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A new approach, Coiflet-type wavelet Galerkin method, is proposed for numerically solving the Volterra-Fredholm integral
equations. Based on the Coiflet-type wavelet approximation scheme, arbitrary nonlinear term of the unknown function in an
equation can be explicitly expressed. By incorporating such a modified wavelet approximation scheme into the conventional
Galerkin method, the nonsingular property of the connection coefficients significantly reduces the computational complexity
and achieves high precision in a very simple way. Thus, one can obtain a stable, highly accurate, and efficient numerical method
without calculating the connection coefficients in traditional Galerkin method for solving the nonlinear algebraic equations. At
last, numerical simulations are performed to show the efficiency of the method proposed.

1. Introduction

Integral equations have been found to be widely used in
science and engineering. In recent years, the research on
numerical solutions to various Volterra and Fredholm inte-
gral equations has been studied in both theoretical and
practical fields [1–3] and has aroused a lot of interest.

We consider the following Volterra-Fredholm integral
equation:

𝑦 (𝑥) = 𝑓 (𝑥) + 𝜆
1
∫

ℎ(𝑥)

𝑎

𝐾
1
(𝑥, 𝑡) 𝐺

1
(𝑦 (𝑡)) 𝑑𝑡

+ 𝜆
2
∫

𝑏

𝑎

𝐾
2
(𝑥, 𝑡) 𝐺

2
(𝑦 (𝑡)) 𝑑𝑡,

(1)

where 𝑓(𝑥), ℎ(𝑥),𝐾
1
(𝑥, 𝑡), and𝐾

2
(𝑥, 𝑡) are known functions,

𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏, 𝑎 ≤ ℎ(𝑥) < ∞; 𝑎, 𝑏 are known constants; 𝑦(𝑥) is
the unknown function. 𝐺

1
(𝑦(𝑡)) and 𝐺

2
(𝑦(𝑡)) are composite

functions or nonlinear functions. It can be easily seen that,
when ℎ(𝑥) is a first-order polynomial, (1) is a functional
integral equation with proportional delay.

Many approximate numerical methods have been sug-
gested for solvingVolterra-Fredholm equations. For example,
collocationmethod is used for solving Volterra integral equa-
tions [4] and Volterra-Fredholm-type integral equations [5],

respectively. Yalcinba and Sezer have employed the Taylor
collocation method to solve second-order linear differential
equations [6], linear integral differential equations [7], and
Volterra-Fredholm integral equations [8]. Similar approaches
of Chebyshev wavelet collocation method [9] and Haar
wavelet collocation method [10] were used to solve this
kind of integral equations. The continuous wavelet Galerkin
method [11] and the Coiflet-Galerkin method [12] were
proposed for the second kind integral equations and lin-
ear Volterra integral equations, respectively. Ren et al. [13]
applied the Taylor polynomial method for a class of second
kind integral equations. The Lagrange interpolation method
[14, 15] was developed, by which the system of the linear
integral equations was transformed into matrix equations
via Lagrange collocation points. The spectral method [16]
was presented for the Volterra integral equations, Fredholm
integral equations, and Volterra-Fredholm integral equa-
tions, respectively. Although there are some effectivemethods
above, it is still difficult to obtain a high accuracy numerical
method which is suitable for nonlinear Volterra-Fredholm
integral equations due to the existence of strong nonlinearity
in these equations.

As a newly developed powerful mathematical tool, which
has been developed mostly over the last twenty years,
the wavelet has become widely used in the development
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of numerical schemes for solving differential and integral
equations [17–20], Laplace inversions [21], and active vibra-
tion control of piezoelectric smart structures [22, 23]. In
[11], Liang et al. solved the second kind integral equations
by applying Galerkin method with continuous orthogonal
wavelets, and one can find that using theDaubechies wavelets
to solve the integral equation has almost the same numerical
results as those of noncontinuous multiwavelets [24]. How-
ever, as pointed out in [10], few papers reported application
of wavelet to solve the nonlinear Volterra-Fredholm integral
equations.

