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This paper aims to use a hybrid algorithm for finding a common element of a fixed point problem for a finite family of asymptotically
nonexpansive mappings and the set solutions of mixed equilibrium problem in uniformly smooth and uniformly convex Banach
space.Then, we prove some strong convergence theorems of the proposed hybrid algorithm to a common element of the above two
sets under some suitable conditions.

1. Introduction

Let 𝐸 be a Banach space with norm ‖ ⋅ ‖. Let 𝐶 be a nonempty
closed convex subset of𝐸 and𝐸∗ denoted the dual space of𝐸.
Let 𝐵 : 𝐶 → 𝐸

∗ be a nonlinear mapping andH a bifunction
from 𝐶 × 𝐶 to 𝑅, where 𝑅 denotes the set of numbers. The
generalized equilibrium problem is to find 𝑥 ∈ 𝐶 such that

H (𝑥, 𝑦) + ⟨𝐵𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (1)

The set of solution of (1) is denoted by GEP(H, 𝐵), that is,

GEP (H, 𝐵) := {𝑥 ∈ 𝐶,H (𝑥, 𝑦)

+ ⟨𝐵𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(2)

In this paper, we are interested in solving the generalized
equilibrium problem with thoseH given by

H (𝑥, 𝑦) = F (𝑥, 𝑦) +G (𝑥, 𝑦) , (3)

whereF, G : 𝐶 × 𝐶 → 𝑅 are two bifunctions satisfying the
following special properties (𝑓

1
)–(𝑓
4
), (𝑔
1
)–(𝑔
3
) and (𝐻):

(𝑓
1
)F(𝑥, 𝑥) = 0, for all 𝑥 ∈ 𝐶;

(𝑓
2
)F is maximal monotone;

(𝑓
3
) for all 𝑥, 𝑦, 𝑧 ∈ 𝐶, we have lim sup

𝑡→0
+(F(𝑡𝑧 +

(1 − 𝑡)𝑥, 𝑦)) ≤ F(𝑥, 𝑦);

(𝑓
4
) for all 𝑥 ∈ 𝐶, the function 𝑦 → F(𝑥, 𝑦) is convex

and weakly lower semicontinuous;
(𝑔
1
)G(𝑥, 𝑥) = 0, for all 𝑥 ∈ 𝐶;

(𝑔
2
) G is monotone and maximal monotone, and

weakly upper semicontinuous in the first variable;
(𝑔
3
)G is convex in the second variable;

(𝐻) for fixed 𝜆 > 0 and 𝑥 ∈ 𝐶, there exist a bounded
set 𝐾 ⊂ 𝐶 and 𝑎 ∈ 𝐾 such that

−F (𝑎, 𝑧) +G (𝑧, 𝑎) +
1

𝜆
⟨𝑎 − 𝑧, 𝑧 − 𝑥⟩ < 0,

∀𝑧 ∈ 𝐶 \ 𝐾.

(4)

This is the well-know generalized mixed equilibrium prob-
lem, that is, to find an 𝑥 in 𝐶 such that

F (𝑥, 𝑦) +G (𝑥, 𝑦) + ⟨𝐵𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (5)

The solution set of (5) is denoted by GMEP(F,G, 𝐵), that is,

GMEP (F,G, 𝐵) := {𝑥 ∈ 𝐶,F (𝑥, 𝑦) +G (𝑥, 𝑦)

+⟨𝐵𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(6)

If𝐵 ≡ 0, problem (5) reduces intomixed equilibriumproblem
forF andG, denoted by MEP(F,G), which is to find 𝑥 ∈ 𝐶

such that (3).
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IfG = 0 and 𝐵 ≡ 0, reduces into equilibrium problem for
F, denoted by EP(F), which is to find 𝑥 ∈ 𝐶 such that

F (𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (7)

Mixed equilibrium problems are suitable and common for-
mat for investigation of various applied problems arising in
economics, mathematical physics, transportation, commu-
nication systems, engineering, and other fields. Moreover,
equilibrium problems are closely related with other general
problems in nonlinear analysis, such as fixed points, game
theory, variational inequality, and optimization problems.
Recently, many authors studied a great number of iterative
methods for solving a common element of the set of fixed
points for a nonexpansive mapping and the set of solutions
to a mixed equilibrium problem in the setting of Hilbert
space and uniformly smooth and uniformly convex Banach
space, respectively (please see, e.g., [1–11] and the references
therein).

