:

𝑑𝑖𝑑

𝑑𝑡
=

1

𝐿𝑑

(𝑢𝑑 − 𝑅1𝑖𝑑 + 𝜔𝐿𝑞𝑖𝑞) ,

𝑑𝑖𝑞

𝑑𝑡
=

1

𝐿𝑞

(𝑢𝑞 − 𝑅1𝑖𝑞 − 𝜔𝐿𝑑𝑖𝑑 + 𝜔𝜓𝑟) ,

𝑑𝑤

𝑑𝑡
=
1

𝐽
(𝑛𝑝𝜓𝑟𝑖𝑞 + 𝑛𝑝 (𝐿𝑑 − 𝐿𝑞) 𝑖𝑑𝑖𝑞 − 𝑇𝐿 − 𝛽𝜔) ,

(1)

where 𝑖𝑑, 𝑖𝑞, and 𝜔 are the state variables, which represent
currents and motor angular frequency, respectively; 𝑢𝑑 and
𝑢𝑞 are the direct-axis stator and quadrature-axis stator voltage
components, respectively; 𝐽 is the polar moment of inertia;
𝑇𝐿 is the external load torque; 𝛽 is the viscous damping
coefficient; 𝑅1 is the stator winding resistance; 𝐿𝑑 and 𝐿𝑞
are the direct-axis stator inductors and quadrature-axis stator
inductors, respectively; 𝜓𝑟 is the permanent magnet flux, 𝑛𝑝
is the number of pole-pairs, and the parameters 𝐿𝑑, 𝐿𝑞, 𝐽, 𝑇𝐿,
𝑅1,𝜓𝑟, and𝛽 are all positive.When the air gap is even, and the
motor has no load and power outage, then the dimensionless
equations of a PMSM system can be modeled by

𝑧̇1 = 𝑎 (𝑧2 − 𝑧1) ,

𝑧̇2 = 𝑏𝑧1 − 𝑧2 − 𝑧1𝑧3,

𝑧̇3 = 𝑧1𝑧2 − 𝑧3,

(2)

where 𝑎 and 𝑏 are both positive parameters. If the current
in the system (1) is plural and the variables 𝑧1 and 𝑧2 in the
system (2) are complex numbers, by changing cross-coupled
terms 𝑧1 and 𝑧2 to conjugate form, a complex PMSM system
is constructed as follows [20]:

𝑧̇1 = 𝑎 (𝑧2 − 𝑧1) ,

𝑧̇2 = 𝑏𝑧1 − 𝑧2 − 𝑧1𝑧3,

𝑧̇3 =
1

2
(𝑧1𝑧2 + 𝑧1𝑧2) − 𝑧3,

(3)

where 𝑧1 = 𝑢1 + 𝑖𝑢2 and 𝑧2 = 𝑢3 + 𝑖𝑢4 are complex variables,
𝑖 = √−1; 𝑢𝑖 (𝑖 = 1, 2, 3, 4) and 𝑧3 = 𝑢5 are real variables. 𝑧1
and 𝑧2 are the conjugates of 𝑧1 and 𝑧2, respectively, and 𝑎 and

𝑏 are positive parameters determining the chaotic behaviors
and bifurcations of system (3). When the parameters satisfy
1 ≤ 𝑎 ≤ 11, 10 ≤ 𝑏 ≤ 20, there is one positive Lyapunov
exponent, two zero Lyapunov exponents, and two negative
Lyapunov exponents for system (4), which means system (3)
is chaotic [20].

3. Basic Conception of Finite-Time
Stability Theory

Finite-time stability means that the states of the dynamic
system converge to a desired target in a finite time.

Definition 1 (see [21]). Consider the nonlinear dynamical
system modeled by

𝑥̇ = 𝑓 (𝑥) , (4)

where the state variable 𝑥 ∈ 𝑅𝑛. If there exists a constant 𝑇 >

0 (𝑇 > 0may depend on the initial state 𝑥(0)), such that

lim
𝑡→𝑇

‖𝑥 (𝑡)‖ = 0, (5)

and ‖𝑥(𝑡)‖ ≡ 0, if 𝑡 ≥ 𝑇, then system (1) is finite-time stable.

