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The stability of a class of static interval neural networks with time delay in the leakage term is investigated. By using the method of
𝑀-matrix and the technique of delay differential inequality, we obtain some sufficient conditions ensuring the global exponential
robust stability of the networks. The results in this paper extend the corresponding conclusions without leakage delay. An example
is given to illustrate the effectiveness of the obtained results.

1. Introduction

Recently, neural networks have been widely studied because
of their successful applications in different areas, such as
pattern recognition, image processing, detection of moving
objects, and optimization problems. The stability of the neu-
ral networks with time delay, upon which these applications
largely depend, has been extensively studied (see [1–10]).
However, to the best of our knowledge, there has been very
little existing work on neural networks, especially, on static
neural networks with time delay in the leakage term [11–18].
This is due to some theoretical and technical difficulties [13].
So, the main purpose of this paper is to study the stability
of the static interval neural networks with time delay in the
leakage term. By using the properties ofM-matrix and delay
differential inequality, we obtain some sufficient conditions
ensuring the global exponential robust stability. Our results
extend the corresponding conclusions without leakage delay.

2. Model Description and Preliminaries

In this section, we list all the notations which will be fre-
quently used throughout the paper and give a few definitions,
lemmas, and assumptions.

Notations. Let 𝑅 be the set of real number, and let 𝑅𝑛 and
𝑅
𝑚×𝑛 be the space of 𝑛-dimensional real vectors and 𝑚 × 𝑛

real matrices, separately. 𝐸 denotes an 𝑛 × 𝑛 unit matrix.

𝑁 ≜ {1, 2, . . . , 𝑛}. For 𝐴, 𝐵 ∈ 𝑅
𝑚×𝑛 or 𝐴, 𝐵 ∈ 𝑅

𝑛,
the notation 𝐴 ≥ 𝐵 (𝐴 > 𝐵) means that each pair of
corresponding elements of 𝐴 and 𝐵 satisfies the inequality
“≥ (>).” |⋅| denotes the Euclidean norm. For any 𝑢 ∈ 𝑅, sgn(𝑢)
is the sign function of 𝑢.

𝐶[𝑋, 𝑌] denotes the space of continuous mappings from
the topological space 𝑋 to the topological space 𝑌. Particu-
larly, let𝐶 ≜ 𝐶([−𝜏, 0], 𝑅𝑛)denote the family of all continuous
𝑅
𝑛-valued function 𝜙 defined on [−𝜏, 0] with the norm ‖𝜙‖ =

sup
−𝜏≤𝑠≤0

|𝜙(𝑠)|.
For 𝑥 ∈ 𝑅

𝑛, 𝜑 ∈ 𝐶, we define [𝑥]+ = (|𝑥
1
|, . . . , |𝑥

𝑛
|)
𝑇,

[𝜑(𝑡)]
𝜏
= ([𝜑
1
(𝑡)]
𝜏
, . . . , [𝜑

𝑛
(𝑡)]
𝜏
)
𝑇, [𝜑
𝑖
(𝑡)]
𝜏
= sup

−𝜏≤𝑠≤0
{𝜑
𝑖
(𝑡 +

𝑠)}, 𝑖 ∈ 𝑁, and [𝜑(𝑡)]+
𝜏
≜ [[𝜑(𝑡)]

+

]
𝜏
. 𝐷+𝜑(𝑡) denotes the

upper-right-hand derivative of 𝜑(𝑡) at time 𝑡.
Consider the following interval static neural network

model with leakage delay:

𝑑𝑥
𝑖
(𝑡)

𝑑𝑡
= −𝑎
𝑖
(𝜆) 𝑥
𝑖
(𝑡 − 𝜎)

+𝑓
𝑖
(

𝑛

∑

𝑗=1

∫
0

−𝜏(𝜆)

𝑥
𝑗
(𝑡 + 𝜃) 𝑑𝑤

𝑖𝑗
(𝜃, 𝜆) + 𝐼

𝑖
) ,

𝑡 ≥ 0,

𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) , −𝑟 ≤ 𝑡 ≤ 0,

(1)
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where 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑥
𝑖
and 𝐼
𝑖
denote the state and the

external inputs of the 𝑖th neuron, separately. The integer 𝑛
corresponds to the number of units in a neural network, and
𝑓
𝑖
(⋅) denotes the signal propagation function of the 𝑖th unit.