Let 𝐸 be a real Banach space with norm ‖ ⋅ ‖, let 𝐶
be a nonempty closed convex subset of 𝐸, and let 𝐽 be the
normalized duality mapping from 𝐸 into 𝐸∗ given by

𝐽𝑥 = {𝑥
∗

∈ 𝐸
∗

: ⟨𝑥, 𝑥
∗

⟩ = ‖𝑥‖
𝑥
∗ , ‖𝑥‖ =

𝑥
∗ } ,

∀𝑥 ∈ 𝐸,

(8)

where𝐸∗ denotes the dual space of𝐸 and ⟨⋅, ⋅⟩ the generalized
duality pairing between 𝐸 and 𝐸

∗. It is easily known that if
𝐸
∗ is uniformly convex, then 𝐽 is uniformly continuous on

bounded subsets of 𝐸.
Consider the functional defined by

𝜙 (𝑥, 𝑦) = ‖𝑥‖
2

− 2 ⟨𝑥, 𝐽𝑦⟩ +
𝑦


2

, ∀𝑥, 𝑦 ∈ 𝐸. (9)

It is obvious from the definition of 𝜙 that

(‖𝑥‖ −
𝑦
)
2

≤ 𝜙 (𝑥, 𝑦) ≤ (‖𝑥‖ +
𝑦
)
2

, ∀𝑥, 𝑦 ∈ 𝐸. (10)

On the other hand, in a Hilbert space 𝐻, (9) reduced to
𝜙(𝑥, 𝑦) = ‖𝑥 − 𝑦‖

2. Following Alber [12], the generalized
projection Π

𝐶
: 𝐸 → 𝐶 is defined by

Π
𝐶
(𝑥) = inf

𝑦∈𝐶

𝜙 (𝑦, 𝑥) , (11)

where is a map that assigns to an arbitrary point 𝑥 ∈ 𝐸 the
minimum point of the functional 𝜙(𝑥, 𝑦).

In 2011, Kim [13] considered the following shrinking pro-
jection methods to obtain a convergence theorem, and these
methods were introduced in [14] for quasi-𝜑-nonexpansive
mappings in a uniformly convex and uniformly smooth
Banach space.

Theorem 1 (see [13]). Let 𝐸 be a uniformly smooth and strictly
convex Banach space which has the Kadec-Klee property and
𝐶 a nonempty closed convex subset of 𝐸. Let 𝑓 be a bifunction
from 𝐶 × 𝐶 to R satisfying (𝑓

1
)–(𝑓
4
) and 𝑇 : 𝐶 → 𝐶 a closed

and asymptotically quasi-𝜑-nonexpansive mapping. Assume
that T is asymptotically regular on 𝐶 and ϝ = 𝐹

𝑖𝑥
(𝑇)⋂𝐸𝐹(𝑓)

is nonempty and bounded. Let {𝑥
𝑛
} be a sequence generated in

the following manner:

∀𝑥
0
∈ 𝐸, 𝐶

1
= 𝐶, 𝑥

1
= ∏

𝐶
1

𝑥
0
,

𝑦
𝑛
= 𝐽
−1

(𝛼
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽𝑇
𝑛

𝑥
𝑛
) ,

𝑢
𝑛
∈ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓 (𝑢

𝑛
, 𝑥) +

1

𝑟
𝑛

⟨𝑥 − 𝑢
𝑛
, 𝐽𝑢
𝑛
− 𝐽𝑦
𝑛
⟩ ≥ 0,

∀𝑥 ∈ 𝐶,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
: 𝜙 (𝑧, 𝑢

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
) + (𝑘

𝑛
− 1)𝑀

𝑛
} ,

𝑥
𝑛+1

= ∏

𝐶
𝑛+1

𝑥
0
,

(12)

where𝑀
𝑛
= sup{𝜙(𝑧, 𝑥

𝑛
) : 𝑧 ∈ ϝ} for each 𝑛 ≥ 1, {𝛼

𝑛
} is a real

sequence in [0, 1] such that lim inf
𝑛→∞

𝛼
𝑛
(1 − 𝛼

𝑛
) > 0, and

{𝑟
𝑛
} is a real sequence in [𝑎,∞), where 𝑎 is some positive real

number and 𝐽 is the duality mapping on 𝐸. Then the sequence
{𝑥
𝑛
} converges strongly to ∏

ϝ
𝑥
0
, where ∏

ϝ
is the generalized

projection from 𝐸 onto ϝ.

Motivated and inspired by the researches going on in this
direction (i.e., [4–11, 13–16]), the purpose of this paper is to
use the following hybrid algorithm for finding a common
element of the set of solutions to a mixed equilibrium
problem and the set of the set of common fixed points for
a finite family of asymptotically nonexpansive mappings in a
uniformly smooth and uniformly convex Banach space.

Algorithm 2. Let

𝑢
𝑛
∈ 𝐶 such that

F (𝑢
𝑛
, 𝑦) +G (𝑢

𝑛
, 𝑦)

≤
1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝐽𝑢
𝑛
− 𝐽𝑥
𝑛
⟩ , ∀𝑦 ∈ 𝐶,

𝑦
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇
𝑛

𝑢
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
(𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝐼
𝑛

𝑦
𝑛
,

∀𝑛 ≥ 1.

(13)

Consequently, under suitable conditions, we show that
iterative algorithms converge strongly to a solution of some
optimization problem. Note that our methods do not use any
projection.

2. Preliminaries

Let 𝑇 : 𝐶 → 𝐶 be a mapping. Denote by 𝐹
𝑖𝑥
(𝑇) the set

of fixed points of 𝑇, that is, 𝐹
𝑖𝑥
(𝑇) = {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥}.