Lemma 2 (see [22]). Assume that a continuous, positive-
definite function 𝑉(𝑡) satisfies the following differential
inequality:

𝑉̇ (𝑡) ≤ −𝛼𝑉
𝜆
(𝑡) , ∀𝑡 ≥ 𝑡0, 𝑉 (𝑡0) ≥ 0, (6)

where 𝛼 > 0 and 0 < 𝜆 < 1 are constants. Then, for any given
𝑡0, 𝑉(𝑡) satisfies the following inequality:

𝑉
1−𝜆

(𝑡) ≤ 𝑉
1−𝜆

(𝑡0) − 𝛼 (1 − 𝜆) (𝑡 − 𝑡0) , 𝑡0 ≤ 𝑡 ≤ 𝑡1,

𝑉 (𝑡) ≡ 0, ∀𝑡 ≥ 𝑡1,

(7)

with 𝑡1 given by

𝑡1 = 𝑡0 +
𝑉
1−𝜆

(𝑡0)

𝛼 (1 − 𝜆)
. (8)

Lemma 3 (see [23]). For any real number 𝛼𝑖, 𝑖 = 1, 2, . . . , 𝑘

and 0 < 𝑟 < 1, the following inequality holds:

(
󵄨󵄨󵄨󵄨𝛼1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛼2

󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝛼𝑘

󵄨󵄨󵄨󵄨)
𝑟
≤
󵄨󵄨󵄨󵄨𝛼1

󵄨󵄨󵄨󵄨
𝑟
+
󵄨󵄨󵄨󵄨𝛼2

󵄨󵄨󵄨󵄨
𝑟
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨𝛼𝑘
󵄨󵄨󵄨󵄨
𝑟
. (9)

4. Finite-Time Chaos Control of
a Complex PMSM System

In order to control chaotic oscillation in the complex PMSM
system (3), we add controllers to system (3) and then the
controlled system can be expressed by

𝑧̇1 = 𝑎 (𝑧2 − 𝑧1) + 𝜇1 + 𝑖𝜇2,

𝑧̇2 = 𝑏𝑧1 − 𝑧2 − 𝑧1𝑧3 + 𝜇3 + 𝑖𝜇4,

𝑧̇3 =
1

2
(𝑧1𝑧2 + 𝑧1𝑧2) − 𝑧3 + 𝜇5,

(10)
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where 𝜇𝑖 (𝑖 = 1, 2, . . . , 5) are controllers to be designed to
achieve finite-time control.

By separating the real and imaginary parts, we have the
following real system:

𝑢̇1 = 𝑎 (𝑢3 − 𝑢1) + 𝜇1,

𝑢̇2 = 𝑎 (𝑢4 − 𝑢2) + 𝜇2,

𝑢̇3 = 𝑏𝑢1 − 𝑢3 − 𝑢1𝑢5 + 𝜇3,

𝑢̇4 = 𝑏𝑢2 − 𝑢4 − 𝑢2𝑢5 + 𝜇4,

𝑢̇5 = 𝑢1𝑢3 + 𝑢2𝑢4 − 𝑢5 + 𝜇5.

(11)

Next, we apply the finite-time stability theory to design
controllers to globally stabilize the unstable equilibrium
𝑂(0, 0, 0, 0, 0) in a finite time. Two control strategies are
proposed to fulfill this goal.

Control Strategy 1

Theorem 4. If the controllers are designed as

𝜇1 = − 𝑎𝑢3 − 𝑢
𝑘

1
,

𝜇2 = − 𝑎𝑢4 − 𝑢
𝑘

2
,

𝜇3 = − 𝑏𝑢1 − 𝑢
𝑘

3
,

𝜇4 = − 𝑏𝑢2 − 𝑢
𝑘

4
,

𝜇5 = − 𝑢
𝑘

5
,

(12)

where 𝑘 = 𝑞/𝑝 is a proper rational number, 𝑝 and 𝑞 are positive
odd integers, and 𝑝 > 𝑞, the chaos in the complex PMSM
system (10) will be controlled; that is, the complex PMSM
system (10) will be asymptotically stabilized at the equilibrium
𝑂(0, 0, 0, 0, 0) in a finite time.

Proof. Construct the following Lyapunov function:

𝑉 =
1

2
(𝑢
2

1
+ 𝑢
2

2
+ 𝑢
2

3
+ 𝑢
2

4
+ 𝑢
2

5
) . (13)

By differentiating the function 𝑉 along the trajectories of
system (11), we have

𝑉̇ = 𝑢1𝑢̇1 + 𝑢2𝑢̇2 + 𝑢3𝑢̇3 + 𝑢4𝑢̇4 + 𝑢5𝑢̇5

= 𝑢1 [𝑎 (𝑢3 − 𝑢1) + 𝜇1] + 𝑢2 [𝑎 (𝑢4 − 𝑢2) + 𝜇2]

+ 𝑢3 (𝑏𝑢1 − 𝑢3 − 𝑢1𝑢5 + 𝜇3)

+ 𝑢4 (𝑏𝑢2 − 𝑢4 − 𝑢2𝑢5 + 𝜇4)

+ 𝑢5 (𝑢1𝑢3 + 𝑢2𝑢4 − 𝑢5 + 𝜇5) .