𝜆 ∈ Λ ⊂ 𝑅 is a parameter, and 𝑎
𝑖
(𝜆) represents the rate

with which 𝑖th neuron will reset its potential to the resting
state in isolation when disconnected from the network and
external inputs.𝑤

𝑖𝑗
(𝜃, 𝜆) is nondecreasing bounded variation

functions on [−𝜏(𝜆), 0], and ∫0
−𝜏(𝜆)

𝑥
𝑗
(𝑡 + 𝜃)𝑑𝑤

𝑖𝑗
(𝜃, 𝜆) is a

Lebesgue-Stieltjes integration. There exist positive constants
𝜏, 𝑎
𝑖
, 𝑎
𝑖
, and 𝑤∗

𝑖𝑗
such that for any 𝜆 ∈ Λ, 0 < 𝑎

𝑖
≤ 𝑎
𝑖
(𝜆) ≤

𝑎
𝑖
, 0 ≤ 𝜏(𝜆) ≤ 𝜏, and | ∫0

−𝜏(𝜆)

𝑑𝑤
𝑖𝑗
(𝜃, 𝜆)| ≤ 𝑤

∗

𝑖𝑗
< ∞.

𝜎 ≥ 0 represents the leakage delay, 𝑟 = max{𝜎, 𝜏}. 𝜙(𝑠) =
(𝜙
1
(𝑠), . . . , 𝜙

𝑛
(𝑠))
𝑇, where 𝜙

𝑖
(𝑠) is derivative on [−𝑟, 0], and

[

⋅

𝜙
𝑖
]
+

𝑟
≤ 𝑚
𝑖
, 𝑖 ∈ 𝑁.

Definition 1. The equilibrium point 𝑥∗ of system (1) is said
to be globally exponentially stable if there exist a positive
constant 𝛾 and a vector𝑀 > 0 such that

[𝑥 (𝑡) − 𝑥
∗

]
+

≤ 𝑀𝑒
−𝛾(𝑡−𝑡0), 𝑡 ≥ 𝑡

0
. (2)

Definition 2. System (1) is said to be globally exponentially
robustly stable if its equilibriumpoint 𝑥∗ is globally exponen-
tially stable for any 𝜏(𝜆) ∈ [0, 𝜏] and 𝑎

𝑖
(𝜆) ∈ [𝑎

𝑖
, 𝑎
𝑖
].

Definition 3 (see [19]). Let the matrix𝐷 = (𝑑
𝑖𝑗
)
𝑛×𝑛

with 𝑑
𝑖𝑖
>

0 and𝑑
𝑖𝑗
≤ 0, 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑛.Then each of the following

conditions is equivalent to the statement “𝐷 is a nonsingular
𝑀-matrix.”

(1) All the leading principle minors of𝐷 are positive.
(2) The diagonal elements of𝐷 are all positive, and there

exists a positive vector𝑑 such that𝐷𝑑 > 0 or𝐷𝑇𝑑 > 0.

Lemma 4 (see [20]). Let 𝑎 < 𝑏 ≤ +∞, and V(𝑡) ∈

𝐶[[𝑎, 𝑏], 𝑅
𝑛

] satisfies

𝐷
+V (𝑡) ≤ 𝑃V (𝑡) + 𝑄[V (𝑡)]

𝜏
, 𝑡 ∈ [𝑎, 𝑏) ,

V (𝑎 + 𝑠) ∈ 𝑃𝐶, 𝑠 ∈ [−𝜏, 0] ,

(3)

where 𝑃 = (𝑝
𝑖𝑗
)
𝑛×𝑛

, 𝑝
𝑖𝑗
≥ 0 for 𝑖 ̸= 𝑗, 𝑄 = (𝑞

𝑖𝑗
)
𝑛×𝑛

≥ 0, and
𝐽 = (𝐽

1
, . . . , 𝐽

𝑛
)
𝑇

≥ 0, 𝑖, 𝑗 = 1, 2, . . . , 𝑛. Suppose that there exist
a scalar 𝜆 > 0 and a vector 𝑧 = (𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛
)
𝑇

