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Based on the real observation data in Tongcheng city, this paper established a mathematical model of schistosomiasis transmission
under flood in Anhui province. The delay of schistosomiasis outbreak under flood was considered. Analysis of this model shows
that the disease free equilibrium is locally asymptotically stable if the basic reproduction number is less than one. The stability of
the unique endemic equilibriummay be changed under some conditions even if the basic reproduction number is larger than one.
The impact of flood on the stability of the endemic equilibrium is studied and the results imply that flood can destabilize the system
and periodic solutions can arise by Hopf bifurcation. Finally, numerical simulations are performed to support these mathematical
results and the results are in accord with the observation data from Tongcheng Schistosomiasis Control Station.

1. Introduction

As we know, schistosomiasis is a serious water-borne disease.
It is not easy to control because of many reasons such
as flood. Many reports have shown that flood leads to a
serious outbreak of schistosomiasis [1–3]. During the flood
period there are a lot of people that come into contact with
contaminated water, which may lead to the fact that a lot of
people are infected by schistosome [1–3]. In China, Anhui
province often encounters floods; in particular in 1998 the
flood was one of the most serious flood [1]. Based on the
observation data from Tongcheng Schistosomiasis Control
Station in Anhui province (Figure 1), we can see that the
number of patients and the area of snails increase by a big
margin after 1998 in Tongcheng city in Anhui province.
Although people know the phenomenon that schistosomiasis
will be serious after flood, people do not know the reason
and there are only some live reports. Hence, it is necessary
to investigate theoretically the effect of flood on the schisto-
somiasis transmission.

After flood the infected human by cercaria will have an
incubation period to become an infectious human. In fact,
it is about five weeks from the time of cercaria penetration
through skins of human to the time when eggs are discharged
[4]. Adult schistosomes in human are capable of producing
eggs for a number of years [5]. This leads to breakout of
schistosomiasis in many places after flood. For example,
the catastrophic flood in 1998 brought a serious impact on
the prevalence of schistosomiasis in Anhui province from
1998 to 2000 [1]. Furthermore, the data from Tongcheng
Schistosomiasis Control Station (Figure 1) and the report
of Ge et al. [1] both show that schistosomiasis is more
serious in three years after flood than in the flood year. This
phenomenon is called the delayed effect of flood [1]. In this
paper we want to investigate how flood affects the dynamical
behavior of schistosomiasis.

Many schistosomiasismodels have involvedmany aspects
such as drug-resistant, age-structure, incubation period of
snail, and chemotherapy [6–10].Their results imply thatmany
factors affect the transmission of schistosomiasis. However,
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Figure 1: The observation data in Tongcheng city from Tongcheng Schistosomiasis Control Station in 1998–2007.

there are few mathematical models considering the effect of
flood in previous papers.

To study the delayed effect of flood, we use a time delay
to reflect the incubation period in the infected human. We
modified themodel in [11]. Distribute human into susceptible
𝑥
𝑠
(𝑡) and infectious 𝑥

𝑖
(𝑡) and snails into susceptible 𝑦

𝑠
(𝑡),

preshedding 𝑦
𝑒
(𝑡), and infectious 𝑦

𝑖
(𝑡). The model in [11]

reads
𝑑𝑥
𝑠

𝑑𝑡

= 𝐴
𝑥
− 𝜇
𝑥
𝑥
𝑠
− 𝛽
𝑥
𝑥
𝑠
𝑦
𝑖
,

𝑑𝑥
𝑖

𝑑𝑡

= 𝛽
𝑥
𝑥
𝑠
𝑦
𝑖
− (𝜇
𝑥
+ 𝛼
𝑥
) 𝑥
𝑖
,

𝑑𝑦
𝑠

𝑑𝑡

= 𝐴
𝑦
− 𝜇
𝑦
𝑦
𝑠
− 𝛽
𝑦
𝑥
𝑖
𝑦
𝑠
,

𝑑𝑦
𝑒

𝑑𝑡

= 𝛽
𝑦
𝑥
𝑖
𝑦
𝑠
− (𝜇
𝑦
+ 𝜃) 𝑦

𝑒
,

𝑑𝑦
𝑖

𝑑𝑡

= 𝜃𝑦
𝑒
− (𝜇
𝑦
+ 𝛼
𝑦
) 𝑦
𝑖
,

(1)

where 𝐴
𝑥
is the recruitment rate of human, 𝜇

𝑥
is the death

rate of human, 𝛼
𝑥
is the disease-induced death rate of

human, 𝛽
𝑥
is the transmission rate from infectious snails to

susceptible human, 𝐴
𝑦
is the recruitment rate of snail host,

𝜇
𝑦
is the death rate of snail host, 𝛼

𝑦
is the disease-induced

death rate of snail host, 𝛽
𝑦
is the transmission rate from

infectious human to susceptible snails, and 𝜃 is the translate
rate from infected and preshedding snails to shedding snails.
In the model, we have studied the stability of equilibria and
preferable control strategies.

The goal of this paper is to study the impact of flood
on the basic reproduction number and the dynamics of
the schistosomiasis transmission. This paper is organized as
follows. In Section 2 we establish a schistosomiasis model
with a time delay and define the basic reproduction number
𝑅
0
. The stability of the disease free equilibrium is obtained in

Section 3. We devote Section 4 to the Hopf bifurcation anal-
ysis. Section 5 examines mathematical results by numerical
simulations.

