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This paper examines an alternative approach to the centralized resource allocation model that indicates that all the units are under
the control of an entity of the centralized decision maker. The proposed approach is a technique for connecting the two basic
Radial CRA-BCC andNonradial CRA-SBMmodels in an integrated structure called connected CRA-SBM. In the proposedmodel,
exchanging the two parameter amounts can change the location of the analysis between the CRA-BCC and the CRA-SBMmodels
and deal with the weaknesses inherent in such models. By remedying all the weaknesses in one model, the entire units are simply
projected on the frontier line and one can obtain suitable benchmarks for each of them. In the offered model, all of the inputs and
outputs, respectively, decrease and increase simultaneously. Lastly, numerical examples emphasize the significance of the offered
method.

1. Introduction

TheData Envelopment Analysis (DEA) was first presented by
Charnes et al. [1] and further developed by Banker et al. [2].
TheDEA is a nonparametric LP-basedmethod for evaluating
the efficiency score of a number of homogeneous decision-
making units (DMUs). There has been literature over the
years concerned with the new corrections and developments
in both the DEA notion and procedure (see Liu et al. [3],
Emrouznejad et al. [4], and Gattoufi et al. [5]).

As a matter of fact, the DEA models are commonly
categorized into two types with distinguishing qualities,
namely, the radial and nonradial models. In effect, the
preliminary works on the radial models were undertaken
by Debreu [6] and Farrell [7]. By now, numerous desirable
features have been identified in radial measures; for instance,
they can generally obtain the relative development in inputs
and outputs; moreover, they are potential of estimating the
efficiency based on the attainable data or they can provide
an obvious economic explanation without considering the

prices. Notwithstanding their strengths, these models suffer
from the subsequent drawbacks.

(a) They assess the efficiency based on the existing data
without considering the decision maker’s (DM’s)
precedence knowledge.

(b) Due to the proportional improvement in these mod-
els, they cannot be employed for the cases with inputs
such as labors, materials, and capital.

(c) The DM does not have the flexibility to select a
reference unit for an inefficient unit.

(d) Finally, they are unable to essentially achieve an
efficient goal in the DEA.

At first, analyzing the nonradialmodelswas carried out by
Koopmans [8] and Robert Russell [9]. Yet, numerous studies
have attempted to explain the nonradial measures for the
technical efficiency based on the performance estimation (see
Cooper et al. [10], Charnes et al. [11], Cooper et al. [12],
Pastor et al. [13], and Cooper et al. [14]). In one major study,
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Tone [15] employed a new and suitable synthetic procedure
to obtain a nonradial measure which was termed the slacks-
based measure (SBM) in which both the input and output
slacks could be maximized. A number of methods have been
also used to describe the nonradial measure, each of which
has its own advantages and disadvantages.Thesemodels have
a number of attractive features; for example, they put aside
the supposition of proportional reduction in the inputs and
target at earning maximum amounts of contraction in inputs
whichmight abandon the changing rates of the original input
resources. Nevertheless, the nonradial models suffer from
several major downsides listed below in spite of their safety
and efficacy.

(a) When we evaluate changes in the efficiency during
the time, the nonzero pattern of the slacks at time
period 𝑡 can meaningfully differ from that of the time
period 𝑡 + 1. Therefore, we cannot ascertain whether
the pattern is rational or not.

(b) When we miss the primary proportionality, it would
be then unsuitable for the investigation.

(c) At last, in models like the SBM model, the optimum
slacks would exhibit an acute conflict in catching the
positive and zero amounts.

Avkiran et al. [16] proposed the “connected-SBM” model
using two scalar parameters which could deal with the above-
mentioned weaknesses of the radial and nonradial models. In
their approach, they relocated the analysis anywhere between
the radial and nonradialmodels by exchanging the parameter
amounts and making an appropriate selection.

In a large longitudinal study by Lozano and Villa [17],
there were various conditions in which all the DMUs could
be in the possession of the central entity (public or private)
so that it prepared the DMUs with the resources essential
for earning their inputs. In particular, various applications
related to the DEA (e.g., public transportation, police sta-
tions, university departments, bank branches, and hospitals)
have been taken into account as centralized decision makers
that manage and supervise such DMUs. Prior to this, Lozano
and Villa [17], attempted to handle the DMUs in a common
manner (see Thanassoulis and Dyson [18], Golany [19],
Färe et al. [20], Kumar and Sinha [21], Beasley [22], and
Athanassopoulos [23, 24]). To this end, it can be said that
numerous studies have attempted so far to explain the allocat-
ing resources as well as the evaluating goals. Lozano and Villa
[17] and Lozano et al. [25] presented the CRA-BCC models
wherein the resolving one model in two phases causes the
entire DMUs to be reflected on the frontier line. Their study
can be majorly mentioned as an unusual item based on the
radial model. The assertion behind this model is to consider
a situation in which the centralized decisionmaker decides to
minimize the total input consumption or maximize the total
output production, simultaneously. Lozano and Villa [26]
also proposed the models which deliberated the CRAmodels
when someof the inputs reductions and the outputs remained
unchanged.Moreover, aDEAapproximation for the emission
permits along with a discussion on the desired and undesired
levels has been proposed by Lozano et al. [27]. Several studies

have produced estimates of the CRA models as well (see
Pachkova [28], Liu and Tsai [29], and Fang and Zhang [30]).
In another main study, Asmild et al. [31] reported a CRA
model for the BCC model in which all the inefficient DMUs
had been only reflected on the frontier line. In a randomized
controlled study on the CRA, Hosseinzadeh Lotfi et al. [32]
described a centralizedmodel for the enhancedRussellmodel
(CRA-ERM) and the SBM model (CRA-SBM) so that all the
DMUs could be easily projected onto the frontier line by
solving only one model.

Although there have been many suppositions about the
idea of the centralized resource allocation, it has not been
recognized as a perfect viewpoint yet. When bearing in mind
the organizations which function under a multilevel super-
vision hierarchy, definite resources utilized or the outputs
created which cannot be controlledmust be recognized using
the local DMUs. Consequently, it is pertinent to mention the
potential of improving these centrally allocated resources in
a central manner for manufacturing purposes.