In this study, we are concerned with the application of
the Coiflet-type wavelet Galerkin method to the numerical
solution of nonlinear Volterra-Fredholm integral equations.
By combining techniques of modified Coiflet-type wavelet
expansion and a single-point sampling of the function, we
obtained an approximation scheme for a function defined on
a bounded interval, which allows each expansion coefficient
of nonlinear term being explicitly expressed. When apply-
ing this wavelet approximation scheme to the conventional
Galerkin method, the original integral equation was trans-
formed into the solving of some simple algebraic equations.
The nonsingular property of the connection coefficients
allows us not to calculate them in these algebraic equations
and eventually develop a stable and efficient numerical
method with high accuracy for solving nonlinear integral
equations.

2. Preliminaries

For a function 𝑓(𝑥) ∈ L2(R), we have [25]

𝑓 (𝑥) = lim
𝑛→∞

∑

𝑘∈𝑍

𝑐
𝑛,𝑘

𝜙
𝑛,𝑘

(𝑥) ≈ ∑

𝑘∈𝑍

𝑐
𝑛,𝑘

𝜙
𝑛,𝑘

(𝑥) , (2)

where the expansion coefficients are

𝑐
𝑛,𝑘

= ∫
R
𝑓 (𝑥) 𝜙

𝑛,𝑘
(𝑥) 𝑑𝑥, (3)

where 𝜙
𝑛,𝑘

(𝑥) = 2
𝑛/2

𝜙(2
𝑛
𝑥 − 𝑘). By the generalized Gaussian

integral method of wavelet proposed by Zhou andWang [20],
we have a good approximation of 𝑐

𝑛,𝑘
as follows:

𝑐
𝑛,𝑘

≈ 2
−𝑛/2

𝑓(
𝑀
1
+ 𝑘

2𝑛
) , (4)

in which 𝑀
1

= ∫
+∞

−∞
𝑥𝜙(𝑥)𝑑𝑥 is the first-order moment of

scaling function, which can be obtained accurately by filter
coefficients in the two-scale equations [25]. The approxima-
tion accuracy of (4) depends on the corresponding wavelet
function vanishing moment 𝛾 and the reconstruction level 𝑛;
it has been demonstrated that [20]


𝑐
𝑛,𝑘

− 2
−𝑛/2

𝑓(
𝑀
1
+ 𝑘

2𝑛
)


≤ 𝑀
2
2
(−9/2)𝑛

, (5)

in which 𝑀
2

= 5/384 sup |𝑑
4
𝑓(𝑥)/𝑑𝑥

4
|[2
−𝑛/2

(3𝛾 − 1)
5

max |𝜙(𝑥)| + 2(3𝛾 − 1)
4
]. It can be seen from (5) that

the approximation error decays as the reconstruction level 𝑛
increases. Substituting (4) into (2), we have

𝑓 (𝑥) ≈ ∑

𝑘∈𝑍

𝑓(
𝑀
1
+ 𝑘

2𝑛
)𝜙 (2

𝑛
𝑥 − 𝑘) . (6)

The single-point reconstruction formula of function𝑓(𝑥)

in (6) has the following characteristics [20].

(1) For the composite function of the function 𝑓(𝑥),
Π[𝑓(𝑥)], its reconstruction (or approximation) for-
mula is

Π [𝑓 (𝑥)] ≈ ∑

𝑘∈𝑍

Π [𝑓(
𝑀
1
+ 𝑘

2𝑛
)]𝜙 (2

𝑛
𝑥 − 𝑘) . (7)

In this way, the importance of (7) is, for an arbitrary
function 𝑓(𝑥) over the function operator Π (which
may be nonlinear operator) transformation, the com-
puting of its right-hand side is equivalent to a linear
operator computing. That is, the coefficient of the
scaling function Π[𝑓(𝑥)] can be obtained by putting
operatorΠ on the role of the coefficient 𝑓(⋅).