Throughout this paper, we always assume that 𝐹
𝑖𝑥
(𝑇) ̸= 0.

Now we need the following known definitions.
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Definition 3. A mapping 𝑇 : 𝐶 → 𝐶 is said to be
(1) nonexpansive, if ‖𝑇𝑥−𝑇𝑦‖ ≤ ‖𝑥−𝑦‖, for all 𝑥, 𝑦 ∈ 𝐶;
(2) asymptotically nonexpansive, if there exists a

sequence {𝜆
𝑛
} ⊂ [1,∞) with lim

𝑛→∞
𝜆
𝑛
= 1 such

that ‖𝑇𝑛𝑥 − 𝑇
𝑛

𝑦‖ ≤ 𝜆
𝑛
‖𝑥 − 𝑦‖, for all 𝑥, 𝑦 ∈ 𝐶 and

𝑛 ∈ 𝑁;
(3) quasi-nonexpansive, ‖𝑇𝑥−𝑝‖ ≤ ‖𝑥−𝑝‖, for all 𝑥 ∈ 𝐶

and 𝑝 ∈ 𝐹
𝑖𝑥
(𝑇);

(4) asymptotically quasi-nonexpansive, if there exists a
sequence {𝜇

𝑛
} ⊂ [1,∞)with lim

𝑛→∞
𝜇
𝑛
= 1 such that

‖𝑇
𝑛

𝑥 − 𝑝‖ ≤ 𝜇
𝑛
‖𝑥 − 𝑝‖, for all 𝑥, 𝑦 ∈ 𝐶, 𝑝 ∈ 𝐹

𝑖𝑥
(𝑇)

and 𝑛 ∈ 𝑁.

There are many concepts which generalize a notion of
nonexpansivemapping. In 2004, Shahzad [17] introduced the
following concepts about 𝐼-nonexpansivity of a mapping 𝑇.

Definition 4. Let 𝑇 : 𝐶 → 𝐶 and 𝐼 : 𝐶 → 𝐶 be two
mappings of a nonempty subset 𝐶, a real normal linear space
𝐸. Then 𝑇 is said to be

(i) 𝐼-nonexpansive, if ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝐼𝑥 − 𝐼𝑦‖, for all 𝑥,
𝑦 ∈ 𝐶;

(ii) asymptotically 𝐼-nonexpansive, if there exists a
sequence {𝜆

𝑛
} ⊂ [1,∞) with lim

𝑛→∞
𝜆
𝑛
= 1 such

that ‖𝑇𝑛𝑥 − 𝑇
𝑛

𝑦‖ ≤ 𝜆
𝑛
‖𝐼
𝑛

𝑥 − 𝐼
𝑛

𝑦‖, for all 𝑥, 𝑦 ∈ 𝐶

and 𝑛 ≥ 1;
(iii) asymptotically quasi-𝐼-nonexpansive, if there exists a

sequence {𝜇
𝑛
} ⊂ [1,∞) with lim

𝑛→∞
𝜇
𝑛
= 1 such

that ‖𝑇𝑛𝑥 − 𝑝‖ ≤ 𝜇
𝑛
‖𝐼
𝑛

𝑥 − 𝑝‖, for all 𝑥, 𝑦 ∈ 𝐶,
𝑝 ∈ 𝐹
𝑖𝑥
(𝑇)⋂𝐹

𝑖𝑥
(𝐼) and 𝑛 ≥ 1.

Lemma 5 (see [4]). Assume that 𝜓 : 𝐾 → 𝑅 is convex, 𝑥
0
∈

core
𝐾
𝐶, 𝜓(𝑥

0
) ≤ 0, and 𝜓(𝑦) ≥ 0, for all 𝑦 ∈ 𝐶. Then 𝜓(𝑦) ≥

0, for all 𝑦 ∈ 𝐾.

Lemma 6 (see [18]). Let𝐶 be a nonempty closed convex subset
of a smooth, strictly convex, and reflexive Banach space 𝐸, and
let 𝑇 be a relatively nonexpansive mapping from 𝐶 into itself.
Then 𝐹

𝑖𝑥
(𝑇) is closed and convex.

Lemma 7 (see [19]). Let {𝑎
𝑛
}, {𝑏
𝑛
} and {𝜎

𝑛
} be sequences of

nonnegative real sequences satisfying the following conditions:
for all 𝑛 ≥ 1

(1) 𝑎
𝑛
≤ 𝑎
𝑛
+ 𝑏
𝑛
,

(2) 𝑎
𝑛
≤ (1 + 𝜎

𝑛
)𝑎
𝑛
+ 𝑏
𝑛
,

where∑∞
𝑛=1

𝜎
𝑛
< ∞ and∑∞

𝑛=1
𝑏
𝑛
< ∞. Then lim

𝑛→∞
𝑎
𝑛
exists.