This study seeks to alleviate these problems by introduc-
ing alternative new CRA-DEA models while consequently
creating new tools ready for use in central management. In
fact, the purpose of this paper is to minimize the total input
consumption and maximize the total output production of
the DMUs at the same time. Moreover, we will demonstrate
that the CRA-BCCI and CRA-SBMI models can be joined
by retouching the two parameters and selecting them. The
objectives of this research are to determine whether we can
oversee the appropriateness of slacks (inefficiencies) with the
resources essential for the user, and whether we can solve the
issue of the mixed slacks amounts in conditions existing at
the same time for the DEA with parametric methods.

The remainder of this paper has been divided into five
parts. In Section 2, the CRA-BCCI, the CRA-SBMI and
the connected-SBM models are presented while Section 3
presents our proposed model and explains it with numerical
examples. In Section 4, by considering our procedure in
organizations, we extend it into a weighted nonoriented
model and following that, the results are also checked out
using the numerical examples as well as comparing themwith
the previousmodels (Lozano andVilla [17] andHosseinzadeh
Lotfi et al. [32]). In Section 5, we apply our model on gas
companies during 2008 [33] for better exploring the models
and representing their capabilities. Finally, the discussion and
conclusion are provided in Section 6.

2. Preparations

In this section, we discuss two of the renowned CRA-DEA
models, namely, the CRA-BCCI and CRA-SBMI proposed
by Lozano and Villa [17] and Hosseinzadeh Lotfi et al.
[32], respectively. Afterward, we elaborate on some of their
attributes for obtaining our targets. Lastly, the connected-
SBMmodel is also deliberated briefly.

Having considered no existing production function for
determining the operational performances, a production
possibility set (PPS) is mentioned and its frontier is desig-
nated for approximating the production function.The PPS is



Journal of Applied Mathematics 3

defined as follows:
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(1)

The following symbolizations are also utilized in this part:

𝑛: the number of DMUs;
𝑚: the number of inputs;
𝑠: the number of outputs;
𝑗, 𝑟: the indices for DMUs;
𝑖: the index for inputs;
𝑘: the index for outputs;
𝑥
𝑖𝑗
: the observed value of input 𝑖 of DMUr;

𝑦
𝑘𝑗
: the observed value of output 𝑘 of DMUr;

𝜆
𝑟
: the vector for projecting DMUr;

𝜃: the radial constriction of the aggregate input vector;
𝑠
−

𝑖
: the nonnegative radial slack along the input

dimension 𝑖 of DMUr;
𝑧
−

𝑖
, 𝑡
−

𝑖
: the nonnegative nonradial slack along the

input dimension 𝑖 of DMUr;
𝑠
−

𝑖

∗: the optimal radial slack to recognize an excess use
of input 𝑖 of DMUr;
𝑧
−

𝑖

∗

, 𝑡
−

𝑖

∗: the optimal nonradial slack to recognize an
excess use of input 𝑖 of DMUr;
𝜃
∗: the optimal group efficiency by the CRA-BCCI
model;
𝛿
∗: the optimal group efficiency by the CRA-SBMI

model;
𝜆
∗

𝑟
: the optimal vector for projecting DMUr;

𝑥
∗

𝑖𝑟
: the operating point target with the CRA models

for input 𝑖 of DMUr;
𝑦
∗

𝑘𝑟
: the operating point target with the CRA models

for output 𝑘 of DMUr.

2.1. The CRA-BCCI and CRA-SBMI Models. What follows
is a succinct description of the CRA-BCCI and CRA-SBMI
models in addition to mentioning their properties.

2.1.1. The Input-Oriented CRA-BCCI Model. The input-
oriented CRA-BCCImodel reported by Lozano andVilla [17]
estimates the group efficiency 𝜃∗ of DMUs by solving the
following linear program:
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∗
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1𝑟
, 𝜆
2𝑟
, . . . , 𝜆

𝑛𝑟
) is the vector for pro-

jecting DMUr and denotes the intensity vector, while 𝑡−
𝑖

also designates the nonradial slacks. Generally, to solve
CRA-BCCI, there are two phases. In the first phase, we
seek an equiproportional reduction along the entire input
measurements and find 𝜃∗. Subsequently, we determine the
radial input slacks 𝑠−

𝑖

∗ as follows:

𝑠
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∗

)

𝑛

∑

𝑗=1

𝑥
𝑖𝑗
, 𝑖 = 1, . . . , 𝑚. (8)
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𝜃
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Then, we will maximize ∑𝑚
𝑖=1
(𝑡
−

𝑖
/∑
𝑛

𝑗=1
𝑥
𝑖𝑗
) according to 𝜆

𝑟

and 𝑡−
𝑖
, subject to (3) to (7) and 𝜃 = 𝜃∗ in the second phase.

Now, if (𝜆∗
𝑟
, 𝑡−
𝑖

∗

) is an optimal solution of the second phase,
then 𝑡−

𝑖

∗ remains as the nonradial slacks after elimination of
the radial slacks 𝑠−

𝑖

∗. Hence, the total slacks 𝑢−
𝑖

∗ of the CRA-
BCCI model will be determined as 𝑢−

𝑖

∗
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∗

+ 𝑠
−

𝑖

∗. Despite
the fact that ever nonradial projections can be presented in
association with radial projections, nonradial slacks cannot
be projected in the scalar 𝜃∗.