2. The Delayed Model

By incorporating a time delay in human, we have the follow-
ing model:

𝑑𝑥
𝑠

𝑑𝑡

= 𝐴
𝑥
− 𝜇
𝑥
𝑥
𝑠
(𝑡) − 𝛽

𝑥
𝑥
𝑠
(𝑡 − 𝜏) 𝑦

𝑖
(𝑡 − 𝜏) 𝑒

−𝜇
𝑥
𝜏

,

𝑑𝑥
𝑖

𝑑𝑡

= 𝛽
𝑥
𝑥
𝑠
(𝑡 − 𝜏) 𝑦

𝑖
(𝑡 − 𝜏) 𝑒

−𝜇
𝑥
𝜏

− (𝜇
𝑥
+ 𝛼
𝑥
) 𝑥
𝑖
(𝑡) ,

𝑑𝑦
𝑠

𝑑𝑡

= 𝐴
𝑦
− 𝜇
𝑦
𝑦
𝑠
(𝑡) − 𝛽

𝑦
𝑥
𝑖
(𝑡) 𝑦
𝑠
(𝑡) ,

𝑑𝑦
𝑒

𝑑𝑡

= 𝛽
𝑦
𝑥
𝑖
(𝑡) 𝑦
𝑠
(𝑡) − (𝜇

𝑦
+ 𝜃) 𝑦

𝑒
(𝑡) ,

𝑑𝑦
𝑖

𝑑𝑡

= 𝜃𝑦
𝑒
(𝑡) − (𝜇

𝑦
+ 𝛼
𝑦
) 𝑦
𝑖
(𝑡) ,

(2)

where 𝜏 is the incubation period in the infected human, that
is, the time from cercaria penetration through skins to the
time when eggs are discharged.

Define the basic reproduction number according to
biological meanings:

𝑅
0
=

𝐴
𝑥
𝐴
𝑦
𝜃𝛽
𝑥
𝑒
−𝜇
𝑥
𝜏

𝛽
𝑦

𝜇
𝑥
𝜇
𝑦
(𝜇
𝑥
+ 𝛼
𝑥
) (𝜇
𝑦
+ 𝛼
𝑦
) (𝜇
𝑦
+ 𝜃)

. (3)

These quantities have a clear biological interpretation. Con-
sider the case when an infectious snail is introduced into a
purely susceptible people population with size 𝐴

𝑥
/𝜇
𝑥
. The

size of susceptible people who become infectious people per
unit time is 𝛽

𝑥
(𝐴
𝑥
/𝜇
𝑥
). 1/(𝜇

𝑥
+ 𝛼
𝑥
) is the mean infective

period of the infectious people and 𝑒
−𝜇
𝑥
𝜏 represents the

survived rate of people during his infection. On the other
hand, infectious people can infect 𝛽

𝑦
(𝐴
𝑦
/𝜇
𝑦
) susceptible

snails which should get through the latent time where
the rate of transmission is 𝜃 and then infective period is
1/(𝜇
𝑦
+ 𝛼
𝑦
)(𝜇
𝑦
+ 𝜃). Thus, 𝑅

0
gives the total number of

secondary infectious snails produced by a typical infected
snail during its entire period of infectiousness in a completely
susceptible population. The following section shows that the
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basic reproduction number𝑅
0
provides a threshold condition

for parasite extinction.

Theorem 1. There exist at most two equilibria:

(i) if𝑅
0
≤ 1, system (2) has a disease free equilibrium𝐸

0
=

(𝐴
𝑥
/𝜇
𝑥
, 0, 𝐴
𝑦
/𝜇
𝑦
, 0, 0);

(ii) if 𝑅
0
> 1, system (2) has two equilibria, the disease free

equilibrium 𝐸
0
and the unique endemic equilibrium

𝐸 = (𝑥
∗

𝑠
, 𝑥
∗

𝑖
, 𝑦
∗

𝑠
, 𝑦
∗

𝑒
, 𝑦
∗

𝑖
), where

𝑥
∗

𝑠
=

𝐴
𝑥
(𝐴
𝑥
𝛽
𝑦
+ 𝜇
𝑦
(𝜇
𝑥
+ 𝛼
𝑥
))

𝜇
𝑥
(𝐴
𝑥
𝛽
𝑦
+ 𝜇
𝑦
𝑅
0
(𝜇
𝑥
+ 𝛼
𝑥
))

,

𝑥
∗

𝑖
=

𝐴
𝑥
𝜇
𝑦
(𝑅
0
− 1)

𝐴
𝑥
𝛽
𝑦
+ 𝜇
𝑦
𝑅
0
(𝜇
𝑥
+ 𝛼
𝑥
)

,

𝑦
∗

𝑠
=

𝐴
𝑦
(𝐴
𝑥
𝛽
𝑦
+ 𝜇
𝑦
𝑅
0
(𝜇
𝑥
+ 𝛼
𝑥
))

𝜇
𝑦
𝑅
0
(𝐴
𝑥
𝛽
𝑦
+ 𝜇
𝑦
(𝜇
𝑥
+ 𝛼
𝑥
))