Lemma 8 (see [20]). Let 𝐸 be a uniformly convex Banach
space. Then, for each 𝑟 > 0, there exists a strictly increasing,
continuous, and convex function ℎ : [0, 2𝑟] → 𝑅 such that
ℎ(0) = 0 and

𝑡𝑥 + (1 − 𝑡) 𝑦


2

≤ 𝑡‖𝑥‖
2

+ (1 − 𝑡)
𝑦


2

− 𝑡 (1 − 𝑡) ℎ (
𝑥 − 𝑦



2

) ,

(14)

for ∀𝑥, 𝑦 ∈ 𝐵
𝑟
, 𝑡 ∈ [0, 1], where 𝐵

𝑟
= {𝑧 ∈ 𝐸 : ‖𝑧‖ ≤ 𝑟}.

Lemma9 (see [21]). Let𝐸 be a uniformly convex Banach space
and let 𝑏, 𝑐 be two constants with 0 < 𝑏 < 𝑐 < 1. Suppose that
{𝑡
𝑛
} is a sequence in [𝑏, 𝑐] and {𝑥

𝑛
}, {𝑦
𝑛
} are two sequence in 𝐸

such that
lim
𝑛→∞

𝑡𝑛𝑥𝑛 + (1 − 𝑡
𝑛
) 𝑦
𝑛

 = 𝑑,

lim sup
𝑛→∞

𝑥𝑛
 ≤ 𝑑, lim sup

𝑛→∞

𝑦𝑛
 ≤ 𝑑

(15)

holds some 𝑑 ≥ 0. Then lim ‖𝑥
𝑛
− 𝑦
𝑛
‖ = 0.

Definition 10 (see [22]). The mappings 𝑇, 𝐼 : 𝐶 → 𝐶 are
said to be satisfying condition (A) if there is a nondecreasing
function f : [0,∞) → [0,∞) with f(0) = 0, f(𝑟) > 0 for each
𝑟 ∈ [0,∞) such that (1/2)(‖𝑥 − 𝑇𝑥‖ + ‖𝑥 − 𝐼𝑥‖) ≥ f(𝑑(𝑥, Ω))
for all 𝑥 ∈ 𝐶, where 𝑑(𝑥,Ω) = inf{‖𝑥 − 𝑝‖ : 𝑝 ∈ Ω =
𝐹
𝑖𝑥
(𝑇)⋂𝐹

𝑖𝑥
(𝐼)}.

Lemma 11 (see [23]). Let 𝐸 be a uniformly convex Banach
space satisfying the Opial’s condition, 𝐶 a nonempty closed
subset of 𝐸, and 𝑇 : 𝐶 → 𝐶 an asymptotically nonexpansive
mapping. If the sequence {𝑥

𝑛
} ⊂ 𝐶 is a weakly convergent

sequence with the weak limit 𝑝 and if lim
𝑛→∞

‖𝑥
𝑛
−𝑇𝑥
𝑛
‖ = 0,

then 𝑇𝑝 = 𝑝.

3. Main Results

Theorem 12. Let 𝐸 be a smooth, strictly convex, and reflexive
Banach space, and let 𝐶 be a nonempty closed convex subset of
𝐸. Let F, G : 𝐶 × 𝐶 → 𝑅 be two bifunctions which satisfy
the conditions (𝑓

1
)–(𝑓
4
), (𝑔
1
)–(𝑔
3
), and (𝐻). Then for every

𝑥
∗

∈ 𝐸
∗, there exists a unique point 𝑧 ∈ 𝐶 such that

0 ≤ F (𝑧, 𝑦) +G (𝑧, 𝑦) +
1

𝑟
⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥

∗

⟩ , ∀𝑦 ∈ 𝐶.

(16)

The proof goes over the following three steps.

Proof.
Step 1. There exists point 𝑧 ∈ 𝐶 such that

F (𝑦, 𝑧) ≤ G (𝑧, 𝑦) +
1

𝑟
⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥

∗

⟩, ∀𝑦 ∈ 𝐶. (17)

Consider the closed sets

𝑇
𝑟
(𝑦) = {𝑧 ∈ 𝐶 | F (𝑦, 𝑧) ≤ G (𝑧, 𝑦)

+
1

𝑟
⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥

∗

⟩ , 𝑦 ∈ 𝐶} .

(18)

We will show that ⋂
𝑦∈𝐶

𝑇
𝑟
(𝑦) ̸= 0. Let 𝑦

𝑖
, 𝑖 ∈ 𝑁, be a finite

subset of 𝐶. Let 𝐼 ⊂ 𝑁 be nonempty. Let for all 𝜉 ∈ conv{𝑦
𝑖
|

𝑖 ∈ 𝑁}. Then

𝜉 = ∑

𝑖∈𝐼

𝜇
𝑖
𝑦
𝑖

with 𝜇
𝑖
≥ 0 (𝑖 ∈ 𝐼) , ∑

𝑖∈𝐼

𝜇
𝑖
= 1. (19)

Assume, for contradiction, that

−F (𝑦
𝑖
, 𝜉) +G (𝜉, 𝑦

𝑖
) +

1

𝑟
⟨𝑦
𝑖
− 𝜉, 𝐽𝜉 − 𝐽𝑥

∗

⟩ < 0, ∀𝑖 ∈ 𝑁.