2.1.2. The Input-Oriented CRA-SBMI Model. At this time,
we demonstrate the input-oriented CRA-SBMI model with
the variable returning to the scale supposition of technology
proposed by Hosseinzadeh Lotfi et al. [32] which assesses the
group efficiency 𝛿∗ by solving the following linear program:
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(10)
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where 𝜆
𝑟
= (𝜆
1𝑟
, 𝜆
2𝑟
, . . . , 𝜆

𝑛𝑟
) is the vector for projecting

DMU𝑟 and denotes the intensity vector, and 𝑧−
𝑖
also defines

the nonradial slacks. At this point, if we consider the case of
input-orientated model in accordance with our explanation
of the CRA-BCCI model in the previous section and if also
(𝜆
∗

𝑟
, 𝑧
−

𝑖

∗

) is one of its optimal solutions, then the CRA-SBMI
score 𝛿∗ can be rewritten as follows:

𝛿
∗

=
1

𝑚

𝑚
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𝑛
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. (11)

The CRA-SBMI model is nonradial model and 𝛿∗ identifies
the mean of the decreased rates.

2.1.3. Properties of the Radial and Nonradial Models. The
above two models have some properties as follows.

(a) All of the inefficient DMUs are reflected on the
efficient frontier to solve only one model rather than
solving a model for each DMU independently.

(b) The existent technically efficient DMUs can be
reflected onto a certain point on the efficient frontier
but they must be reflected onto themselves in the
original DEA models.

(c) The CRA-BCCI evaluates just the radial inefficiency
in the scalar 𝜃∗ while the CRA-SBMmodel measures
just the nonradial inefficiency.

(d) When the CRA-SBMI and the CRA-BCCI models
are resolved, by bearing in mind vector 𝜆∗

𝑟
=

(𝜆
∗

1𝑟
, 𝜆
∗

2𝑟
, . . . , 𝜆

∗

𝑛𝑟
), for each DMUr as the value of

optimal, we can obtain the operating point so that the
CRA-SBMI and the CRA-BCCI targets for the inputs
and outputs of any such point can be as follows:

𝑥
∗

𝑖𝑟
=

𝑛

∑

𝑗=1

𝜆
∗

𝑗𝑟
𝑥
𝑖𝑗
, 𝑟 = 1, . . . , 𝑛, 𝑖 = 1, . . . , 𝑚,

𝑦
∗

𝑘𝑟
=

𝑛

∑

𝑗=1

𝜆
∗

𝑗𝑟
𝑦
𝑘𝑗
, 𝑟 = 1, . . . , 𝑛, 𝑘 = 1, . . . , 𝑠.

(12)

2.2. The Connected-SBMModel. In a large longitudinal study
to deal with the weaknesses associated with the radial
and nonradial models in the first one, Avkiran et al. [16]
presented the connected-SBMmodel inwhich therewere two
nonnegative scalar parameters as 𝐿 (0 ≤ 𝐿 ≤ 1) and 𝑈 (≥1).
By taking into consideration the DMUs, the connected-SBM
model with the introduced PPS for the variable returns to

the scale supposition of the technology [2] estimates the
efficiency 𝜌∗ of DMUo (𝑜 = 1, 2, . . . , 𝑛) as follows:

𝜌
∗

= Min (1 − 𝑓) (13)

s.t. 𝑓 =
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𝑚
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𝑖
+ V−
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, 𝑖 = 1, . . . , 𝑚, (16)
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∑
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𝑦
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≥ 𝑦
𝑘𝑜
, 𝑘 = 1, . . . , 𝑠, (17)

𝑛

∑

𝑗=1

𝜆
𝑗
= 1, (18)

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛, (19)

𝑧
−

𝑖
≥ 0, 𝑖 = 1, . . . , 𝑚, (20)

V−
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑚. (21)

In this model, V−
𝑖

designates the nonradial input slacks
persuaded to keep with the constraint (15). In addition, 𝑓
is the mean of the normalized slacks {𝑧−

𝑖
/𝑥
𝑖𝑜
} and each

normalized slack 𝑧−
𝑖
/𝑥
𝑖𝑜
to the range [𝐿𝑓,𝑈𝑓] is restricted

by the constraint (15). Reciprocally, the average nonradial
input inefficiency for the existingDMUexplains𝑓.Therefore,
the perversion from the mean value 𝑓 can be restricted
according to the lower bound 𝐿 and upper bound 𝑈. The
above- considered model has attributes as follows.

(a) If𝐿 = 1 or𝑈 = 1, then SBM-I-C (𝐿, 𝑈) converts BCC-
I.

(b) If 𝐿 = 0 and 𝑈 ≥ 𝑚, then SBM-I-C (0, 𝑈) transforms
SBM-I.

(c) Give some freedom to the perversion of the normal-
ized slacks which contain the assumed range around
the average.

(d) 𝐿𝑓∗ and 𝑈𝑓∗ for all the inputs restrict the relative
perversion of the reflected input from the original
amount.

(e) The parameters 𝐿 and 𝑈 can be detracted to a single
parameter as 𝑈 = 𝑚 − (𝑚 − 1)𝐿.

3. Centralized Resource Allocation
Connected Models

In this section, we propose a new model for the abovemen-
tioned weaknesses and change the connected-SBM model
to deal with computing one instead of 𝑛 mathematical
programming problems and decreasing the aggregate input
at the same time. In fact, we intend to present that the DEA
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model can handle the target setting process by presenting the
data envelopment scenario analysis.We call ourmodels as the
centralized resource allocation connectedmodels. By bearing
in mind the DMUs in the above models, their conforming
input and output vectors, and the defined PPS for CRA
models, the centralized resource allocation connected-SBMI
model (CRA-CSBMI) can be described as follows:

Model (1) : 𝛾
∗

= Min (1 − ℎ) (22)

s.t. ℎ =
1

𝑚

𝑚
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𝑖
≥ 0, 𝑖 = 1, . . . , 𝑚. (30)

In this case study, V−
𝑖
designates the nonradial input slacks

inferred with regard to the constraint (24). Additionally, ℎ is
termed as the average nonradial input inefficiency. Indeed, ℎ
can be defined as the mean of the return to normal slacks
{𝑧
−

𝑖
/∑
𝑛

𝑗=1
𝑥
𝑖𝑗
} and each normalized slack 𝑧−

𝑖
/∑
𝑛

𝑗=1
𝑥
𝑖𝑗
to the

range [𝐿ℎ, 𝑈ℎ] is delimited by the constraint (24). Mutually,
the average nonradial input inefficiency for the existingDMU
gives details ℎ. Hence, perversion from the mean value ℎ can
be limited to be consistent with the lower bound 𝐿 and upper
bound 𝑈, accordingly.