,

𝑦
∗

𝑒
=

𝜇
𝑥
𝜇
𝑦
(𝜇
𝑥
+ 𝛼
𝑥
) (𝜇
𝑦
+ 𝛼
𝑦
) (𝑅
0
− 1)

𝜃𝛽
𝑥
𝑒
−𝜇
𝑥
𝜏
(𝐴
𝑥
𝛽
𝑦
+ 𝜇
𝑦
(𝜇
𝑥
+ 𝛼
𝑥
))

,

𝑦
∗

𝑖
=

𝜇
𝑥
𝜇
𝑦
(𝜇
𝑥
+ 𝛼
𝑥
) (𝑅
0
− 1)

𝛽
𝑥
𝑒
−𝜇
𝑥
𝜏
(𝐴
𝑥
𝛽
𝑦
+ 𝜇
𝑦
(𝜇
𝑥
+ 𝛼
𝑥
))

.

(4)

Next we will discuss the stabilities of 𝐸
0
and 𝐸 in system

(2).

3. Stability Analysis of 𝐸
0

In this section, we will analyze the stability of the disease free
equilibrium𝐸

0
of the delayedmodel (2) in the two cases:𝑅

0
<

1 and 𝑅
0
> 1.

Theorem 2. The disease free equilibrium 𝐸
0
of the system (2)

is locally asymptotically stable if 𝑅
0
< 1 and unstable if 𝑅

0
> 1.

Proof. Denote 𝑏 = 𝜇
𝑥

+ 𝛼
𝑥
, 𝑐 = 𝜇

𝑦
+ 𝛼
𝑦
, 𝑑 = 𝜇

𝑦
+

𝜃. By linearizing the system (2) around 𝐸
0
we can obtain

the characteristic roots that are −𝜇
𝑥
, −𝜇
𝑦
and roots of the

following equation:

𝜆
3

+ (𝑏 + 𝑐 + 𝑑) 𝜆
2

+ (𝑏𝑐 + 𝑏𝑑 + 𝑐𝑑) 𝜆

+ 𝑏c𝑑 −

𝐴
𝑥
𝐴
𝑦
𝜃𝛽
𝑥
𝑒
−𝜇
𝑥
𝜏

𝛽
𝑦

𝜇
𝑥
𝜇
𝑦

𝑒
−𝜆𝜏

= 0.

(5)

Denote the left-hand side of (5) as𝐹(𝜆, 𝜏). It is easy to see that

𝐹 (0, 𝜏) = 𝑏𝑐𝑑 −

𝐴
𝑥
𝐴
𝑦
𝜃𝛽
𝑥
𝑒
−𝜇
𝑥
𝜏

𝛽
𝑦

𝜇
𝑥
𝜇
𝑦

𝑒
−𝜆𝜏

= 𝑏𝑐𝑑 (1 − 𝑅
0
) ,

𝐹


𝜆
(𝜆, 𝜏) = 3𝜆

2

+ 2 (𝑏 + 𝑐 + 𝑑) 𝜆 + (𝑏𝑐 + 𝑏𝑑 + 𝑐𝑑)

+ 𝜏

𝐴
𝑥
𝐴
𝑦
𝜃𝛽
𝑥
𝑒
−𝜇
𝑥
𝜏

𝛽
𝑦

𝜇
𝑥
𝜇
𝑦

𝑒
−𝜆𝜏

.

(6)

(i) If𝑅
0
> 1,𝐹(0, 𝜏) < 0, 𝐹



𝜆
(𝜆, 𝜏) > 0 for 𝜆 ≥ 0 and 𝜏 > 0.

Thus, (5) has a positive real solution for 𝜏 > 0 and the
disease free equilibrium 𝐸

0
is unstable.

(ii) If 𝑅
0

< 1, 𝐹(0, 𝜏) > 0. Since 𝐹


𝜆
(𝜆, 𝜏) > 0 for

𝜆 ≥ 0 and 𝜏 > 0, (5) does not have nonnegative
real roots for 𝜏 > 0. Hence, if (5) has roots with
nonnegative real parts they must be complex roots.
Moreover these complex roots should be obtained
from a pair of complex conjugate roots crossing the
imaginary axis. Thus, (5) must have a pair of purely
imaginary roots 𝜆 = ±𝜔𝑖 for some 𝜏 > 0. Without
loss of generality we assume that 𝜔 > 0. Then 𝜔must
be a positive solution of the following equation:

− 𝜔
3

𝑖 − (𝑏 + 𝑐 + 𝑑) 𝜔
2

+ (𝑏𝑐 + 𝑏𝑑 + 𝑐𝑑) 𝜔𝑖 + 𝑏𝑐𝑑

−

𝐴
𝑥
𝐴
𝑦
𝜃𝛽
𝑥
𝑒
−𝜇
𝑥
𝜏

𝛽
𝑦

𝜇
𝑥
𝜇
𝑦

(cos (𝜔𝜏) − 𝑖 sin (𝜔𝜏)) = 0,

(7)

which is equivalent to

− 𝜔
3

+ (𝑏𝑐 + 𝑏𝑑 + 𝑐𝑑) 𝜔

+

𝐴
𝑥
𝐴
𝑦
𝜃𝛽
𝑥
𝑒
−𝜇
𝑥
𝜏

𝛽
𝑦

𝜇
𝑥
𝜇
𝑦

sin (𝜔𝜏) = 0,

− (𝑏 + 𝑐 + 𝑑) 𝜔
2

+ 𝑏𝑐𝑑

−

𝐴
𝑥
𝐴
𝑦
𝜃𝛽
𝑥
𝑒
−𝜇
𝑥
𝜏

𝛽
𝑦

𝜇
𝑥
𝜇
𝑦

cos (𝜔𝜏) = 0.