> 0 such that

[𝜆𝐸 + 𝑃 + 𝑄𝑒
𝜆𝜏

] 𝑧 < 0. (4)

If the initial condition satisfies

V (𝑡) ≤ 𝑀𝑧𝑒−𝜆(𝑡−𝑎) − (𝑃 + 𝑄)−1𝐽,

𝑀 ≥ 0, 𝑡 ∈ [𝑎 − 𝜏, 𝑎] ,

(5)

then V(𝑡) ≤ M𝑧𝑒−𝜆(𝑡−𝑎) − (𝑃 + 𝑄)−1𝐽 for 𝑡 ∈ [𝑎, 𝑏).

For the model (1), we introduce the following assump-
tions.

(A
1
) The signal propagation functions 𝑓

𝑖
(⋅) are Lipschitz

continuous; that is, there are positive constants 𝑘
𝑖
,

𝑖 ∈ 𝑁 such that for all 𝑠
1
, 𝑠
2
∈ 𝑅

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑠1) − 𝑓𝑖 (𝑠2)
󵄨󵄨󵄨󵄨 ≤ 𝑘𝑖

󵄨󵄨󵄨󵄨𝑠1 − 𝑠2
󵄨󵄨󵄨󵄨 . (6)

(A
2
) Let −(𝑈 + 𝑉) be a nonsingular𝑀-matrix, where

𝑈 = (𝑢
𝑖𝑗
)
𝑛×𝑛

, 𝑉 = (V
𝑖𝑗
)
𝑛×𝑛

,

𝑢
𝑖𝑗
= 0, 𝑖 ̸= 𝑗, 𝑢

𝑖𝑖
= −𝑎
𝑖
,

V
𝑖𝑖
= 𝜎𝑎
2

𝑖
+ (1 + 𝜎𝑎

𝑖
) 𝑘
𝑖
𝑤
∗

𝑖𝑖
,

V
𝑖𝑗
= (1 + 𝜎𝑎

𝑖
) 𝑘
𝑖
𝑤
∗

𝑖𝑗
, 𝑖 ̸= 𝑗.

(7)

3. Main Results

Theorem 5. Suppose that the conditions (A
1
) and (A

2
) hold,

and then system (1) has at least one equilibrium point.

Proof. From (A
2
) and Definition 3, we know there exists a

positive vector 𝑑 = (𝑑
1
, . . . , 𝑑

𝑛
)
𝑇 such that (𝑈 + 𝑉)𝑑 < 0.

That is

−𝑎
𝑖
𝑑
𝑖
+ 𝜎𝑎
2

𝑖
𝑑
𝑖
+ (1 + 𝜎𝑎

𝑖
) 𝑘
𝑖

𝑛

∑

𝑗=1

𝑤
∗

𝑖𝑗
𝑑
𝑗
< 0,

𝑖 = 1, . . . , 𝑛.

(8)

From (8) we can get

𝑘
𝑖

𝑛

∑

𝑗=1

𝑤
∗

𝑖𝑗
𝑑
𝑗
<
𝑎
𝑖
− 𝜎𝑎
2

𝑖

1 + 𝜎𝑎
𝑖

𝑑
𝑖
≤ 𝑎
𝑖
𝑑
𝑖
,

𝑖 = 1, . . . , 𝑛.

(9)

Combining with Definition 3, we know 𝐴 − 𝐾𝑊 is a
nonsingular 𝑀-matrix, where 𝐴 = diag(𝑎

1
, . . . , 𝑎

𝑛
), 𝐾 =

diag(𝑘
1
, . . . , 𝑘

𝑛
), and𝑊 = (𝑤

∗

𝑖𝑗
)
𝑛×𝑛

.
In a similar way of proof for the literature [7], by

the theory of topological degree and homotopy invariance
theorem, the existence of the equilibrium point of system (1)
can be proved. Suppose that 𝑥∗ is an equilibrium point of
system (1), let 𝑦

𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥

∗

𝑖
, 𝜑
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) − 𝑥

∗

𝑖
, and then

system (1) becomes

𝑑𝑦
𝑖
(𝑡)

𝑑𝑡
= −𝑎
𝑖
(𝜆) 𝑦
𝑖
(𝑡 − 𝜎)