Once this model is solved, the conforming vector 𝜆∗
𝑟
=

(𝜆
∗

1𝑟
, 𝜆
∗

2𝑟
, . . . , 𝜆

∗

𝑛𝑟
) can be determined for each DMUr to

achieve the projected point which should be gained. The
targets of the inputs and outputs of each of the mentioned
points can be computed in a similar manner as follows:

𝑥
∗

𝑖𝑟
=

𝑛

∑

𝑗=1

𝜆
∗

𝑗𝑟
𝑥
𝑖𝑗
, 𝑟 = 1, . . . , 𝑛, 𝑖 = 1, . . . , 𝑚,

𝑦
∗

𝑘𝑟
=

𝑛

∑

𝑗=1

𝜆
∗

𝑗𝑟
𝑦
𝑘𝑗
, 𝑟 = 1, . . . , 𝑛, 𝑘 = 1, . . . , 𝑠.

(31)

According to Avkiran et al. [16], it is motivating to discuss the
following propositions.

Proposition 1. If 𝐿 = 1 or 𝑈 = 1, then 𝜃∗ = 𝛾∗.

Proof. By considering 𝐿 = 1, we will have 𝑧−
𝑖
/∑
𝑛

𝑗=1
𝑥
𝑖𝑗
≥

ℎ = (1/𝑚)∑
𝑚

𝑖=1
(𝑧
−

𝑖
/∑
𝑛

𝑗=1
𝑥
𝑖𝑗
) (∀𝑖) and then 𝑧−

𝑖
= ℎ∑

𝑛

𝑗=1
𝑥
𝑖𝑗

because ℎ is the mean of 𝑧−
𝑖
/∑
𝑛

𝑗=1
𝑥
𝑖𝑗
. Now, we can remove

the constraint (24) since the right constraint (24) is spon-
taneously contented.Thus, we can obtain CRA-BCCI by
substituting 1 − ℎ to 𝜃 and we have 𝜃∗ = 𝛾

∗. By the same
token, if 𝑈 = 1, then 𝜃∗ = 𝛾∗.

Proposition 2. If 𝐿 = 0 and 𝑈 ≥ 𝑚, then 𝜌∗ = 𝛾∗.

Proof. By taking into account 𝑈 ≥ 𝑚, since ℎ is the
mean of 𝑧−

𝑖
/∑
𝑛

𝑗=1
𝑥
𝑖𝑗
the right constraint (24) is contented

and by considering 𝐿 = 0, the left constraint (24) is also
spontaneously contented. Moreover, because the objective
function is to reduce in 𝑧−

𝑖
, the term V−

𝑖
disappears in the

constraint (25). Obviously, we can obtain CRA-SBMI and we
will have then 𝜌∗ = 𝛾∗.

It can be realized by the above two propositions that the
CRA-CSBMI model consists of CRA-BCCI and CRA-SBMI
as particular states in terms of the values intended for 𝐿 and
𝑈 and as if the logical sort of 𝐿 is [0, 1] and 𝑈 is [1, 𝑚], too.

It is worth mentioning that with these methods not
only all of the inefficient DMUs will be projected onto the
frontier line but also the efficient DMUs are projected onto a
certain point on the frontier line. This model differs from the
previous model in a number of noteworthy ways.

(a) The decrease in the 𝑟th input is wasted while there is
a rise in the 𝑘th output generated with no restrictions
to select the preference quantities.

(b) This model gives some freedom to the perversion of
the normalized slacks but it contains the assumed
range around the average. While all of the inputs
decrease equally in the radial models, they supply
the highest value of reduction in all the inputs and
also input ingredients are not all reduced in an equal
manner for nonradial models.

(c) This model does not require solving the phase-II
model in CRA-BCCI because all of the input con-
straints are binding in every optimal solution.

(d) The feasible region will be narrowed down, if 𝐿
increases (𝑈decreases) andhence the 𝛾∗will increase.

The aggregate input or output can be minimized or
maximized in the CRA models. With regard to the proposed
model in this paper, which follows the idea of the CRA
models, the benchmark for eachDMUcanbe obtained so that
the benchmark can have a lesser value of the total inputs but a
bigger value of the total outputs compared to the DMU itself.
Therefore, this study can yield results in order to supply an
explanation for the suggested model. By this illustration, we
demonstrate that the CRA-CSBM is a particular state which
differs from the previous work in this field.

As exhibited in Table 1, we assume three DMUs, namely
A, B, and C, containing two inputs along with one single
constant output wherein DMUs A and B remain efficient
while being placed on the frontier line, whereas DMU C
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Table 1: The data related to the three DMUs.

DMU Existing
𝑥
1

𝑥
2

𝑦

A 3 10 1
B 4 1 1
C 4 25 1
Total 11 36 3

remains inefficient in the entire conventional DEA model. It
should be asserted that although we extracted the original
data from Avkiran et al. [16], the idea slightly modified
in this study to become more suitable for our method.
Hereby, our assumption was that there existed a centralized
decision maker (DM) that was potential of overseeing the
entire DMUs while it is simultaneously interested to reduce
the global input consumption. Besides, we made use of the
formula𝑈 = 𝑚−(𝑚−1)𝐿which could be suitably determined
in this case as 𝑈 = 2 − 𝐿. Subsequently, by dialing a quantity
among 0-1, we modified the appropriateness parameter 𝐿
from the nonradial to the radial model.

For illustrating the mentioned projected points, we were
able to distinguish them after solving the CRA-CSBMI
model for 𝐿 = 0, 0.2, 0.588, 0.8 and 1, while utilizing the
variable 𝜆∗

𝑗𝑟
’s (solved by GAMS which is known as a potent

software package). Table 2 demonstrates the results which
were acquired by analyzing the proposed model in line with
the lower 𝐿 and the upper 𝑈 amounts.