(8)

Let 𝐴
𝑥
𝐴
𝑦
𝜃𝛽
𝑥
𝑒
−𝜇
𝑥
𝜏

𝛽
𝑦
/𝜇
𝑥
𝜇
𝑦
= 𝑒. Hence,

𝜔
6

+ (𝑏
2

+ 𝑐
2

+ 𝑑
2

) 𝜔
4

+ (𝑏
2

𝑐
2

+ 𝑏
2

𝑑
2

+ 𝑐
2

𝑑
2

) 𝜔
2

+ (𝑏
2

𝑐
2

𝑑
2

− 𝑒
2

) = 0.

(9)

Assuming 𝑧 = 𝜔
2, we can obtain

𝑧
3

+ 𝛼𝑧
2

+ 𝛽𝑧 + 𝛾 = 0, (10)

where 𝛼 = 𝑏
2

+ 𝑐
2

+ 𝑑
2

> 0, 𝛽 = 𝑏
2

𝑐
2

+ 𝑏
2

𝑑
2

+ 𝑐
2

𝑑
2

> 0, 𝛾 =

𝑏
2

𝑐
2

𝑑
2

− 𝑒
2

> 0 as 𝑅
0
< 1.

From [12, Lemma 3.31], if 𝛼 ≥ 0, 𝛽 > 0, 𝛾 ≥ 0, then (10)
has no positive real roots. This implies that (7) does not have
positive solution 𝜔 since 𝑅

0
< 1. Therefore, (5) does not have

purely imaginary roots. Consequently, the real parts of all
eigenvalues of 𝐸

0
are negative for all positive 𝜏. This indicates

that the disease free equilibrium 𝐸
0
is locally asymptotically

stable if 𝑅
0
< 1.
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4. Hopf Bifurcation Analysis

In this section, we turn to the study of the stability of the
endemic equilibrium 𝐸 when 𝑅

0
> 1. Notice that 𝑅

0
> 1

is equivalent to

𝜏 < 𝜏
∗

=

1

𝜇
𝑥

ln
𝐴
𝑥
𝐴
𝑦
𝜃𝛽
𝑥
𝛽
𝑦

𝜇
𝑥
𝜇
𝑦
(𝜇
𝑥
+ 𝛼
𝑥
) (𝜇
𝑦
+ 𝛼
𝑦
) (𝜇
𝑦
+ 𝜃)

. (11)

The characteristic equation of 𝐸 is

𝜆
5

+ 𝑎
1
𝜆
4

+ 𝑎
2
𝜆
3

+ 𝑎
3
𝜆
2

+ 𝑎
4
𝜆 + 𝑎
5

= 𝑒
−𝜆𝜏

(𝑏
1
𝜆
4

+ 𝑏
2
𝜆
3

+ 𝑏
3
𝜆
2

+ 𝑏
4
𝜆 + 𝑏
5
) ,

(12)

where

𝑎
1
= 𝜇
𝑥
+ 𝜇
𝑦
+ 𝑏 + 𝑐 + 𝑑 > 0,

𝑎
2
= 𝑏𝑐 + 𝑏𝑑 + 𝑏𝜇

𝑥
+ 𝑏𝜇
𝑦
+ 𝑐𝑑 + 𝑐𝜇

𝑥
+ 𝑐𝜇
𝑦

+ 𝑑𝜇
𝑥
+ 𝑑𝜇
𝑦
+ 𝜇
𝑥
𝜇
𝑦
> 0,

𝑎
3
= 𝑏𝑐𝑑 + 𝑏𝑐𝜇

𝑥
+ 𝑏𝑐𝜇
𝑦
+ 𝑐𝑑𝜇

𝑥

+ 𝑐𝑑𝜇
𝑦
+ 𝑑𝜇
𝑥
𝜇
𝑦
,

𝑎
4
= 𝑏𝑐𝑑𝜇

𝑥
+ 𝑏𝑐𝑑𝜇

𝑦
+ 𝑐𝑑𝜇

𝑥
𝜇
𝑦
,

𝑎
5
= 𝑏𝑐𝑑𝜇

𝑥
𝜇
𝑦
,

𝑏
1
= −𝛽
𝑥
𝑦
∗

𝑖
𝑒
−𝜇
𝑥
𝜏

< 0,

𝑏
2
= −𝛽
𝑥
𝑦
∗

𝑖
𝑒
−𝜇
𝑥
𝜏

(𝑏 + 𝑑 + 𝑐 + 𝜇
𝑦
) < 0,

𝑏
3
= −𝛽
𝑥
𝑦
∗

𝑖
𝑒
−𝜇
𝑥
𝜏

(𝑏𝜇
𝑦
+ 𝑏𝑑 + 𝑑𝜇

𝑦
+ 𝑏𝑐 + 𝑐𝑑 + 𝑐𝜇

𝑦
) + 𝑏𝑐𝑑,

𝑏
4
= −𝛽
𝑥
𝑦
∗

𝑖
𝑒
−𝜇
𝑥
𝜏

(𝑏𝑑𝜇
𝑦
+ 𝑏𝑐𝜇
𝑦
+ 𝑐𝑑𝜇

𝑦
+ 𝑏𝑐𝑑)