(2) For the integral operator or the derivative operatorD
on the function 𝑓(𝑥), we have

D [𝑓 (𝑥)] ≈ ∑

𝑘∈𝑍

𝑓(
𝑀
1
+ 𝑘

2𝑛
)D [𝜙 (2

𝑛
𝑥 − 𝑘)] . (8)

That is, we just need to put the role of operator D on
𝜙
𝑛,𝑘

(𝑥) in (8).

As we know, orthogonal scaling functions originally form
a function basis on the whole real line. When the approx-
imating function is defined only on a finite interval, one
needs to truncate the wavelet series, whichmay introduce the
boundary effect significantly and lead to reduced accuracy of
the corresponding numerical method. Traditionally, general
treatment of boundary conditions is by using the zero-
extension, symmetric or periodic extension, and so on. To
some extent, these approaches can effectively inhibit the jitter
of the border when it is a special form of approximation
function, but not universal. Different from these expansions
of function, in this paper, we consider a natural extension
treatment on the function by using Taylor series expansion
at each boundary [25].The extension can be smooth enough,
and the corresponding boundary conditions can be explicitly
embedded in the resulting scaling function expansions.

We assume that the function 𝑔(𝑥) ∈ L2[0, 𝑏], using Taylor
series expansion on the borders, yields

𝑔 (𝑥) =

{{{{{{{

{{{{{{{

{

𝑀

∑

𝑖=0

1

𝑖!

𝑑
𝑖
𝑔 (0)

𝑑𝑥𝑖
𝑥
𝑖

𝑥 ∈ (−𝛿, 0) ,

𝑔 (𝑥) 𝑥 ∈ [0, 𝑏] ,

𝑀

∑

𝑖=0

1

𝑖!

𝑑
𝑖
𝑔 (𝑏)

𝑑𝑥𝑖
(𝑥 − 𝑏)

𝑖
𝑥 ∈ (𝑏, 𝑏 + 𝛿) ,

(9)

in which 𝛿 > 0, 𝑑𝑖𝑔(0)/𝑑𝑥
𝑖
= ∑
𝛼

𝑘=0
𝑝
0,𝑖,𝑘

𝑔(𝑘/2
𝑛
), and 𝑑

𝑖
𝑔(𝑏)/

𝑑𝑥
𝑖

= ∑
𝛼

𝑘=0
𝑝
𝑏,𝑖,𝑘

𝑔(𝑏 − (𝑘/2
𝑛
)), (𝑖 = 0, 1, 2, . . .); 𝑝

0,𝑖,𝑘
and
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𝑝
𝑏,𝑖,𝑘

are the numerical difference coefficients. In the present
study, we take 𝛼 = 3,𝑀 = 3; according to four-point-Malkoff
numerical difference formulas [17, 18, 25], we know

A
0
= (

1 0 0 0

−
11

6
3 −

3

2

1

3
2 −5 4 −1

−1 3 −3 1

) ,

A
1
= (

1 0 0 0

11

6
−3

3

2
−
1

3
2 −5 4 −1

1 −3 3 −1

) ,

(10)

where A
0
= {2
−𝑖𝑛

𝑝
0,𝑖,𝑘

} and A
1
= {2
−𝑖𝑛

𝑝
𝑏,𝑖,𝑘

}, (𝑖, 𝑘 = 0, 1, 2, 3).
For the specific boundary conditions, once the boundary
conditions are given, in (10), certain elements of the matrix
values will be adjusted. For example, for boundary conditions
𝑥 = 0, 𝑑𝑖𝑔(0)/𝑑𝑥

𝑖
= 0, we just need to set 𝑝

0,𝑖,𝑘
= 0(𝑘 =

0, 1, 2, 3) and keep all other elements 𝑝
0,𝑗,𝑘

(𝑗 ̸= 𝑖) unchanged.
Then, (9) can be expressed as

𝑔 (𝑥) =

{{{{{{{

{{{{{{{

{

3

∑

𝑘=0

𝑔(
𝑘

2𝑛
)𝑇
0,𝑘

(𝑥) , 𝑥 ∈ (−∞, 0)

𝑔 (𝑥) , 𝑥 ∈ [0, 𝑏]