The feasible region (which is shaped by the dashed lines)
is demarcated by 𝐿 and 𝑈 values as illustrated in Figure 1.
Provided that 0 ≤ 𝐿 ≤ 1 and 𝑈 ≥ 𝑚 hold, the CRA-BCCI
and CRA-SBMI solutions have been contained within the
feasible region in any choice of 𝐿 and 𝑈. Moreover, Figure 2
shows the difference existing in projection onto the efficient
frontier by the radial CRA-BCCI and the nonradial CRA-
SBMI models while setting the proportionality parameter
𝐿 = 0 and 𝐿 = 1 corresponding to [CRA-SBMI] and [CRA-
BCCI], in that order. Consistent with the magnitude of 𝐿,
the normalized slacks 𝑧−

𝑖
/∑
𝑛

𝑗=1
𝑥
𝑖𝑗
revealed a tendency to be

uniform. To be precise, a slight 𝐿 allows fairly great variations
of the normalized slacks; contrariwise, a huge 𝐿 limits them
to a restricted range.

At 𝐿 = 0, both DMU A and DMU C were, respec-
tively, reflected onto DMU B and DMU A while DMU B
was reflected onto itself which were CRA-SBMI solution’s
points. Figure 2 exhibits the results relevant to this case. The
normalized deviations 𝑧−

1

∗

/∑
𝑛

𝑗=1
𝑥
1𝑗

and 𝑧−
2

∗

/∑
𝑛

𝑗=1
𝑥
2𝑗

are
considered as the quantities 0 and 0.66. It is maintained that
the proposed model at 𝐿 = 0.2 would indicate that DMU
A could be reflected onto itself while DMU B is done so
onto a portion of the frontier line; in addition, DMUC could
be reflected onto DMU B. Then, 𝑧−

1

∗

/∑
𝑛

𝑗=1
𝑥
1𝑗
is augmented

to 0.05, whereas 𝑧−
2

∗

/∑
𝑛

𝑗=1
𝑥
2𝑗
is reduced to 0.51. Moreover,

DMU C was reflected onto DMU A at 𝐿 = 0.588, whereas
DMU A was projected onto itself and DMU B was done so
onto a nonextreme point related to the frontier line. Similarly,
DMU B and DMUC were projected at 𝐿 = 0.8 onto DMUA,
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Figure 1: Feasible region bounded by 𝐿 and 𝑈.
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Figure 2: CRA-BCCI and CRA-SBMI projections onto the frontier
line.

whereasDMUAwas done so onto a nonextremepoint related
to the frontier line. Lastly, DMUs B and C were reflected
onto the DMU A at 𝐿 = 1, whereas DMU A was reflected
onto 𝑥∗

1
= 3.04 and 𝑥∗

2
= 9.60; as shown in Figure 2, these

latter are considered as the points related to the CRA-BCCI
solution. Because the normalized deviations 𝑧−

1

∗

/∑
𝑛

𝑗=1
𝑥
1𝑗

and 𝑧−
2

∗

/∑
𝑛

𝑗=1
𝑥
2𝑗
are the equal value of 0.17, the two DMUs

are correspondingly decreased by 17%.The point of interest is
that the group efficiency score (𝛾∗) upsurges from0.66 (CRA-
SBMI) to 0.82 (CRA-BCCI); in other words, the quantity 𝛾∗
upsurges in 𝐿 while it diminishes in 𝑈.

We need to notice that by assuming the model proposed
by Avkiran et al. [16], for this example, only DMU C projects
onto the frontier line while it is potential of acquiring diverse
projections for DMU C. Conversely, in our proposed model,
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Table 2: The results related to the three DMUs.

𝐿 0 0.2 0.588 0.8 1
𝛾
∗ 0.66 0.71 0.77 0.80 0.82

ℎ
∗

(1 − 𝛾
∗

) 0.34 0.29 0.23 0.20 0.18
𝑧
1

∗ 0 0.62 1.42 1.72 1.95
𝑧
2

∗ 24 18.36 11.18 8.47 6.40
𝑧
−

1

∗

/∑
𝑛

𝑗=1
𝑥
1𝑗

0 0.05 0.12 0.15 0.17
𝑧
−

2

∗

/∑
𝑛

𝑗=1
𝑥
2𝑗

0.66 0.51 0.31 0.23 0.17
Projections 𝑥

∗

1
𝑥
∗

2
𝑦
∗

𝑥
∗

1
𝑥
∗

2
𝑦
∗

𝑥
∗

1
𝑥
∗

2
𝑦
∗

𝑥
∗

1
𝑥
∗

2
𝑦
∗

𝑥
∗

1
𝑥
∗

2
𝑦
∗

DMU
A 4 1 1 3 10 1 3 10 1 3.2 7.5 1 3.04 9.60 1
B 4 1 1 3.3 6.6 1 3 10 1 3 10 1 3 10 1
C 3 10 1 4 1 1 3.5 4.8 1 3 10 1 3 10 1

Total 11 12 3 10.3 17.6 3 9.5 24.8 3 9.2 27.5 3 9.04 29.6 3

the inefficient DMUs were able to project onto the frontier
line; in addition, the efficient DMUs could project onto the
other part of the frontier line.

4. Extension

The proposed approach can be developed into numerous
statuses such as being output-oriented, having different set-
tings of the lower bounds or the upper bounds, and being
nonoriented. The next step is to improve our procedure to a
weighted nonoriented model.