+ 𝑏𝑐𝑑 (𝜇
𝑥
+ 𝜇
𝑦
) ,

𝑏
5
= −𝛽
𝑥
𝑦
∗

𝑖
𝑒
−𝜇
𝑥
𝜏

𝑏𝑐𝑑𝜇
𝑦
+ 𝑏𝑐𝑑𝜇

𝑥
𝜇
𝑦
.

(13)

In the following, it can be shown that (12) does not have
nonnegative real roots for 𝜏 > 0. Let

𝑎
3
= 𝑎
3
− 𝑏𝑐𝑑𝑒

−𝜆𝜏

,

𝑎
4
= 𝑎
4
− 𝑏𝑐𝑑 (𝜇

𝑥
+ 𝜇
𝑦
) 𝑒
−𝜆𝜏

,

𝑎
5
= 𝑎
5
− 𝑏𝑐𝑑𝜇

𝑥
𝜇
𝑦
𝑒
−𝜆𝜏

,

̃
𝑏
3
= −𝛽
𝑥
𝑦
∗

𝑖
𝑒
−𝜇
𝑥
𝜏

(𝑏𝜇
𝑦
+ 𝑏𝑑 + 𝑑𝜇

𝑦
+ 𝑏𝑐 + 𝑐𝑑 + 𝑐𝜇

𝑦
) < 0,

̃
𝑏
4
= −𝛽
𝑥
𝑦
∗

𝑖
𝑒
−𝜇
𝑥
𝜏

(𝑏𝑑𝜇
𝑦
+ 𝑏𝑐𝜇
𝑦
+ 𝑐𝑑𝜇

𝑦
+ 𝑏𝑐𝑑) < 0,

̃
𝑏
5
= −𝛽
𝑥
𝑦
∗

𝑖
𝑒
−𝜇
𝑥
𝜏

𝑏𝑐𝑑𝜇
𝑦
< 0.

(14)

Note that 𝑎
3
> 0, 𝑎

4
> 0, 𝑎

5
> 0 for all 𝜆 ≥ 0 and 𝜏 > 0. We

rewrite (12) in the following form:

𝜆
5

+ 𝑎
1
𝜆
4

+ 𝑎
2
𝜆
3

+ 𝑎
3
𝜆
2

+ 𝑎
4
𝜆 + 𝑎
5

= 𝑒
−𝜆𝜏

(𝑏
1
𝜆
4

+ 𝑏
2
𝜆
3

+
̃
𝑏
3
𝜆
2

+
̃
𝑏
4
𝜆 +

̃
𝑏
5
) .

(15)

It is easy to see that the left-hand side in (15) is positive while
the right-hand side is negative for all𝜆 ≥ 0.Then (12) does not
have nonnegative real solutions. Nowwe consider whether or
not (12) has purely imaginary solutions.

Suppose 𝜆 = 𝜔𝑖, 𝜔 > 0 for some 𝜏 > 0, is a root of (12).
Then we have

𝜔
5

𝑖 + 𝑎
1
𝜔
4

− 𝑎
2
𝜔
3

𝑖 − 𝑎
3
𝜔
2

+ 𝑎
4
𝜔𝑖 + 𝑎

5

= [cos (𝜔𝜏) − 𝑖 sin (𝜔𝜏)]

× (𝑏
1
𝜔
4

− 𝑏
2
𝜔
3

𝑖 − 𝑏
3
𝜔
2

+ 𝑏
4
𝜔𝑖 + 𝑏

5
) .

(16)

Therefore

𝜔
5

− 𝑎
2
𝜔
3

+ 𝑎
4
𝜔 = cos (𝜔𝜏) (−𝑏

2
𝜔
3

+ 𝑏
4
𝜔)

− sin (𝜔𝜏) (𝑏
1
𝜔
4

− 𝑏
3
𝜔
2

+ 𝑏
5
) ,

𝑎
1
𝜔
4

− 𝑎
3
𝜔
2

+ 𝑎
5
= cos (𝜔𝜏) (𝑏

1
𝜔
4

− 𝑏
3
𝜔
2

+ 𝑏
5
)

+ sin (𝜔𝜏) (−𝑏
2
𝜔
3

+ 𝑏
4
𝜔) .