(20)
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By the convexity ofF andG and the monotonicity ofF, we
obtain that

0 = F (𝜉, 𝜉) +G (𝜉, 𝜉) +
1

𝑟
⟨𝜉 − 𝜉, 𝐽𝜉 − 𝐽𝑥

∗

⟩

≤ ∑

𝑖∈𝐼

𝜇
𝑖
F (𝜉, 𝑦

𝑖
) +∑

𝑖∈𝐼

𝜇
𝑖
G (𝜉, 𝑦

𝑖
)

+
1

𝑟
∑

𝑖∈𝐼

𝜇
𝑖
⟨𝑦
𝑖
− 𝜉, 𝐽𝜉 − 𝐽𝑥

∗

⟩

≤ −∑

𝑖∈𝐼

𝜇
𝑖
F (𝑦
𝑖
, 𝜉) +∑

𝑖∈𝐼

𝜇
𝑖
G (𝜉, 𝑦

𝑖
)

+
1

𝑟
∑

𝑖∈𝐼

𝜇
𝑖
⟨𝑦
𝑖
− 𝜉, 𝐽𝜉 − 𝐽𝑥

∗

⟩

= ∑

𝑖∈𝐼

𝜇
𝑖
[ −F (𝑦

𝑖
, 𝜉) +G (𝜉, 𝑦

𝑖
)

+
1

𝑟
⟨𝑦
𝑖
− 𝜉, 𝐽𝜉 − 𝐽𝑥

∗

⟩] < 0,

(21)

and that is absurd. Hence (20) cannot be true. and we have
F(𝑦
𝑖
, 𝜉) ≤ G(𝜉, 𝑦

𝑖
)+(1/𝑟)⟨𝑦

𝑖
−𝜉, 𝐽𝜉−𝐽𝑥

∗

⟩ for some 𝑖 ∈ 𝐼.Thus
𝜉 ∈ ⋂

𝑦∈𝐶
𝑇
𝑟
(𝑦
𝑖
) for some 𝑖 ∈ 𝑁. Since for all 𝜉 ∈ conv{𝑦

𝑖
| 𝑖 ∈

𝑁}, it follows that

conv {𝑦
𝑖
| 𝑖 ∈ 𝑁} ⊂ {𝑇

𝑟
(𝑦
𝑖
) | 𝑖 ∈ 𝑁} . (22)

By the sets 𝑇
𝑟
(𝑦
𝑖
) being closed, it follows form the standard

version of the KKM-Theorem that

⋂

𝑖∈𝑁

𝑇
𝑟
(𝑦
𝑖
) ̸= 0. (23)

In other words, any finite subfamily of the family 𝑇
𝑟
(𝑦)
𝑦∈𝐶

has nonempty intersection. Since these sets are closed subsets
of the compact set 𝐶, it follows that the entire family has
nonempty intersection. Hence

⋂

𝑦∈𝐶

𝑇
𝑟
(𝑦) ̸= 0. (24)

Step 2. For every 𝑥
∗

∈ 𝐸
∗, the following statement are

equivalent:

(i) 𝑧 ∈ 𝐶, F(𝑦, 𝑧) ≤ G(𝑧, 𝑦) + ⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥
∗

⟩, for all
𝑦 ∈ 𝐶,

(ii) 𝑧 ∈ 𝐶, 0 ≤ F(𝑧, 𝑦) + G(𝑧, 𝑦) + ⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥
∗

⟩, for
all 𝑦 ∈ 𝐶.

Case 1. Let (ii) hold; sinceF is monotone, one has

F (𝑧, 𝑦) ≤ −F (𝑦, 𝑧) . (25)

Hence (i) follows.

Case 2. Let (i) hold, for 𝑡 with 0 < 𝑡 ≤ 1 and 𝑦 ∈ 𝐶, and let

𝑥
𝑡
= 𝑡𝑦 + (1 − 𝑡) 𝑧. (26)

Then 𝑥
𝑡
∈ 𝐶, and from (i),F(𝑥

𝑡
, 𝑧) ≤ G(𝑧, 𝑥

𝑡
) + ⟨𝑥

𝑡
− 𝑧, 𝐽𝑧 −

𝐽𝑥
∗

⟩. By the properties of F and G, it follows then, for all
0 < 𝑡 ≤ 1,

0 = F (𝑥
𝑡
, 𝑥
𝑡
) +G (𝑥

𝑡
, 𝑥
𝑡
) + ⟨𝑥

𝑡
− 𝑥
𝑡
, 𝐽𝑧 − 𝐽𝑥

∗

⟩

≤ 𝑡F (𝑥
𝑡
, 𝑦) + (1 − 𝑡)F (𝑥

𝑡
, 𝑧)

+ 𝑡G (𝑥
𝑡
, 𝑦) + (1 − 𝑡)G (𝑥

𝑡
, 𝑧)

≤ F (𝑥
𝑡
, 𝑦) +G (𝑥

𝑡
, 𝑦) .