+ 𝑓
𝑖
(

𝑛

∑

𝑗=1

∫

0

−𝜏(𝜆)

(𝑦
𝑗
(𝑡 + 𝜃) + 𝑥

∗

𝑗
) 𝑑𝑤
𝑖𝑗
(𝜃, 𝜆) + 𝐼

𝑖
)

− 𝑓
𝑖
(

𝑛

∑

𝑗=1

∫

0

−𝜏(𝜆)

𝑥
∗

𝑗
𝑑𝑤
𝑖𝑗
(𝜃, 𝜆) + 𝐼

𝑖
) , 𝑡 ≥ 0,

𝑦
𝑖
(𝑡) = 𝜑

𝑖
(𝑡) , −𝑟 ≤ 𝑡 ≤ 0.

(10)
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It is clear that the stability of zero solution to system (10)
is equivalent to the stability of the equilibrium point 𝑥∗ of
system (1). So we only consider the stability of zero solution
to system (10).

Theorem 6. Assume that the conditions (A
1
) and (A

2
) are

satisfied, and then the zero solution to system (10) is globally
exponentially robustly stable.

Proof. From the Middle Value theorem, we obtain

−𝑦
𝑖
(𝑡 − 𝜎) = −𝑦

𝑖
(𝑡) + 𝜎 ̇𝑦

𝑖
(𝑡 − (1 − 𝛼) 𝜎) , 𝑖 = 1, 2, . . . , 𝑛,

(11)

where 0 < 𝛼 < 1. Then from (10) we get

𝑑𝑦
𝑖
(𝑡)

𝑑𝑡
= −𝑎
𝑖
(𝜆) 𝑦
𝑖
(𝑡)

+ 𝜎𝑎
𝑖
(𝜆) ̇𝑦
𝑖
(𝑡 − (1 − 𝛼) 𝜎)

+ 𝑓
𝑖
(

𝑛

∑

𝑗=1

∫

0

−𝜏(𝜆)

(𝑦
𝑗
(𝑡 + 𝜃) + 𝑥

∗

𝑗
) 𝑑𝑤
𝑖𝑗
(𝜃, 𝜆) + 𝐼

𝑖
)

− 𝑓
𝑖
(

𝑛

∑

𝑗=1

∫

0

−𝜏(𝜆)

𝑥
∗

𝑗
𝑑𝑤
𝑖𝑗
(𝜃, 𝜆) + 𝐼

𝑖
) .

(12)

Case 1. If 0 ≤ 𝑡 < (1−𝛼)𝜎, then ̇𝑦
𝑖
(𝑡−(1−𝛼)𝜎) = ̇𝜑

𝑖
(𝑡−(1−𝛼)𝜎).

Let 𝑉
𝑖
(𝑡) = |𝑦

𝑖
(𝑡)|, 𝑖 ∈ N. Then from (A

1
), we have

𝐷
+

𝑉
𝑖
(𝑡)

= sgn (𝑦
𝑖
(𝑡)) ̇𝑦
𝑖
(𝑡)

= sgn (𝑦
𝑖
(𝑡))( − 𝑎

𝑖
(𝜆) 𝑦
𝑖
(𝑡) + 𝜎𝑎

𝑖
(𝜆) ̇𝑦
𝑖
(𝑡 − (1 − 𝛼) 𝜎)

+ 𝑓
𝑖
(

𝑛

∑

𝑗=1

∫

0

−𝜏(𝜆)

(𝑦
𝑗
(𝑡 + 𝜃) + 𝑥

∗

𝑗
) 𝑑𝑤
𝑖𝑗
(𝜃, 𝜆)

+𝐼
𝑖
)

− 𝑓
𝑖
(

𝑛

∑

𝑗=1

∫

0

−𝜏(𝜆)

𝑥
∗

𝑗
𝑑𝑤
𝑖𝑗
(𝜃, 𝜆) + 𝐼

𝑖
))

≤ −𝑎
𝑖
(𝜆)

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)
󵄨󵄨󵄨󵄨 + 𝜎𝑎𝑖 (𝜆)

󵄨󵄨󵄨󵄨
̇𝑦
𝑖
(𝑡 − (1 − 𝛼) 𝜎)