(17)

From (17), we obtain

(𝑎
1
𝜔
4

− 𝑎
3
𝜔
2

+ 𝑎
5
)

2

+ (𝜔
5

− 𝑎
2
𝜔
3

+ 𝑎
4
𝜔)

2

= (𝑏
1
𝜔
4

− 𝑏
3
𝜔
2

+ 𝑏
5
)

2

+ (−𝑏
2
𝜔
3

+ 𝑏
4
𝜔)

2

;

(18)

that is,

𝜔
10

+ (𝑎
2

1
− 2𝑎
2
− 𝑏
2

1
) 𝜔
8

+ (𝑎
2

2
+ 2𝑎
4
− 2𝑎
1
𝑎
3

−𝑏
2

2
+ 2𝑏
1
𝑏
3
) 𝜔
6

+ (𝑎
2

3
− 2𝑎
2
𝑎
4
+ 2𝑎
1
𝑎
5
+ 2𝑏
2
𝑏
4
− 𝑏
2

3
− 2𝑏
1
𝑏
5
) 𝜔
4

+ (𝑎
2

4
− 2𝑎
3
𝑎
5
− 𝑏
2

4
+ 2𝑏
3
𝑏
5
) 𝜔
2

+ (𝑎
2

5
− 𝑏
2

5
) = 0.

(19)

Let 𝑧 = 𝜔
2 again; we obtain

𝑧
5

+ 𝑐
1
𝑧
4

+ 𝑐
2
𝑧
3

+ 𝑐
3
𝑧
2

+ 𝑐
4
𝑧 + 𝑐
5
= 0, (20)

where

𝑐
1
= 𝑎
2

1
− 2𝑎
2
− 𝑏
2

1
,

𝑐
2
= 𝑎
2

2
+ 2𝑎
4
− 2𝑎
1
𝑎
3
− 𝑏
2

2
+ 2𝑏
1
𝑏
3
,

𝑐
3
= 𝑎
2

3
− 2𝑎
2
𝑎
4
+ 2𝑎
1
𝑎
5
+ 2𝑏
2
𝑏
4
− 𝑏
2

3
− 2𝑏
1
𝑏
5
,

𝑐
4
= 𝑎
2

4
− 2𝑎
3
𝑎
5
− 𝑏
2

4
+ 2𝑏
3
𝑏
5
,

𝑐
5
= 𝑎
2

5
− 𝑏
2

5
.

(21)
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Because (20) is very complex, the roots cannot easily be
found. However, we know there are positive roots in some
conditions. For example, if 𝑐

5
< 0, then (20) has at least

a positive root, say 𝑧
0
, and (19) has at least a positive root

𝜔
0
= √𝑧
0
. Consequently, the endemic equilibrium𝐸may lose

stability and lead to oscillations because the time delay 𝜏 > 0.
In this case, we will do bifurcation analysis by 𝜏 as bifurcation
parameter in the following.

Let 𝜆(𝜏) = 𝜉(𝜏) + 𝑖𝜔(𝜏) be a root of (12) such that
𝜉(𝜏
0
) = 0, 𝜔(𝜏

0
) = 𝜔

0
(𝜔
0

> 0) for some initial value of
the bifurcation parameter 𝜏

0
. From (17) we can obtain

𝜏
𝑗

=

1

𝜔
0

arccos(((𝑎
1
𝑏
1
− 𝑏
2
) 𝜔
8

0
+ (𝑏
4
+ 𝑎
2
𝑏
2
− 𝑎
1
𝑏
3
− 𝑎
3
𝑏
1
) 𝜔
6

0

+ (−𝑎
2
𝑏
4
− 𝑎
4
𝑏
2
+ 𝑎
1
𝑏
5
+ 𝑎
3
𝑏
3
+ 𝑎
5
𝑏
1
) 𝜔
4

0
)

× ((𝑏
1
𝜔
4

0
− 𝑏
3
𝜔
2

0
+ 𝑏
5
)

2

+ (−𝑏
2
𝜔
3

0
+ 𝑏
4
𝜔
0
)

2

)

−1

+

(𝑎
4
𝑏
4
− 𝑎
3
𝑏
5
− 𝑎
5
𝑏
3
) 𝜔
2

0
+ 𝑎
5
𝑏
5

(𝑏
1
𝜔
4

0
− 𝑏
3
𝜔
2

0
+ 𝑏
5
)
2

+ (−𝑏
2
𝜔
3

0
+ 𝑏
4
𝜔
0
)
2
)

+

2𝑗𝜋

𝜔
0

, 𝑗 = 0, 1, 2, . . . .

(22)

Now we can show the transversal condition
(𝑑Re 𝜆(𝜏)/𝑑𝜏)|

𝜏=𝜏
0

̸= 0.
Differentiating (12) with respect to 𝜏 yields

(5𝜆
4

+ 4𝑎
1
𝜆
3

+ 3𝑎
2
𝜆
2

+ 2𝑎
3
𝜆 + 𝑎
4
+ 𝜏𝑒
−𝜆𝜏

× (𝑏
1
𝜆
4

+ 𝑏
2
𝜆
3

+ 𝑏
3
𝜆
2

+ 𝑏
4
𝜆 + 𝑏
5
)

−𝑒
−𝜆𝜏

(4𝑏
1
𝜆
3

+ 3𝑏
2
𝜆
2

+ 2𝑏
3
+ 𝑏
4
))

𝑑𝜆

𝑑𝜏

= −𝜆𝑒
−𝜆𝜏

(𝑏
1
𝜆
4

+ 𝑏
2
𝜆
3

+ 𝑏
3
𝜆
2

+ 𝑏
4
𝜆 + 𝑏
5
) .