3

∑

𝑘=0

𝑔(𝑏 −
𝑘

2𝑛
)𝑇
𝑏,𝑘

(𝑥) , 𝑥 ∈ (𝑏,∞) ,

(11)

where 𝑇
0,𝑘

(𝑥) = ∑
𝑀

𝑖=0
(𝑝
0,𝑖,𝑘

/𝑖!)𝑥
𝑖 and 𝑇

𝑏,𝑘
= ∑
𝑀

𝑖=0
(𝑝
𝑏,𝑖,𝑘

/𝑖!)(𝑥 −

𝑏)
𝑖.
Using the Coiflet-type scaling function with compact

support set [0, 17] (𝛾 = 6), for the scaling function adopted in
this paper, we have that𝑀

1
= 7; thus approximation equation

(6) can be rewritten as

𝑔 (𝑥) ≈

𝑏2
𝑛

+𝑀
1
−1

∑

𝑘=2−3𝑁+𝑀
1

𝑔(
𝑘

2𝑛
)𝜙 (2

𝑛
𝑥 + 𝑀

1
− 𝑘) . (12)

Inserting (11) into (12) yields

𝑔 (𝑥) ≈

𝑏2
𝑛

∑

𝑘=0

𝑔
𝑘
Φ
𝑏,𝑛,𝑘

(𝑥) , (13)

where 𝑔
𝑘
= 𝑔(𝑘/2

𝑛
) and

Φ
𝑏,𝑛,𝑘

(𝑥)

=

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

𝜙 (2
𝑛
𝑥 + 𝑀

1
− 𝑘)

+

−1

∑

𝑗=2−3𝑁+𝑀
1

𝑇
0,𝑘

(
𝑗

2𝑛
) 𝜙 (2

𝑛
𝑥 + 𝑀

1
− 𝑗) ,

0 ≤ 𝑘 ≤ 3,

𝜙 (2
𝑛
𝑥 + 𝑀

1
− 𝑘) , 4 ≤ 𝑘 ≤ 𝑏2

𝑛
− 4,

𝜙 (2
𝑛
𝑥 + 𝑀

1
− 𝑘)

+

𝑏2
𝑛

+𝑀
1
−1

∑

𝑗=1+𝑏2
𝑛

𝑇
𝑏,𝑏2
𝑛
−𝑘

(
𝑗

2𝑛
)𝜙 (2

𝑛
𝑥 + 𝑀

1
− 𝑗) ,

𝑏2
𝑛
− 3 ≤ 𝑘 ≤ 𝑏2

𝑛
.

(14)

Thus, when specific boundary conditions are given, the
corresponding coefficients of extension can be determined in
accordance with the above process, and the corresponding
improved scaling function is given by (14). It can be found
that (14) is very convenient for dealing with nonlinear
differential equations.

3. Application

In the following, we consider the solution of Volterra-
Fredholm integral equation as shown in (1) by using the
Coiflet-type wavelet Galerkinmethod proposed. For simplic-
ity andwithout loss of generality, we take ℎ(𝑥) = 𝑥, 𝑎 = 0, and
𝑏 = 1 for traditional Volterra-Fredholm equation.

Let us rewrite (1) in the form

𝑦 (𝑥) = 𝑓 (𝑥) + 𝜆
1
𝑉 (𝑥) + 𝜆

2
𝐹 (𝑥) , (15)

where 𝑉(𝑥) = ∫
𝑥

0
𝐾
1
(𝑥, 𝑡)𝐺

1
(𝑦(𝑡))𝑑𝑡 and 𝐹(𝑥) = ∫

1

0
𝐾
2
(𝑥, 𝑡)

𝐺
2
(𝑦(𝑡)).
Applying (13), we have

𝑦 (𝑥) ≈

2
𝑛

∑

𝑘=0

𝑦
𝑘
Φ
𝑛,𝑘

(𝑥) , (16)