(27)

Let 𝑡 → 0 and thereby 𝑥
𝑡
→ 𝑧 and using the hemicontinuity

ofF we obtain in the limit

0 ≤ F (𝑧, 𝑦) +G (𝑧, 𝑦) + ⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥
∗

⟩ . (28)

Step 3. Take 𝜓(⋅) = F(𝑧, ⋅) + G(𝑧, ⋅) + ⟨⋅ − 𝑧, 𝐽𝑧 − 𝐽𝑥
∗

⟩. Then
the function 𝜓(⋅) is convex and 𝜓(𝑦) ≥ 0, for all 𝑦 ∈ 𝐶. If
𝑧 ∈ core

𝐾
𝐶, then set 𝑥

0
= 𝑧. If 𝑧 ∈ 𝐶 \ core

𝐾
𝐶, then set

𝑥
0
= 𝑎, where 𝑎 is as in assumption 𝐻 for 𝑥 = 𝑧. In both

cases 𝑥
0
∈ core

𝐾
𝐶, and 𝜓(𝑥

0
) ≤ 0. Hence it follows from the

Lemma 5 that
𝜓 (𝑦) ≥ 0 ∀𝑦 ∈ 𝐶,

that is, F (𝑧, 𝑦) +G (𝑧, 𝑦) + ⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥
∗

⟩ ≥ 0,

∀𝑦 ∈ 𝐾.

(29)

Corollary 13. Let 𝐸 be a smooth, strictly convex, and reflexive
Banach space, and let 𝐶 be a nonempty closed convex subset
of 𝐸. Let F, G : 𝐶 × 𝐶 → 𝑅 be two bifunctions which
satisfy the following conditions: (𝑓

1
)–(𝑓
4
), (𝑔
1
)–(𝑔
3
), and (𝐻)

in Theorem 12. There for every 𝑥∗ ∈ 𝐸 and 𝑟 > 0, there exists a
unique point 𝑧

𝑟
∈ 𝐶 such that

0 ≤ F (𝑧
𝑟
, 𝑦) +G (𝑧

𝑟
, 𝑦) +

1

𝑟
⟨𝑦 − 𝑧

𝑟
, 𝐽𝑧
𝑟
− 𝐽𝑥
∗

⟩ ,

∀𝑦 ∈ 𝐶.

(30)

Proof. Let 𝑥 ∈ 𝐸 and 𝑟 > 0 be given. Note that functions 𝑟F
and 𝑟G also satisfy the conditions (𝑓

1
)–(𝑓
4
) and (𝑔

1
)–(𝑔
3
).

Therefore, for 𝐽𝑥∗ ∈ 𝐸
∗, there exists a unique point 𝑧

𝑟
∈ 𝐶

such that
𝑟F (𝑧

𝑟
, 𝑦) + 𝑟G (𝑧

𝑟
, 𝑦) + ⟨𝑦 − 𝑧

𝑟
, 𝐽𝑧
𝑟
− 𝐽𝑥
∗

⟩ ≥ 0,

∀𝑦 ∈ 𝐶.

(31)

This completes the proof.

Under the same assumptions inCorollary 13, for every 𝑟 >
0, we may define a single-valued mapping 𝑆

𝑟
: 𝐸 → 𝐶 as

follows:

𝑆
𝑟
(𝑥) = {𝑧 ∈ 𝐶 | 0 ≤ F (𝑧, 𝑦) +G (𝑧, 𝑦)

+
1

𝑟
⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ , ∀𝑦 ∈ 𝐶} ,

(32)

for 𝑥 ∈ 𝐸, which is called the resolvent ofF andG for 𝑟.
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Theorem 14. Let 𝐸 be a smooth, strictly convex, and reflexive
Banach space, and let 𝐶 be a nonempty closed convex subset
of 𝐸. LetF, G : 𝐶 × 𝐶 → 𝑅 be two bifunctions which satisfy
conditions (𝑓

1
)–(𝑓
4
), (𝑔
1
)–(𝑔
3
), and (𝐻). For 𝑟 > 0 and 𝑥 ∈ 𝐸,

define a mapping 𝑆
𝑟
in (32). Then, the following hold:

(a) 𝑆
𝑟
is single-valued;

(b) 𝑆
𝑟
is a firmly nonexpansive mapping, that is,

⟨𝑆
𝑟
𝑥 − 𝑆
𝑟
𝑦, 𝐽𝑆
𝑟
𝑥 − 𝐽𝑆

𝑟
𝑦⟩ ≤ ⟨𝑆

𝑟
𝑥 − 𝑆
𝑟
𝑦, 𝐽𝑥 − 𝐽𝑦⟩ ,

∀𝑥, 𝑦 ∈ 𝐸;

(33)

(c) 𝐹
𝑖𝑥
(𝑆
𝑟
) = MEP(F,G);

(d) MEP(F,G) is closed and convex;
(e) 𝜙(𝑝, 𝑆

𝑟
𝑥) + 𝜙(𝑆

𝑟
𝑥, 𝑥) ≤ 𝜙(𝑝, 𝑥).