(23)

Using (12), we obtain

(

𝑑𝜆

𝑑𝜏

)

−1

= (5𝜆
4

+ 4𝑎
1
𝜆
3

+ 3𝑎
2
𝜆
2

+ 2𝑎
3
𝜆 + 𝑎
4

+ 𝜏𝑒
−𝜆𝜏

(𝑏
1
𝜆
4

+ 𝑏
2
𝜆
3

+ 𝑏
3
𝜆
2

+ 𝑏
4
𝜆 + 𝑏
5
)

−𝑒
−𝜆𝜏

(4𝑏
1
𝜆
3

+ 3𝑏
2
𝜆
2

+ 2𝑏
3
+ 𝑏
4
))

× (−𝜆𝑒
−𝜆𝜏

(𝑏
1
𝜆
4

+ 𝑏
2
𝜆
3

+ 𝑏
3
𝜆
2

+ 𝑏
4
𝜆 + 𝑏
5
))

−1

=

5𝜆
4

+ 4𝑎
1
𝜆
3

+ 3𝑎
2
𝜆
2

+ 2𝑎
3
𝜆 + 𝑎
4

−𝜆 (𝜆
5
+ 𝑎
1
𝜆
4
+ 𝑎
2
𝜆
3
+ 𝑎
3
𝜆
2
+ 𝑎
4
𝜆 + 𝑎
5
)

+

4𝑏
1
𝜆
3

+ 3𝑏
2
𝜆
2

+ 2𝑏
3
+ 𝑏
4

𝜆 (𝑏
1
𝜆
4
+ 𝑏
2
𝜆
3
+ 𝑏
3
𝜆
2
+ 𝑏
4
𝜆 + 𝑏
5
)

−

𝜏

𝜆

.

(24)

Then,

sign{

𝑑Re 𝜆
𝑑𝜏

}

𝜆=𝑖𝜔
0

= sign{Re(𝑑𝜆

𝑑𝜏

)

−1

}

𝜆=𝑖𝜔
0

= sign{Re[
5𝜆
4

+ 4𝑎
1
𝜆
3

+ 3𝑎
2
𝜆
2

+ 2𝑎
3
𝜆 + 𝑎
4

−𝜆 (𝜆
5
+ 𝑎
1
𝜆
4
+ 𝑎
2
𝜆
3
+ 𝑎
3
𝜆
2
+ 𝑎
4
𝜆 + 𝑎
5
)

]

𝜆=𝑖𝜔
0

+Re[
4𝑏
1
𝜆
3

+ 3𝑏
2
𝜆
2

+ 2𝑏
3
+ 𝑏
4

𝜆 (𝑏
1
𝜆
4
+ 𝑏
2
𝜆
3
+ 𝑏
3
𝜆
2
+ 𝑏
4
𝜆 + 𝑏
5
)

]

𝜆=𝑖𝜔
0

}

= sign{Re [ ((−2𝑎
3
𝜔
0
+ 4𝑎
1
𝜔
3

0
)

+ (−3𝑎
2
𝜔
2

0
+ 5𝜔
4

0
+ 𝑎
4
) 𝑖)

× (𝜔
0
((𝑎
1
𝜔
4

0
− 𝑎
3
𝜔
2

0
+ 𝑎
5
)

+ (𝜔
5

0
− 𝑎
2
𝜔
3

0
+ 𝑎
4
𝜔
0
) 𝑖))

−1

]

+Re[
(2𝑏
3
𝜔
0
− 4𝑏
1
𝜔
3

0
) + (3𝑏

2
𝜔
2

0
− 𝑏
4
) 𝑖

𝜔
0
((𝑏
1
𝜔
4

0
+ 𝑏
5
− 𝑏
3
𝜔
2

0
) + (𝑏
4
𝜔
0
− 𝑏
2
𝜔
3

0
) 𝑖)

]}

= sign { (5𝜔
8

0
+ (4𝑎
2

1
− 8𝑎
2
− 4𝑏
2

1
) 𝜔
6

0

+ (3𝑎
2

2
− 6𝑎
1
𝑎
3
+ 6𝑎
4
+ 6𝑏
1
𝑏
3
− 3𝑏
2

2
) 𝜔
4

0

+ (2𝑎
2

3
− 4𝑎
2
𝑎
4
+ 4𝑎
1
𝑎
5
+ 4𝑏
2
𝑏
4
− 2𝑏
2

3
− 4𝑏
1
𝑏
5
) 𝜔
2

0

+ (𝑎
2

4
− 2𝑎
3
𝑎
5
+ 2𝑏
3
𝑏
5
− 𝑏
2

4
))

× ((𝑎
1
𝜔
4

0
− 𝑎
3
𝜔
2

0
+ 𝑎
5
)

2

+ (𝜔
5

0
− 𝑎
2
𝜔
3

0
+ 𝑎
4
𝜔
0
)

2

)

−1

} .