󵄨󵄨󵄨󵄨

+ 𝑘
𝑖

𝑛

∑

𝑗=1

∫

0

−𝜏(𝜆)

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑡 + 𝜃)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑤
𝑖𝑗
(𝜃, 𝜆)

≤ −𝑎
𝑖

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)
󵄨󵄨󵄨󵄨 + 𝜎𝑎𝑖𝑚𝑖 + 𝑘𝑖

𝑛

∑

𝑗=1

𝑤
∗

𝑖𝑗
[𝑦
𝑗
(𝑡)]
+

𝜏

=

𝑛

∑

𝑗=1

𝑝
𝑖𝑗
𝑉
𝑗
(𝑡) +

𝑛

∑

𝑗=1

𝑞
𝑖𝑗
[𝑉
𝑗
(𝑡)]
𝜏

+ 𝑙
𝑖
,

(13)

where 𝑝
𝑖𝑖
= −𝑎
𝑖
, 𝑝
𝑖𝑗
= 0, 𝑖 ̸= 𝑗, 𝑞

𝑖𝑗
= 𝑘
𝑖
𝑤
∗

𝑖𝑗
, and 𝑙

𝑖
= 𝜎𝑎
𝑖
𝑚
𝑖
.

From (A
2
) and Definition 3, we know that there exists a

vector 𝑑 > 0 such that (𝑈 + 𝑉)𝑑 < 0. That is

−𝑎
𝑖
𝑑
𝑖
+ 𝜎𝑎
𝑖
𝑑
𝑖
+ (1 + 𝜎𝑎

𝑖
) 𝑘
𝑖

𝑛

∑

𝑗=1

𝑤
∗

𝑖𝑗
𝑑
𝑗
< 0. (14)

From (14), we can get

𝑛

∑

𝑗=1

𝑤
∗

𝑖𝑗
𝑑
𝑗
≤ 𝑑
𝑖

𝑎
𝑖
− 𝜎𝑎
2

𝑖

1 + 𝜎𝑎
𝑖

≤ 𝑑
𝑖
𝑎
𝑖
. (15)

Hence, −(𝑃+𝑄) is a nonsingular𝑀-matrix.Thus, there exists
a vector 𝑧

0
> 0 such that (𝑃 + 𝑄)𝑧

0
< 0. By using the

continuity, we know there exists at least one constant 𝜆
0
> 0

such that

(𝜆
0
𝐸 + 𝑃 + 𝑄𝑒

𝜆0𝜏) 𝑧
0
< 0. (16)

Since 𝜑 ∈ 𝐶[[−𝑟, 0], 𝑅𝑛], then, for 𝑧
0
> 0, there exists a

constant𝑀 ≥ 0 such that

V (𝑡) = [𝑦 (𝑡)]+ ≤ 𝑀𝑧
0
𝑒
−𝜆0𝑡 − (𝑃 + 𝑄)

−1

𝐿,

𝑡 ∈ [−𝑟, 0] ,

(17)

where 𝐿 = (𝑙
1
, . . . , 𝑙
𝑛
)
𝑇. Then from (13), (16), (17), and

Lemma 4, we get

V (𝑡) = [𝑦 (𝑡)]+ ≤ 𝑀𝑧
0
𝑒
−𝜆0𝑡 − (𝑃 + 𝑄)

−1

𝐿,

𝑡 ∈ [0, (1 − 𝛼) 𝜎] .

(18)

Case 2. If 𝑡 ≥ (1 − 𝛼)𝜎, then from (10) we have

̇𝑦
𝑖
(𝑡 − (1 − 𝛼) 𝜎)

= −𝑎
𝑖
(𝜆) 𝑦
𝑖
(𝑡 − (2 − 𝛼) 𝜎)

+ 𝑓
𝑖
(

𝑛

∑

𝑗=1

∫

0

−𝜏(𝜆)

(𝑦
𝑗
(𝑡 − (1 − 𝛼) 𝜎 + 𝜃)

+𝑥
∗

𝑗
) 𝑑𝑤
𝑖𝑗
(𝜃, 𝜆) + 𝐼

𝑖
)

− 𝑓
𝑖
(

𝑛

∑

𝑗=1

∫

0

−𝜏(𝜆)

𝑥
∗

𝑗
𝑑𝑤
𝑖𝑗
(𝜃, 𝜆) + 𝐼

𝑖
) .