(14)

Substituting the controllers (12) into the above equation
yields

𝑉̇ = 𝑢1 [𝑎 (𝑢3 − 𝑢1) − 𝑎𝑢3 − 𝑢
𝑘

1
]

+ 𝑢2 [𝑎 (𝑢4 − 𝑢2) − 𝑎𝑢4 − 𝑢
𝑘

2
]

+ 𝑢3 (𝑏𝑢1 − 𝑢3 − 𝑢1𝑢5 − 𝑏𝑢1 − 𝑢
𝑘

3
)

+ 𝑢4 (𝑏𝑢2 − 𝑢4 − 𝑢2𝑢5 − 𝑏𝑢2 − 𝑢
𝑘

4
)

+ 𝑢5 (𝑢1𝑢3 + 𝑢2𝑢4 − 𝑢5 − 𝑢
𝑘

5
)

= −𝑎𝑢
2

1
− 𝑢
𝑘+1

1
− 𝑎𝑢
2

2
− 𝑢
𝑘+1

2
− 𝑢
2

3

− 𝑢
𝑘+1

3
− 𝑢
2

4
− 𝑢
𝑘+1

4
− 𝑢
2

5
− 𝑢
𝑘+1

5

≤ −(
1

2
)

−(𝑘+1)/2

[(
1

2
𝑢
2

1
)

(𝑘+1)/2

+ (
1

2
𝑢
2

2
)

(𝑘+1)/2

+ (
1

2
𝑢
2

3
)

(𝑘+1)/2

+ (
1

2
𝑢
2

4
)

(𝑘+1)/2

+(
1

2
𝑢
2

5
)

(𝑘+1)/2

] .

(15)

In light of Lemma 3, we have

𝑉̇ ≤ −(
1

2
)

−(𝑘+1)/2

(
1

2
𝑢
2

1
+
1

2
𝑢
2

2
+
1

2
𝑢
2

3
+
1

2
𝑢
2

4
+
1

2
𝑢
2

5
)

(𝑘+1)/2

= −(
1

2
)

−(𝑘+1)/2

(𝑉)
(𝑘+1)/2

.

(16)

Then from Lemma 2, the controlled system (11) is finite-time
stable. This implies that there exists a 𝑇 > 0 such that 𝑢𝑖 ≡
0 (𝑖 = 1, 2, . . . , 5) if 𝑡 ≥ 𝑇.

Control Strategy 2

Theorem 5. If the controllers are designed as

𝜇1 = − 𝑎𝑢3 − 𝑢
𝑘

1
,

𝜇2 = − 𝑎𝑢4 − 𝑢
𝑘

2
,

𝜇3 = − 𝑢
𝑘

3
,

𝜇4 = − 𝑢
𝑘

4
,

𝜇5 = − 𝑢
𝑘

5
,

(17)

where 𝑘 = 𝑞/𝑝 is a proper rational number, 𝑝 and 𝑞 are positive
odd integers, and 𝑝 > 𝑞, the chaos in the complex PMSM
system (10) will be controlled; that is, the complex PMSM
system (10) will be asymptotically stabilized at the equilibrium
𝑂(0, 0, 0, 0, 0) in a finite time.



4 Abstract and Applied Analysis

0 1 2 3 4 5

0

1

0 1 2 3 4

0

1

2

0 1 2 3 4 5

0

1

2

3

0 1 2 3 4 5

5

0

2

4

0 1 2 3 4 5

0

2

4

6

u
1

u
2

u
3

u
4

u
5

tt

t

t

t

−0.5

−1

−1

−2

−2

0.5

Figure 1: The states of the controlled system (11) with controllers (12).

Proof. The design procedure is divided into two steps.

Step 1. Substituting the controllers 𝜇1 and 𝜇2 into the first two
parts of system (11) yields

𝑢̇1 = −𝑎𝑢1 − 𝑢
𝑘

1
,

𝑢̇2 = −𝑎𝑢2 − 𝑢
𝑘

2
.

(18)

Choose the following candidate Lyapunov function:

𝑉1 =
1

2
(𝑢
2

1
+ 𝑢
2

2
) . (19)

The derivative of 𝑉1 along the trajectory of (18) is

𝑉̇1 = 𝑢1𝑢̇1 + 𝑢2𝑢̇2

= 𝑢1 (−𝑎𝑢1 − 𝑢
𝑘

1
) + 𝑢2 (−𝑎𝑢2 − 𝑢

𝑘

2
)

≤ −𝑢
𝑘+1

1
− 𝑢
𝑘+1

2

= −(
1

2
)

−(𝑘+1)/2

[(
1

2
𝑢
2

1
)

(𝑘+1)/2

+ (
1

2
𝑢
2

2
)

(𝑘+1)/2

]

≤ −(
1

2
)

−(𝑘+1)/2

(
1

2
𝑢
2

1
+
1

2
𝑢
2

2
)

(𝑘+1)/2

= −(
1

2
)

−(𝑘+1)/2

𝑉
(𝑘+1)/2

1
.