Having considered the DMUs and their matching input
and output vectors, the extended centralized resource allo-
cation connected-SBM model (ECRA-CSBM) is reported as
follows:

Model (2) : 𝜑
∗

= Min 1 − ℎ
1 + 𝑔

(32)

s.t. ℎ =
1

𝑚

𝑚

∑

𝑖=1

𝑤
𝑖
𝑧
−

𝑖

∑
𝑛

𝑗=1
𝑥
𝑖𝑗

(33)

𝑔 =
1

𝑠

𝑠

∑

𝑘=1

𝑤
𝑘
𝑧
+

𝑘

∑
𝑛

𝑗=1
𝑦
𝑘𝑗

(34)

𝐿
−

ℎ ≤
𝑤
𝑖
𝑧
−

𝑖

∑
𝑛

𝑗=1
𝑥
𝑖𝑗

≤ 𝑈
−

ℎ, 𝑖 = 1, . . . , 𝑚, (35)

𝐿
+

𝑔 ≤
𝑤
𝑘
𝑧
+

𝑘

∑
𝑛

𝑗=1
𝑦
𝑘𝑗

≤ 𝑈
+

𝑔, 𝑘 = 1, . . . , 𝑠, (36)

𝑛

∑

𝑟=1

𝑛

∑

𝑗=1

𝜆
𝑗𝑟
𝑥
𝑖𝑗
+ 𝑧
−

𝑖
+ V−
𝑖
=

𝑛

∑

𝑗=1

𝑥
𝑖𝑗
, 𝑖 = 1, . . . , 𝑚, (37)

𝑛

∑

𝑟=1

𝑛

∑

𝑗=1

𝜆
𝑗𝑟
𝑦
𝑘𝑗
− 𝑧
+

𝑘
− V+
𝑘
=

𝑛

∑

𝑗=1

𝑦
𝑘𝑗
, 𝑘 = 1, . . . , 𝑠, (38)

𝑛

∑

𝑗=1

𝜆
𝑗𝑟
= 1, 𝑗 = 1, . . . , 𝑛, (39)

𝑚

∑

𝑖=1

𝑤
𝑖
= 𝑚, (40)

𝑠

∑

𝑘=1

𝑤
𝑘
= 𝑘, (41)

𝑧
−

𝑖
≥ 0, V−

𝑖
≥ 0, 𝑤

−

𝑖
≥ 0, 𝑖 = 1, . . . , 𝑚, (42)

𝑧
+

𝑘
≥ 0, V+

𝑘
≥ 0, 𝑤

+

𝑘
≥ 0, 𝑘 = 1, . . . , 𝑠, (43)

𝜆
𝑗𝑟
≥ 0, 𝑟, 𝑗 = 1, . . . , 𝑛, (44)

where V+
𝑘
denotes the nonradial output slacks concluded

in connection with the constraint (36). The constraint (36)
has the same properties as the constraint (24), which was
observed in the input-oriented model. Moreover, the input
and output take different amounts of 𝐿 and𝑈; the perversion
from the mean value ℎ can be restricted according to the
lower bound 𝐿− and the upper bound 𝑈−. Moreover, the
perversion from themean value 𝑔 can be restricted according
to the lower bound 𝐿+ and upper bound𝑈+. Additionally, the
weights (𝑤−

𝑖
and 𝑤+

𝑘
) are provided in an exogenous manner

and the average, the lower, and the upper bounds will be
affected by an input or an output item with a great weight.
In fact, 𝑤−

𝑖
and 𝑤+

𝑘
are the preference coefficients for the

decreases and increases of the total consumption and the
production of input 𝑖 and output 𝑘, respectively.

It is significant to mention the following properties of the
above model.

(a) Unlike the previous model, this model is not a linear
programming problem but can be simply converted
into a linear programming problem by using Charnes
and Cooper [34] conversions (see Hosseinzadeh Lotfi
et al. [32] for particularity) in the first step and then
choosing two appropriate independent 𝑤−

𝑖
and 𝑤+

𝑘

as the preference coefficients for the decreases and
increases of the total consumption and the production
of input 𝑖 and output 𝑘, respectively.

(b) All input and output constraints are binding in each
optimal solution.
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(c) For any DMUr, the points 𝑥∗
𝑖𝑟
= ∑
𝑛

𝑗=1
𝜆
∗

𝑗𝑟
𝑥
𝑖𝑗
, ∀𝑖 =

1, . . . , 𝑚 and 𝑦∗
𝑘𝑟
= ∑
𝑛

𝑗=1
𝜆
∗

𝑗𝑟
𝑦
𝑘𝑗
, ∀𝑘 = 1, . . . , 𝑠 are the

Pareto efficient.

(d) The 𝜑∗ obtained from the objective function is 0 <
𝜑
∗

≤ 1.

A numerical model of this has been provided by Lozano
and Villa’s study [17] wherein seven DMUs with an input
could engender an output. We need to bear in mind the
proposed model as in the cases of 𝐿− = 0, 𝑈− = 2,
𝐿
+

= 0, and 𝑈+ = 1. Further, we were able to acquire the
projecting point, in order to illustrate it afterward solving
our developed model as well as utilizing the variable 𝜆∗

𝑗𝑟
’s

(which was solved using the GAMS known as a potent
software package). Figures 3, 4, and 5 present the graphical
interpretation related to the CRA-BCCI, CRA-SBMI, and our
proposed model while Table 3 exhibits the original DMUs
along with the ones to which they are reflected bymaking use
of the CRA-BCCI, CRA-SBMI, and the proposed model. As
it can be discerned, our developed method finds alternative
projection points in comparison with developed procedure
which finds alternative projection points compared with
previous procedures.

As it is apparent in Lozano and Villa’s model [17], the
entire DMUs are reflected onto DMU 2; the exception
goes with the inefficient DMU 3. Moreover, DMU 3 is
reflected onto a nonextreme point related to the frontier line.
However, DMUs 1, 4, 5, 6, and 7 in the approach proposed
by Hosseinzadeh Lotfi et al. [32] are projected onto the
identical projections point (4.13, 8.26) of the frontier line.
Likewise, DMUs 4, 5, and 6 are reflected onto the equivalent
nonextreme point (5.16, 10.32) of the frontier line.