𝑓 (𝑥) ≈

2
𝑛

∑

𝑘=0

𝑓
𝑘
Φ
𝑛,𝑘

(𝑥) , (17)

where 𝑥
𝑘

= 𝑘/2
𝑛, 𝑦
𝑘

= 𝑦(𝑥
𝑘
), and 𝑓

𝑘
= 𝑓(𝑥

𝑘
). Similar

to (7) and (8), one can approximate the nonlinear terms
conveniently as

𝑉 (𝑥) ≈

2
𝑛

∑

𝑘=0

[

[

2
𝑛

∑

𝑗=0

𝐾
1
(𝑥
𝑘
, 𝑡
𝑗
)𝐺
1
(𝑦 (𝑡
𝑗
))Φ
∫

𝑛,𝑗
(𝑥
𝑘
)]

]

Φ
𝑛,𝑘

(𝑥)

=

2
𝑛

∑

𝑘=0

𝑉
𝑘
Φ
𝑛,𝑘

(𝑥) ,

𝐹 (𝑥) ≈

2
𝑛

∑

𝑘=0

[

[

2
𝑛

∑

𝑗=0

𝐾
2
(𝑥
𝑘
, 𝑡
𝑗
)𝐺
2
(𝑦 (𝑡
𝑗
))Φ
∫

𝑛,𝑗
(1)]

]

Φ
𝑛,𝑘

(𝑥)

=

2
𝑛

∑

𝑘=0

𝐹
𝑘
Φ
𝑛,𝑘

(𝑥)

(18)

in which 𝑡
𝑗
= 𝑗/2
𝑛, like

Φ

∫ ⋅ ⋅ ⋅ ∫
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚

𝑛,𝑗
(𝑥
𝑘
) = ∫

𝑥
𝑘

0

∫

𝜉
𝑚

0

⋅ ⋅ ⋅ ∫

𝜉
2

0

Φ
𝑛,𝑗

(𝑥) 𝑑𝑥 𝑑𝜉
2
⋅ ⋅ ⋅ 𝑑𝜉
𝑚
;

(19)
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it can be obtained by [25]. Substituting (16)–(18) into (15), we
have
2
𝑛

∑

𝑘=0

𝑦
𝑘
Φ
𝑛,𝑘

(𝑥) ≈

2
𝑛

∑

𝑘=0

𝑓
𝑘
Φ
𝑛,𝑘

(𝑥) + 𝜆
1

2
𝑛

∑

𝑘=0

𝑉
𝑘
Φ
𝑛,𝑘

(𝑥)

+ 𝜆
2

2
𝑛

∑

𝑘=0

𝐹
𝑘
Φ
𝑛,𝑘

(𝑥) .

(20)

Multiplying both sides of (20) by the weight function
Φ
𝑛,𝜉

(𝑥), 𝜉 = 0, 1, 2, . . . , 2
𝑛, respectively, and taking integration

over the interval [0, 1] yield

2
𝑛

∑

𝑘=0

𝑦
𝑘
Γ
𝑘,𝜉

≈

2
𝑛

∑

𝑘=0

𝑓
𝑘
Γ
𝑘,𝜉

+ 𝜆
1

2
𝑛

∑

𝑘=0

𝑉
𝑘
Γ
𝑘,𝜉

+ 𝜆
2

2
𝑛

∑

𝑘=0

𝐹
𝑘
Γ
𝑘,𝜉

. (21)

Here the connection coefficient Γ
𝑘,𝜉

can be obtained [25],
since the matrix {Γ

𝑘,𝜉
}
(2
𝑛
+1) × (2

𝑛
+1)

is nonsingular, so we can
further have

𝑦
𝑘
≈ 𝑓
𝑘
+ 𝜆
1
𝑉
𝑘
+ 𝜆
2
𝐹
𝑘
; (22)

that is,

𝑦
𝑘
≈ 𝑓
𝑘
+ 𝜆
1

2
𝑛

∑

𝑗=0

𝐾
1
(𝑥
𝑘
, 𝑡
𝑗
)𝐺
1
(𝑦 (𝑡
𝑗
))Φ
∫
𝑥
𝑘

0

𝑛,𝑗
(𝑡)

+ 𝜆
2

2
𝑛

∑

𝑗=0

𝐾
2
(𝑥
𝑘
, 𝑡
𝑗
)𝐺
2
(𝑦 (𝑡
𝑗
))Φ
∫
1

0

𝑛,𝑗
(𝑡) .