(25)

If we denote 𝑧
0
= 𝜔
2

0
, we get

sign{

𝑑Re 𝜆
𝑑𝜏

}

𝜆=𝑖𝜔
0

= sign{

5𝑧
4

0
+ 4𝑐
1
𝑧
3

0
+ 3𝑐
2
𝑧
2

0
+ 2𝑐
3
𝑧
0
+ 𝑐
4

(𝑎
1
𝜔
4

0
− 𝑎
3
𝜔
2

0
+ 𝑎
5
)
2

+ (𝜔
5

0
− 𝑎
2
𝜔
3

0
+ 𝑎
4
𝜔
0
)
2
} .

(26)

Denote 𝑓(𝑧) = 𝑧
5

+ 𝑐
1
𝑧
4

+ 𝑐
2
𝑧
3

+ 𝑐
3
𝑧
2

+ 𝑐
4
𝑧+ 𝑐
5
. Suppose 𝜔

0
is

the largest positive simple root of (19); from [12, Lemma 3.32
andTheorem 3.32], we have

𝑑𝑓(𝑧)

𝑑𝑧








𝑧=𝑧
0

= 5𝑧
4

0
+ 4𝑐
1
𝑧
3

0
+ 3𝑐
2
𝑧
2

0
+ 2𝑐
3
𝑧
0
+ 𝑐
4
> 0. (27)
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Figure 2: The trajectories of 𝑥
𝑖
and 𝑦

𝑖
occur oscillations when 𝜏

0
= 3.

Thus,

sign{

𝑑Re 𝜆
𝑑𝜏

}

𝜆=𝑖𝜔
0

= sign{(

𝑑𝑓 (𝑧)

𝑑𝑧








𝑧=𝑧
0

)

× ((𝑎
1
𝜔
4

0
− 𝑎
3
𝜔
2

0
+ 𝑎
5
)

2

+(𝜔
5

0
− 𝑎
2
𝜔
3

0
+ 𝑎
4
𝜔
0
)

2

)

−1

} = +1.

(28)

Summarizing the above analysis, we have the following
results.

Theorem 3. If 𝑅
0
> 1, 𝑐

5
< 0 and 𝜔

0
is the largest positive

simple root of (19), a Hopf bifurcation occurs around the
endemic equilibrium 𝐸 of the delayed model (2).

5. Numerical Simulations

Based on the observation data from the investigation
of Tongcheng Schistosomiasis Control Station in Anhui
province, we estimated transmission rates in our model. Also
according to the previous papers [7–9, 11, 13], we choose the
parameter values in Table 1. Thus, 𝑅

0
> 1, 𝜏∗ = 327, and

𝑐
5
< 0 when 𝜏 = 0.1.
Note that the bifurcation parameter 𝜏

0
= 3 at this time.

Weperformed some simulations and obtained Figure 2. From
Figure 2 we can see that Hopf bifurcation can occur when
𝜏
0

= 3. This implies that schistosomiasis will break out in
about three years after flood. It is also in accord with the
investigation of Tongcheng Schistosomiasis Control Station.
This phenomenon is also in accord with the report of the
whole Anhui province [1]. From our theoretical results and

Table 1: Values of parameters.

Parameters Values (per capita per year) References
𝐴
𝑥

6 [8, 9]
𝜇
𝑥

0.014 [8, 9, 11]
𝛼
𝑥

10−5 [8, 9]
𝛽
𝑥

0.003 Estimated
𝐴
𝑦

100 [8, 9]
𝜇
𝑦

0.3 [8, 9, 11]
𝛼
𝑦

0.01 [9]
𝛽
𝑦

0.001 Estimated
𝜃 9.125 [13]

the reports we can see that schistosomiasis will break out
in about the third year after a flood. Hence, we can get the
result that the delayed effect of flood may be caused by the
incubation period of schistosome in the infected human.

6. Discussion

In this paper, based on the observation data in Tongcheng
Schistosomiasis Control Station in Anhui province we have
modified our previous model by including a time delay
that describes the incubation period of schistosome within
infected human. We define the basic reproduction number
𝑅
0
according to biological meanings and give the existence of

the disease free equilibrium and the endemic equilibrium.We
find that, if𝑅

0
< 1, then the disease free equilibrium is locally

asymptotically stable. However, the stability of the unique
endemic equilibrium may be changed under some condition
even if the basic reproduction number is larger than one.The
results imply that the time delay can destabilize the system
and periodic solutions can arise by Hopf bifurcation.

Numerical simulations imply that schistosomiasis will
break out in about three years after flood. Furthermore the
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observation data show that schistosomiasis will be the most
serious in about the third year after flood. From Figure 1,
we can see that the number of patients and snails did not
greatly change in 1998 and 1999. However, in 2001 the number
of patients became about 5 times that of 1998, and the
area of snails became about two times that of 1998. In our
simulations, there is a little difference. Our results are higher
than the observation data. We think the reason may be
that after flood the government dispatched a large number
of manpower and material resources to control the spread
of the disease. In summary, our theoretical results are in
accord with the investigation of Tongcheng Schistosomiasis
Control Station and the report of Anhui Province Institute
of Schistosomiasis for the whole Anhui province. Hence, we
can obtain the result that after flood the delayed effect of flood
may be caused by the incubation period of schistosome in the
definitive host. Furthermore, the period of outbreak is about
three years after flood in Anhui province.
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