Proof. We divide the proof into several steps.

Step 1 (𝑆
𝑟
is single-valued). Indeed, for 𝑥 ∈ 𝐶 and 𝑟 > 0, let

𝑧
1
, 𝑧
2
∈ 𝑆
𝑟
𝑥. Then

F (𝑧
1
, 𝑧
2
) +G (𝑧

1
, 𝑧
2
) +

1

𝑟
⟨𝑧
2
− 𝑧
1
, 𝐽𝑧
1
− 𝐽𝑥⟩ ≥ 0,

F (𝑧
2
, 𝑧
1
) +G (𝑧

2
, 𝑧
1
) +

1

𝑟
⟨𝑧
1
− 𝑧
2
, 𝐽𝑧
1
− 𝐽𝑥⟩ ≥ 0.

(34)

Adding the two inequalities, we obtain

F (𝑧
1
, 𝑧
2
) +F (𝑧

2
, 𝑧
1
) +G (𝑧

1
, 𝑧
2
) +G (𝑧

2
, 𝑧
1
)

+
1

𝑟
⟨𝑧
1
− 𝑧
2
, 𝐽𝑧
1
− 𝐽𝑧
2
⟩ ≥ 0.

(35)

From (𝑓
2
), (𝑔
2
), and 𝑟 > 0, we obtain

1

𝑟
⟨𝑧
1
− 𝑧
2
, 𝐽𝑧
1
− 𝐽𝑧
2
⟩ ≥ 0. (36)

Since 𝐸 is strictly convex, we obtain

𝑧
1
= 𝑧
2
. (37)

Step 2 (𝑆
𝑟
is a firmly nonexpansive mapping). For 𝑥, 𝑦 ∈ 𝐶,

we obtain

F (𝑆
𝑟
𝑥, 𝑆
𝑟
𝑦) +G (𝑆

𝑟
𝑥, 𝑆
𝑟
𝑦) +

1

𝑟
⟨𝑆
𝑟
𝑦 − 𝑆
𝑟
𝑥, 𝐽𝑆
𝑟
𝑥 − 𝐽𝑥⟩ ≥ 0,

F (𝑆
𝑟
𝑦, 𝑆
𝑟
𝑥) +G (𝑆

𝑟
𝑦, 𝑆
𝑟
𝑥) +

1

𝑟
⟨𝑆
𝑟
𝑥 − 𝑆
𝑟
𝑦, 𝐽𝑆
𝑟
𝑦 − 𝐽𝑦⟩ ≥ 0.

(38)

Adding the two inequalities, we obtain

F (𝑆
𝑟
𝑥, 𝑆
𝑟
𝑦) +F (𝑆

𝑟
𝑦, 𝑆
𝑟
𝑥) +G (𝑆

𝑟
𝑥, 𝑆
𝑟
𝑦) +G (𝑆

𝑟
𝑦, 𝑆
𝑟
𝑥)

+
1

𝑟
⟨𝑆
𝑟
𝑦 − 𝑆
𝑟
𝑥, 𝐽𝑆
𝑟
𝑥 − 𝐽𝑆

𝑟
𝑦 − 𝐽𝑥 + 𝐽𝑦⟩ ≥ 0.

(39)

From (𝑓
2
), (𝑔
2
), and 𝑟 > 0, we obtain

⟨𝑆
𝑟
𝑦 − 𝑆
𝑟
𝑥, 𝐽𝑆
𝑟
𝑥 − 𝐽𝑆

𝑟
𝑦 − 𝐽𝑥 + 𝐽𝑦⟩ ≥ 0. (40)

Therefore, we have

⟨𝑆
𝑟
𝑥 − 𝑆
𝑟
𝑦, 𝐽𝑆
𝑟
𝑥 − 𝐽𝑆

𝑟
𝑦⟩ ≤ ⟨𝑆

𝑟
𝑥 − 𝑆
𝑟
𝑦, 𝐽𝑥 − 𝐽𝑦⟩ . (41)

Step 3 (𝐹
𝑖𝑥
(𝑆
𝑟
) = MEP(F,G)). Indeed, we obtain the

following equation:

𝑢 ∈ 𝐹
𝑖𝑥
(𝑆
𝑟
) ⇐⇒ 𝑢 = 𝑆

𝑟
𝑢

⇐⇒ F (𝑢, 𝑦) +G (𝑢, 𝑦)

+
1

𝑟
⟨𝑦 − 𝑢, 𝐽𝑢 − 𝐽𝑢⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

⇐⇒ F (𝑢, 𝑦) +G (𝑢, 𝑦) , ∀𝑦 ∈ 𝐶,

⇐⇒ 𝑢 ∈ MEP (F,G) .

(42)

Step 4 (MEP(F,G) is closed and convex). From (c), we have
MEP(F,G) = 𝐹

𝑖𝑥
(𝑆
𝑟
), and from (b), we obtain

⟨𝑆
𝑟
𝑥 − 𝑆
𝑟
𝑦, 𝐽𝑆
𝑟
𝑥 − 𝐽𝑆

𝑟
𝑦⟩ ≤ ⟨𝑆

𝑟
𝑥 − 𝑆
𝑟
𝑦, 𝐽𝑥 − 𝐽𝑦⟩ ,

𝑥, 𝑦 ∈ 𝐶.