(19)
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Substituting (19) into (12), we get
𝑑𝑦
𝑖
(𝑡)

𝑑𝑡
= −𝑎
𝑖
(𝜆) 𝑦
𝑖
(𝑡) + 𝜎𝑎

𝑖
(𝜆)

× [

[

− 𝑎
𝑖
(𝜆) 𝑦
𝑖
(𝑡 − (2 − 𝛼) 𝜎)

+ 𝑓
𝑖
(

𝑛

∑

𝑗=1

∫

0

−𝜏(𝜆)

(𝑦
𝑗
(𝑡 − (1 − 𝛼) 𝜎 + 𝜃)

+𝑥
∗

𝑗
) 𝑑𝑤
𝑖𝑗
(𝜃, 𝜆) + 𝐼

𝑖
)

−𝑓
𝑖
(

𝑛

∑

𝑗=1

∫

0

−𝜏(𝜆)

𝑥
∗

𝑗
𝑑𝑤
𝑖𝑗
(𝜃, 𝜆) + 𝐼

𝑖
)]

]

+ 𝑓
𝑖
(

𝑛

∑

𝑗=1

∫

0

−𝜏(𝜆)

(𝑦
𝑗
(𝑡 + 𝜃) + 𝑥

∗

𝑗
) 𝑑𝑤
𝑖𝑗
(𝜃, 𝜆) + 𝐼

𝑖
)

− 𝑓
𝑖
(

𝑛

∑

𝑗=1

∫

0

−𝜏(𝜆)

𝑥
∗

𝑗
𝑑𝑤
𝑖𝑗
(𝜃, 𝜆) + 𝐼

𝑖
) .

(20)
Let 𝑉
𝑖
(𝑡) = |𝑦

𝑖
(𝑡)|, 𝑖 ∈ 𝑁. Then, from (A

1
) and (A

2
), we

have
𝐷
+

𝑉
𝑖
(𝑡)

= sgn (𝑦
𝑖
(𝑡)) ̇𝑦
𝑖
(𝑡)

= sgn (𝑦
𝑖
(𝑡))

{

{

{

− 𝑎
𝑖
(𝜆) 𝑦
𝑖
(𝑡) + 𝜎𝑎

𝑖
(𝜆)

× [

[

− 𝑎
𝑖
(𝜆) 𝑦
𝑖
(𝑡 − (2 − 𝛼) 𝜎)

+𝑓
𝑖
(

𝑛

∑

𝑗=1

∫

0

−𝜏(𝜆)

(𝑦
𝑗
(𝑡 − (1 − 𝛼) 𝜎 + 𝜃)

+𝑥
∗

𝑗
) 𝑑𝑤
𝑖𝑗
(𝜃, 𝜆) + 𝐼

𝑖
)

−𝑓
𝑖
(

𝑛

∑

𝑗=1

∫

0

−𝜏(𝜆)

𝑥
∗

𝑗
𝑑𝑤
𝑖𝑗
(𝜃, 𝜆) + 𝐼

𝑖
)]

]

+ 𝑓
𝑖
(

𝑛

∑

𝑗=1

∫

0

−𝜏(𝜆)

(𝑦
𝑗
(𝑡 + 𝜃)

+𝑥
∗

𝑗
) 𝑑𝑤
𝑖𝑗
(𝜃, 𝜆) + 𝐼

𝑖
)

−𝑓
𝑖
(

𝑛

∑

𝑗=1

∫

0

−𝜏(𝜆)

𝑥
∗

𝑗
𝑑𝑤
𝑖𝑗
(𝜃, 𝜆) + 𝐼

𝑖
)

}

}

}

≤ −𝑎
𝑖
(𝜆)