Stimulatingly, the findings obtained from the proposed
model reveal that the entire DMUs were reflected onto
the DMU 3; in other words, they were reflected onto the
identical hyperplan of the frontier line. When establishing
a comparison between these results, it is observed that the
quantity of the global output production to the global input
decrease of illustration DMUs are respectively, 1.95 and 2 for
the Lozano and Villa’s approach [17] and the Hosseinzadeh
Lotfi et al.’s approach [32]. Yet, this proportion equals 2 in the
proposed approachwhich resembles that of theHosseinzadeh
Lotfi et al.’s approach [32]. By this, we can conclude that the
propounded method is precisely suitable.

5. An Application

We need to assume an empirical example on gas companies
during 2008 [33] for better investigating the models and
demonstrating their competences. The National Gas Com-
pany (NGC) of Iran encompasses 14 large branches which
are situated in 13 provinces of Iran. While every branch
functions independently in its province, the companies are
entirely categorized under the NGC. Distributing the gas
to domestic and industrial customers is reported as the
branches’ foremost task that is these 14 companies are respon-
sible for distributing the service to end users (domestic and
industrial). These companies have utilized seven variables
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Figure 3: The CRA-BCCI projections onto the frontier line.
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Figure 4: The CRA-SBMI projections onto the frontier line.

from the dataset with three inputs (budget, number of staff,
comprehensive cost (operational cost and labour cost)), and
four outputs (number of customers, length of gas network
(km), delivered volumes (m3), and sold-out gas (Rials)),
which are labeled as 𝑥

1
, 𝑥
2
and 𝑥

3
for inputs and 𝑦

1
, 𝑦
2
, 𝑦
3

and 𝑦
4
for outputs in Table 4.

It is distinguished in DEA that those DMUs are more
efficient which consume less input to yield more output;
therefore, they are typically taken into account as benchmarks
[19, 35]. Traditional DEA models can be employed for
acquiring an appropriate benchmark for each DMU. The
point to highlight is that the DMU benchmark consumes
a lesser sum of inputs while yielding a bigger quantity of
outputs in comparison with the DMU itself. Indeed the
mentioned models separately decline (elevate) the inputs
(outputs) of each DMU. Nevertheless, the results differ if
centralized models are used. The reason is that such models
are unable to decline (elevate) the inputs (outputs) of the
individual DMUs.

It should be highlighted that the centralized models
reduce (elevate) the aggregate inputs (outputs). Then the
benchmark gained by our proposed method for each DMU
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Table 3: Data and results of the seven DMUs with one-input and one-output.

DMU Existing Lozano and Villa’s
approach

Hosseinzadeh Lotfi et al.’s
approach Proposed approach

𝑥 𝑦 𝑥
∗

𝑦
∗

𝑥
∗

𝑦
∗

𝑥
∗

𝑦
∗

1 3 3 4 8 4.13 8.26 5 10
2 4 8 4 8 4.13 8.26 5 10
3 5 5 3.6 6 4.13 8.26 5 10
4 5 10 4 8 5.16 10.32 5 10
5 6 8 4 8 5.16 10.32 5 10
6 7 11 4 8 5.16 10.32 5 10
7 8 9 4 8 4.13 8.26 5 10
Total 38 54 27.6 54 32 64 35 70

Table 4: Data related to 14 gas companies.

DMU 𝑥
1

𝑥
2

𝑥
3

𝑦
1

𝑦
2

𝑦
3

𝑦
4

1 177,430 401 528,325 801 41,675 77,564 201,529
2 221,338 1,094 1,186,905 803 34,960 44,136 840,446
3 267,806 1,079 1,323,325 251 24,461 27,690 832,616
4 160,912 444 648,685 816 23,744 45,882 251,770
5 177,214 801 909,539 654 36,409 72,676 443,507
6 146,325 686 545,115 177 18,000 19,839 341,585
7 195,138 687 790,348 695 31,221 40,154 233,822
8 108,146 152 236,722 606 23,889 37,770 118,943
9 165,663 494 523,899 652 25,163 28,402 179,315
10 195,728 503 428,566 959 43,440 63,701 195,303
11 87,050 343 298,696 221 9,689 17,334 106,037
12 124,313 129 198,598 565 21,032 30,242 61,836
13 67,545 117 131,649 152 10,398 14,139 46,233
14 47,208 165 228,730 211 9,391 13,505 42,094
Total 2,141,816 7,095 7,979,102 7,563 353,472 533,034 3,895,036
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Figure 5: The CRA-CSBM projections onto the frontier line.

reveals a slighter amount of aggregate inputs and a corre-
sponding larger amount of aggregate outputs than the DMU
itself because of the fact that the proposed approach lends
its basis to the centralized models. We need to take into

consideration each of thementioned branches as aDMUwith
the purpose of attaining proper benchmarks for the branches
and then solve the proposed model (1) for the DMUs in the
case of 𝐿 = 0.588. In details, the relevant results are provided
in Table 5.

If we take into account branch 5 as an example, the
first, second, and third inputs related to this branch are a
smaller amount than the relevant inputs of the benchmark
shown for this DMU, according to Table 5. Considering the
related outputs, it should be also mentioned that only the
benchmark’s first output is a smaller amount than the output
of theDMU itself; this is not in effect a desirable quantity from
the DEA viewpoint. At this point, let us consider branch 14
while its relevant results are unlike: the entire outputs related
to the mentioned branch are smaller than the outputs of
the benchmark given for the branch, with the approximation
used, which is theoretically more desired. Still, the branch’s
first and third inputs are smaller than the inputs related to the
benchmark; in fact, since the objective in DEA is to detect a
benchmark for a DMU having a slighter input and a larger
output than the DMU itself, this amount is not desired from
the DEA perspective. As for branch 9, it is observed that its
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Table 5: Benchmarks for each branch by using the proposed model.