(20)

From Lemma 2, system (18) is finite-time stable. That means
that there is a 𝑇1 > 0 such that 𝑢1 ≡ 0 and 𝑢2 ≡ 0, for any
𝑡 ≥ 𝑇1.

When 𝑡 > 𝑇1, the last three parts of system (11) become

𝑢̇3 = −𝑢3 + 𝜇3,

𝑢̇4 = −𝑢4 + 𝜇4,

𝑢̇5 = −𝑢5 + 𝜇5.

(21)
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Figure 2: The states of the controlled system (11) with controllers (17).

Choose the following Lyapunov function for system (21):

𝑉2 =
1

2
(𝑢
2

3
+ 𝑢
2

4
+ 𝑢
2

5
) . (22)

The derivative of 𝑉2 along the trajectories of (21) is

𝑉̇2 = 𝑢3𝑢̇3 + 𝑢4𝑢̇4 + 𝑢5𝑢̇5

= 𝑢3 (−𝑢3 + 𝜇3) + 𝑢4 (−𝑢4 + 𝜇4)

+ 𝑢5 (−𝑢5 + 𝜇5) .

(23)

Substituting the controllers 𝜇3, 𝜇4, 𝜇5 in (17) into the above
equation yields

𝑉̇2 = 𝑢3 (−𝑢3 − 𝑢
𝑘

3
) + 𝑢4 (−𝑢4 − 𝑢

𝑘

4
)

+ 𝑢5 (−𝑢5 − 𝑢
𝑘

5
)

≤ −𝑢
𝑘+1

3
− 𝑢
𝑘+1

4
− 𝑢
𝑘+1

5

= −(
1

2
)

−(𝑘+1)/2

× [(
1

2
𝑢
2

3
)

(𝑘+1)/2

+ (
1

2
𝑢
2

4
)

(𝑘+1)/2

+ (
1

2
𝑢
2

5
)

(𝑘+1)/2

]

≤ −(
1

2
)

−(𝑘+1)/2

(
1

2
𝑢
2

3
+
1

2
𝑢
2

4
+
1

2
𝑢
2

5
)

(𝑘+1)/2

= −(
1

2
)

−(𝑘+1)/2

𝑉
(𝑘+1)/2

2
.

(24)

Then from Lemma 2, the states 𝑢3, 𝑢4, and 𝑢5 will con-
verge to zero at a finite time 𝑇2. Then, after 𝑇2, the states of
system (11) will stay at zero; that is, the trajectories of the
controlled system (11) converge to zero in a finite time.

Remark 6. Strategy 1 is easier to implement than Strategy
2, but the controllers (12) obtained by Strategy 1 are more
complicated than the controllers (17) obtained by Strategy
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2. The controllers (17) are obtained by two steps. Simpler as
they are, but the stabilization time with controllers (17) will
be longer than that with controllers (12).

5. Numerical Simulations

In this section, two numerical examples are presented to
illustrate the theoretical analysis. In the following numer-
ical simulations, the fourth-order Runge-Kutta method is
employed with time step size 0.001. The system parameters
are selected as 𝑎 = 11 and 𝑏 = 20, so that the complex PMSM
system (3) exhibits chaotic behavior.The initial conditions for
this system are given as (𝑧1(0), 𝑧2(0), 𝑧3(0)) = (1+2𝑖, 3+4𝑖, 5);
that is, (𝑢1(0), 𝑢2(0), 𝑢3(0), 𝑢4(0), 𝑢5(0)) = (1, 2, 3, 4, 5).

Example 7. Consider Strategy 1 with the controllers (12). We
choose 𝑘 = 7/9. Figure 1 shows the result of the numerical
simulation. From Figure 1, we can see that it takes only a very
short time to stabilize the controlled system (11) at zero. So
system (11) achieves chaos control in a finite time.

Example 8. Consider Strategy 2 with the controllers (17). We
still choose 𝑘 = 7/9. Figure 2 shows that the controlled system
(11) achieves finite-time chaos control. From Figures 1 and 2,
we can see that the stabilization time of the controlled system
(11) in Figure 2 is longer than that in Figure 1.

6. Conclusions

Nowadays, the complex modeling of phenomena in nature
and society has been the object of several investigations
based on the methods originally developed in a physical
context. In this paper, a complex PMSM system has been
considered and the fast stabilization problem of this system
has been investigated. Based on the finite-time stability
theory, two kinds of simple and effective controllers for the
complex PMSM system have been proposed to guarantee
the global exponential stability of the controlled systems.
During the past decades, the 𝐻∞ control strategy [24–26]
has been widely celebrated for its robustness in counter-
acting uncertainty perturbations and external disturbances.
Consequently, we will investigate the finite-time𝐻∞ control
problem of switched PMSM systems in our future work [27–
29].
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