(23)

By solving algebraic equation (23), which has (2
𝑛

+ 1)

equations, we can obtain the values of the unknown function
𝑦
𝑘
, 𝑘 = 0, 1, 2, . . . , 2

𝑛. Then, substituting them into (16), we
can obtain the solution of (15).

4. Numerical Experiments

In this section we will give a series of numerical experi-
mentsto illustrate the efficiency of the approaches in this
paper.

Example 1. We consider the following integral equation given
in [15]:

𝑦 (𝑥) = 𝑓 (𝑥) + ∫

𝑥

0

𝐾
1
(𝑥, 𝑡) 𝑦 (𝑡) 𝑑𝑡 − ∫

1

0

𝐾
2
(𝑥, 𝑡) 𝑦 (𝑡) 𝑑𝑡,

(24)

where 𝐾
1
(𝑥, 𝑡) = 𝑒

𝑥+𝑡, 𝐾
2
(𝑥, 𝑡) = 𝑒

𝑥+𝑡, and 𝑓(𝑥) = 𝑒
−𝑥

−

𝑒
𝑥
(𝑥 − 1). 𝑦(𝑥) = 𝑒

−𝑥 is the exact solution of this equation.
It can be seen that the approximation solution obtained by
the proposed method has a good agreement with the exact
solution in Figure 1. Table 1 shows the absolute errors of
this method under different resolution level 𝑛; the present
absolute errorswith 8 grid points aremuch smaller than those
given by the Lagrange collocation method with 9 grid points
[15]. And one can see that the absolute errors decrease quickly
while the resolution level 𝑛 increases.
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Figure 1: Comparison between the numerical and exact solution for
Example 1.

Table 1: Absolute errors for Example 1, 𝑦(𝑥) = 𝑒
−𝑥.

𝑥 𝑛 = 3 𝑛 = 4 𝑛 = 5

0.1250 7.6669386𝐸 − 09 4.1229653𝐸 − 10 1.7578161𝐸 − 12

0.2500 8.7825011𝐸 − 09 1.2445001𝐸 − 09 6.3016259𝐸 − 13

0.3750 4.7608193𝐸 − 09 8.1603835𝐸 − 09 3.4359182𝐸 − 12

0.5000 1.1092671𝐸 − 09 1.9748597𝐸 − 10 6.4426242𝐸 − 13

0.6750 46921567𝐸 − 09 2.783539𝐸 − 10 1.3058443𝐸 − 12

0.7500 1.1643215𝐸 − 08 3.4349251𝐸 − 10 1.4662715𝐸 − 12

0.8750 1.8162271𝐸 − 09 5.5568805𝐸 − 10 1.3625767𝐸 − 12

1.0000 1.110223𝐸 − 16 2.9802344𝐸 − 10 5.5511151𝐸 − 17

Example 2. Consider a nonlinear Volterra integral equation
with continuous kernel [26]

𝑦 (𝑥) = 𝑓 (𝑥) + ∫

𝑥

0

𝑥𝑡
2
[𝑦 (𝑡)]

2

𝑑𝑡, (25)

where 𝑓(𝑥) = (1− 11/9𝑥+2/3𝑥
2
−1/3𝑥

3
+2/9𝑥

4
) ln(𝑥+ 1)−

1/3(𝑥 + 𝑥
4
)(ln(𝑥 + 1))

2
− 11/9𝑥

2
+ 5/18𝑥

3
− 2/27𝑥

4.
The exact solution is 𝑦(𝑥) = ln(𝑥 + 1).
Figure 2 shows the comparison between the exact result

and the numerical result for 𝑛 = 4. It can be seen that the
solution is convergent; even though the number of nodes is
sixteen (𝑛 = 4), it is nearly the exact solution. The absolute
errors for Example 2 when 𝑛 = 3, 4, 5 are given in Table 2. It
can be found that the present results with 8 grid points are
much more accurate than the results given by the method
with 8 grid points [26].