DMU 𝑥
∗

1
𝑥
∗

2
𝑥
∗

3
𝑦
∗

1
𝑦
∗

2
𝑦
∗

3
𝑦
∗

4

1 108,146.06 152.00 236,722.47 606.00 23,889.00 37,770.00 118,943.22
2 108,146.06 152.00 236,722.47 606.00 23,889.00 37,770.00 118,943.22
3 177,213.97 801.00 909,538.52 654.00 36,408.98 72,675.95 443,506.77
4 84,935.82 245.52 322,248.05 402.22 17,844.93 29,515.80 121,358.87
5 108,146.06 152.00 236,722.47 606.00 23,889.00 37,770.00 118,943.22
6 69,319.49 160.28 231,630.37 354.33 14,651.62 22,309.59 69,978.98
7 108,146.06 152.00 236,722.47 606.00 23,889.00 37,770.00 118,943.22
8 187,249.86 810.31 900,754.21 743.67 31,625.93 42,218.86 623,162.83
9 187,249.86 810.31 900,754.21 743.67 31,625.93 42,218.86 623,162.83
10 182,913.27 787.18 876,891.51 728.93 30,989.15 41,456.01 603,280.41
11 108,146.06 152.00 236,722.47 606.00 23,889.00 37,770.00 118,943.22
12 108,146.06 152.00 236,722.47 606.00 23,889.00 37,770.00 118,943.22
13 187,249.86 810.31 900,754.21 743.67 31,625.93 42,218.86 623,162.83
14 72,320.18 159.64 232,023.91 373.78 15,365.53 23,504.44 73,763.150
Total 1,797,328.68 5,496.57 6,694,929.80 8,380.27 353,473 542,738.35 3,895,037

entire inputs are smaller than the benchmark’s inputs which
are given for the branch and again this is not desired from the
DEA perspective; however, the entire outputs related to this
branch are smaller than the ones for the benchmark presented
for the branch, with the approximation utilized, which is
theoretically desired.

It can be discerned that our proposed approach lends
its basis to the centralized models wherein not all the
inputs (outputs) are probably reduced (elevated). Indeed, it
is possible to reduce/elevate a DMU’s inputs/outputs only in
case the traditional DEA models are exploited.

In practice, the centralized models aim at reducing the
aggregate inputs while elevating the aggregate outputs. It
is observed that the benchmarks’ aggregate inputs/outputs
are reduced/elevated in comparison with the corresponding
branches and this in turn is said to be desirable.The quantities
of the reduction in the provided benchmarks’ aggregate
inputs, compared to the respective branches, are 1,797,328.68,
5,496.57 and 6,694,929.80 for the first, second, and third
inputs, respectively. As for the aggregate outputs, the ones
related to the benchmarks show a rise of 8,380.27, 353,473,
542,738.35, and 3,895,037 for the first, second, third, and
fourth outputs, respectively; in effect, this can be desirable
while taking into account the properties associated with the
centralized models.

It should be noticed that branches 8, 9, and 13 entail iden-
tical projection points on the efficient frontier; therefore, they
entail the similar benchmark, too. Moreover, the projection
points related to branches 1, 2, 5, 7, 11, and 12 coincide with the
ones related to branch 8, implying the fact that they entail the
similar benchmark. Besides, the remainder of the branches is
reflected onto the other part of the frontier line.

At this instant, with the purpose of comparing the
approach introduced in this paper with the ones presented
in the previous models, we would be able to attain the bench-
marks consistent with the branches by the approach utilized

by the CRA-BCCI model [17] and CRA-SBMI model [32]
which stand as two extreme cases of the CRA-CSBMmodel.

Furthermore, in case of employing the connected-SBM
[16] for attaining the benchmark for every branch, the
acquired results will indicate that the benchmark presented
for every branch contains a slighter quantity of inputs as
well as a larger quantity of outputs than the branch itself.
Nonetheless, neither the CRA-BCCI and CRA-SBMI nor the
model proposed in this paper has such characteristic; it is
impossible to declare that the entire input/output compo-
nents corresponding to each branch are slighter/larger than
the ones for each single branch. We can merely affirm that
the aggregate input/output related to the benchmark for every
branch is slighter/larger than that of the branch itself.

6. Discussions and Conclusions

There is a need for a different approach which can project the
entire units simultaneously because of the fact that by now
the conventional DEA models set the targets independently
for each DMU. In brief, an intraorganizational scenario was
addressed in this paper wherein the entire units could be
categorized under the supervision of a centralized decision
maker. This decision maker required them to be efficient
and considered the total input consumption and total output
production. A newDEAmodel is introduced in this paper for
centralized resource allocation.

The foremost finding here is illustrating a scheme for
integrating the radial and nonradial CRA-DEA models with
the intention of controlling the proportionality of slacks. Such
a control will supply the decision maker with a superior
chance of taking the appropriate benchmarks which stand as
superior reflections of the expected patterns of the potential
improvements. Two parameters are used by the CRA-CSBM
model to limit the variations related to the normalized
slacks in a certain range. The renowned CRA-BCC and
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CAR-SBM models are considered as the two extreme cases
of the mentioned model. Likewise, the sensitivity analysis
by altering the CRA-CSBM model’s parameters can allow
incapacitating the latent problem of the mixed value slacks
that would then confuse other analyses which rely on slacks.

We are able to project the entire DMUs in our method
onto the efficient frontier. This can be achieved through
solving only one model. Furthermore, in comparison with
the preceding methods we can attain unalike benchmarks
for all the DMUs by exploiting the given approximation. We
also indicated by presenting an applied example that more
appropriate benchmarks can be commonly acquired by the
suggested approximation than by the preceding ones. Besides,
the appropriate benchmarks can be suitably presented for
the entire DMUs through solving one model for the case
wherein the amount of DMUs is big. Moreover, for obtaining
an insight into the way this approach functions, a graphical
interpretation of two-dimensional cases are also provided.

To put it briefly, researchers and practitioners in the DEA
field can currently match the estimated contraction of the
resources and expansion of the outputs in a certain produc-
tion system for establishing more realistic benchmarks. The
proposed approach here is fairly simple which is also able
to be simply extended in different directions. In effect, we
are able to project only the inefficient DMUs by splitting the
efficient and inefficient DMUs.The proposedmodels can also
be employed for discretionary and nondiscretionary data.
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