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)
󵄨󵄨󵄨󵄨 + 𝑎
2

𝑖
(𝜆) 𝜎[𝑦

𝑖
(𝑡)]
+

𝑟+(1−𝛼)𝜎

+ 𝑎
𝑖
(𝜆) 𝜎𝑘

𝑖

𝑛

∑

𝑗=1

𝑤
∗

𝑖𝑗
[𝑦
𝑗
(𝑡)]
+

𝑟+(1−𝛼)𝜎

+ 𝑘
𝑖

𝑛

∑

𝑗=1

𝑤
∗

𝑖𝑗
[𝑦
𝑗
(𝑡)]
+

𝑟+(1−𝛼)𝜎

≤ −𝑎
𝑖

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)
󵄨󵄨󵄨󵄨 + 𝜎𝑎

2

𝑖
[𝑦
𝑖
(𝑡)]
+

𝑟+(1−𝛼)𝜎

+ (𝜎𝑎
𝑖
+ 1) 𝑘

𝑖

𝑛

∑

𝑗=1

𝑤
∗

𝑖𝑗
[𝑦
𝑗
(𝑡)]
+

𝑟+(1−𝛼)𝜎

=

𝑛

∑

𝑗=1

𝑢
𝑖𝑗
𝑉
𝑗
(𝑡) +

𝑛

∑

𝑗=1

V
𝑖𝑗
[𝑉
𝑗
(𝑡)]
𝑟+(1−𝛼)𝜎

.

(21)

Since −(𝑈 + 𝑉) is a nonsingular𝑀-matrix, there exists a
vector 𝑧 > 0 such that (𝑈 + 𝑉)𝑧 < 0. By using the continuity,
we know there exists at least one constant 𝛾 > 0 such that

(𝛾𝐸 + 𝑃 + 𝑄𝑒
𝛾(𝑟+𝜎)

) 𝑧 < 0. (22)

From (14) and (15), we know 𝑦(𝑡)is bounded on [−𝑟, (1 −
𝛼)𝜎]. So there exists a vector 𝜂 = 𝜂(1, . . . , 1)

𝑇 such that
[𝑦(𝑡)]

+

≤ 𝜂, 𝑡 ∈ [−𝑟, (1 − 𝛼)𝜎]. Then we can get

V
𝑖
(𝑡) =

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝜂𝑧𝑒

−𝛾(𝑡−(1−𝛼)𝜎)

,

𝑡 ∈ [−𝑟, (1 − 𝛼) 𝜎] , 𝑖 ∈ 𝑁.

(23)

Then from (21), (22), (23), and Lemma 4 with 𝐽 = 0, we have

V
𝑖
(𝑡) =

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝜂𝑧𝑒

−𝛾(𝑡−(1−𝛼)𝜎)

,

𝑡 ∈ [(1 − 𝛼) 𝜎,∞] , 𝑖 ∈ 𝑁.

(24)

Let𝑀 = 𝑧𝜂𝑒
𝛾𝜎, we get

[𝑥(𝑡) − 𝑥
∗

]
+

≤ 𝑀𝑒
−𝛾𝑡

, 𝑡 ≥ 0. (25)

Thus, the equilibrium 𝑥
∗of system (1) is globally exponen-

tially robustly stable.

Remark 7. If 𝜎 = 0, the system (1) becomes the static interval
neural networks without time delay in the leakage term. So,
this paper includes the results of Han et al. (2011) as a special
case.

Remark 8. If 𝜎 = 0,

𝑤
𝑖𝑗
(𝜃, 𝜆) = {

𝑤
𝑖𝑗
, 𝜃 = 0,

0, −𝜏 ≤ 𝜃 < 0,

𝜏 (𝜆) = 𝜏, 𝑎
𝑖
(𝜆) = 𝑎, 𝑏

𝑖𝑗
= 𝜏𝑤
𝑖𝑗
,

(26)

then system (1) becomes the following static neural network
model:

𝑑𝑥
𝑖
(𝑡)

𝑑𝑡
= −𝑎
𝑖
𝑥
𝑖
(𝑡) + 𝑓

𝑖
(

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑥
𝑗
(𝑡) + 𝐼

𝑖
) , 𝑡 ≥ 0,

𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) , −𝑟 ≤ 𝑡 ≤ 0.