Example 3. Consider the following Fredholm integral equa-
tion [26]:

𝑦 (𝑥) = 𝑒
𝑥
−

(1 + 2𝑒
3
) 𝑥

9
+ ∫

1

0

𝑥𝑡[𝑦 (𝑡)]
3

𝑑𝑡. (26)
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Figure 2: Comparison between the numerical and exact solution for
Example 2.

Table 2: Absolute errors for Example 2, 𝑦(𝑥) = ln(𝑥 + 1).

𝑥 𝑛 = 3 𝑛 = 4 𝑛 = 5

0.1250 1.0550211𝐸 − 06 3.5971851𝐸 − 08 1.3776𝐸 − 09

0.2500 1.6221136𝐸 − 06 7.3412183𝐸 − 08 2.7710071𝐸 − 09

0.3750 2.5592494𝐸 − 06 1.1107313𝐸 − 07 4.1670886𝐸 − 09

0.5000 3.3524516𝐸 − 06 1.4938059𝐸 − 07 5.6009465𝐸 − 09

0.6750 4.3063136𝐸 − 06 1.9062777𝐸 − 07 7.1452912𝐸 − 09

0.7500 5.3589701𝐸 − 06 2.3888217𝐸 − 07 8.9525424𝐸 − 09

0.8750 6.7969976𝐸 − 06 3.010169𝐸 − 07 1.1321046𝐸 − 08

1.0000 7.8925395𝐸 − 06 3.8939399𝐸 − 07 1.4587509𝐸 − 08

One can easily find that the exact solution of this equation is
𝑦(𝑥) = 𝑒

𝑥. Figure 3 shows that the approximation solution
obtained by the present method has a good agreement with
the exact solution. The corresponding absolute errors for
different 𝑛 are given in Table 3.

5. Conclusions

In this paper, by combining techniques of boundary exten-
sion and Coiflet-type wavelet expansion, an approximation
scheme of the function defined on a finite interval is pro-
posed. With such a modified Coiflet-type wavelet approx-
imation scheme, any nonlinear term containing unknown
function can be explicitly expressed by a single-point sam-
pling of the function successfully. Using Galerkin method,
finally, based on this method, the original nonlinear integral
equation was transformed into the solving of some sim-
ple nonlinear algebraic equations. Since it does not need
to calculate the connection coefficients, it avoids numer-
ical errors and reduces the computational complexity of
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Figure 3: Comparison between the numerical and exact solution for
Example 3.

Table 3: Absolute errors for Example 3, 𝑦(𝑥) = 𝑒
𝑥.

𝑥 𝑛 = 3 𝑛 = 4 𝑛 = 5

0.1250 4.5667344𝐸 − 05 1.7712256𝐸 − 06 6.2164018𝐸 − 08

0.2500 9.1334688𝐸 − 05 3.5424513𝐸 − 06 1.2432804𝐸 − 07

0.3750 1.3700203𝐸 − 04 5.3136783𝐸 − 06 1.8649594𝐸 − 07

0.5000 1.8266938𝐸 − 04 7.0849024𝐸 − 06 2.4865602𝐸 − 07

0.6750 2.2833672𝐸 − 04 8.8561295𝐸 − 06 3.1082206𝐸 − 07

0.7500 2.7400406𝐸 − 04 1.0627356𝐸 − 05 3.7299193𝐸 − 07

0.8750 3.1967141𝐸 − 04 1.2398584𝐸 − 05 4.3515077𝐸 − 07

1.0000 3.6533875𝐸 − 04 1.4169805𝐸 − 05 4.9731233𝐸 − 07

the connection coefficients. Moreover, numerical errors of
the presentmethod are not sensitive to the nonlinear intensity
of the equations. Also in the future, the method proposed
in this paper is expected to be further applied to solve other
nonlinear problems in other fields.
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