(27)
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If 𝜎 = 0 and

𝑤
𝑖𝑗
(𝜃, 𝜆) =

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

𝑚

∑

𝑘=0

𝑤
𝑘

𝑖𝑗
(𝜆) , 𝜃 = 𝜏

0
= 0,

𝑚

∑

𝑘=1

𝑤
𝑘

𝑖𝑗
(𝜆) , −𝜏

1
≤ 𝜃 < 0,

𝑚

∑

𝑘=2

𝑤
𝑘

𝑖𝑗
(𝜆) , −𝜏

2
≤ 𝜃 < −𝜏

1
,

...
𝑤
𝑚

𝑖𝑗
(𝜆) , −𝜏

𝑚
≤ 𝜃 < −𝜏

𝑚−1
,

0, −𝜏 ≤ 𝜃 < 𝜏
𝑚
,

(28)

where −𝜏 < −𝜏
𝑚
< ⋅ ⋅ ⋅ < −𝜏

1
< 𝜏
0
= 0, then system (1)

becomes a class of static neural network models with discrete
time delays as follows:

𝑑𝑥
𝑖
(𝑡)

𝑑𝑡
= −𝑎
𝑖
(𝜆) 𝑥
𝑖
(𝑡)

+ 𝑓
𝑖
(

𝑚

∑

𝑘=0

𝑛

∑

𝑗=1

𝑤
𝑘

𝑖𝑗
(𝜆) 𝑥
𝑗
(𝑡 − 𝜏
𝑘
) + 𝐼
𝑖
) ,

𝑡 ≥ 0,

𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) , −𝑟 ≤ 𝑡 ≤ 0.

(29)

If 𝜎 = 0 and 𝑤
𝑖𝑗
(𝜃, 𝜆) ∈ 𝐶

1

[−𝜏, 0], then system (1)
becomes the following static model with continuous time
delays:

𝑑𝑥
𝑖
(𝑡)

𝑑𝑡
= −𝑎
𝑖
(𝜆) 𝑥
𝑖
(𝑡)

+ 𝑓
𝑖
(

𝑛

∑

𝑗=1

∫

0

−𝜏(𝜆)

𝑥
𝑗
(𝑡 + 𝜃)𝑤

󸀠

𝑖𝑗
(𝜃, 𝜆) 𝑑𝜃 + 𝐼

𝑖
) ,

𝑡 ≥ 0,

𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) , −𝑟 ≤ 𝑡 ≤ 0.

(30)

From (29) and (30), we can see that S-type distributed
time delay contains discrete time delays and continuous time
delays as two special cases, so our results generalized the
results of the related literature [1, 3, 10].

4. Example

Consider the following system:

𝑑𝑥
1
(𝑡)

𝑑𝑡
= − (2 + 𝜆) 𝑥

1
(𝑡 −

1

10
)

+ sin(
2

∑

𝑗=1

∫

0

−𝜏(𝜆)

𝑥
𝑗
(𝑡 + 𝜃) 𝑑𝑤

𝑖𝑗
(𝜃, 𝜆) + 1) ,

𝑑𝑥
2
(𝑡)

𝑑𝑡
= − (2 + 𝜆) 𝑥

2
(𝑡 −

1

10
)

+ cos(
2

∑

𝑗=1

∫

0

−𝜏(𝜆)

𝑥
𝑗
(𝑡 + 𝜃) 𝑑𝑤

𝑖𝑗
(𝜃, 𝜆) + 2) ,

𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) , −𝑟 ≤ 𝑡 ≤ 0,

(31)

where 𝜆 ∈ [0, 1], | ∫
0

−𝜏(𝜆)

𝑑𝑤
11
(𝜃, 𝜆)| ≤ 1/3,

| ∫
0

−𝜏(𝜆)

𝑑𝑤
12
(𝜃, 𝜆)| ≤ 1/2, | ∫0

−𝜏(𝜆)

𝑑𝑤
21
(𝜃, 𝜆)| ≤ 1/2, and

| ∫
0

−𝜏(𝜆)

𝑑𝑤
22
(𝜃, 𝜆)| ≤ 1/4, 𝑘

1
= 𝑘
2
= 1. It can be obtained that

𝑈 = (
−2 0

0 −2
) , 𝑉 = (

4

3

13

20

13

20

49

40

) . (32)

Thus

− (𝑈 + 𝑉) = −(

−
2

3

13

20

13

20
−
31

40

) (33)

is a 𝑀-matrix. From Theorem 6, the equilibrium point of
system (27) is globally exponentially robust stable.
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