(43)

Moreover, we obtain

𝜙 (𝑆
𝑟
𝑥, 𝑆
𝑟
𝑦) + 𝜙 (𝑆

𝑟
𝑦, 𝑆
𝑟
𝑥)

= 2
𝑆𝑟𝑥



2

− 2⟨𝑆
𝑟
𝑥, 𝐽𝑆
𝑟
𝑦⟩

− 2⟨𝑆
𝑟
𝑦, 𝐽𝑆
𝑟
𝑥⟩ + 2

𝑆𝑟𝑦


2

= 2⟨𝑆
𝑟
𝑥, 𝑆
𝑟
𝑥 − 𝐽𝑆

𝑟
𝑦⟩

+ 2 ⟨𝑆
𝑟
𝑦, 𝑆
𝑟
𝑦 − 𝐽𝑆

𝑟
𝑥⟩

= 2⟨𝑆
𝑟
𝑥 − 𝑆
𝑟
𝑦, 𝑆
𝑟
𝑥 − 𝐽𝑆

𝑟
𝑦⟩,

𝜙 (𝑆
𝑟
𝑥, 𝑦) + 𝜙 (𝑆

𝑟
𝑦, 𝑥) − 𝜙 (𝑆

𝑟
𝑥, 𝑥) − 𝜙 (𝑆

𝑟
𝑦, 𝑦)

=
𝑆𝑟𝑥



2

− 2 ⟨𝑆
𝑟
𝑥, 𝐽𝑦⟩ +

𝑦


2

+
𝑆𝑟𝑦



2

− 2 ⟨𝑆
𝑟
𝑦, 𝐽𝑥⟩ + ‖𝑥‖

2

−
𝑆𝑟𝑥



2

+ 2 ⟨𝑆
𝑟
𝑥, 𝐽𝑥⟩ −

𝑦


2

−
𝑆𝑟𝑦



2

+ 2 ⟨𝑆
𝑟
𝑦, 𝐽𝑦⟩ − ‖𝑥‖

2

= 2 ⟨𝑆
𝑟
𝑥, 𝐽𝑥 − 𝐽𝑦⟩ + 2 ⟨𝑆

𝑟
𝑦, 𝐽𝑦 − 𝐽𝑥⟩

= 2 ⟨𝑆
𝑟
𝑥 − 𝑆
𝑟
𝑦, 𝐽𝑥 − 𝐽𝑦⟩ .

(44)

Hence, we obtain

𝜙 (𝑆
𝑟
𝑥, 𝑆
𝑟
𝑦) + 𝜙 (𝑆

𝑟
𝑦, 𝑆
𝑟
𝑥)

≤ 𝜙 (𝑆
𝑟
𝑥, 𝑦) + 𝜙 (𝑆

𝑟
𝑦, 𝑥) − 𝜙 (𝑆

𝑟
𝑥, 𝑥) − 𝜙 (𝑆

𝑟
𝑦, 𝑦) .

(45)
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So we get

𝜙 (𝑆
𝑟
𝑥, 𝑆
𝑟
𝑦) + 𝜙 (𝑆

𝑟
𝑦, 𝑆
𝑟
𝑥)

≤ 𝜙 (𝑆
𝑟
𝑥, 𝑦) + 𝜙 (𝑆

𝑟
𝑦, 𝑥) .

(46)

Taking 𝑦 = 𝑢 ∈ 𝐹
𝑖𝑥
(𝑆
𝑟
), we obtain

𝜙 (𝑢, 𝑆
𝑟
𝑥) ≤ 𝜙 (𝑢, 𝑥) . (47)

Next, we show that𝐹
𝑖𝑥
(𝑆
𝑟
) = MEP(F,G). Let𝑝 ∈ 𝐹

𝑖𝑥
(𝑆
𝑟
).

Then, there exists the sequence of {𝑧
𝑛
∈ 𝐸} such that 𝑧

𝑛
⇀ 𝑝

and lim
𝑛→∞

(𝑧
𝑛
− 𝑆
𝑟
𝑧
𝑛
) = 0. Moreover, we obtain 𝑆

𝑟
𝑧
𝑛
⇀ 𝑝.

Hence we have 𝑝 ∈ 𝐶. Since 𝐽 is uniformly continuous on
bounded sets, we obtain

lim
𝑛→∞

𝐽𝑧𝑛 − 𝐽𝑆
𝑟
𝑧
𝑛

 = 0. (48)

Form the definition of 𝑆
𝑟
, we obtain

F (𝑆
𝑟
𝑧
𝑛
, 𝑦) +G (𝑆

𝑟
𝑧
𝑛
, 𝑦)

+
1

𝑟
⟨𝑦 − 𝑆

𝑟
𝑧
𝑛
, 𝐽𝑆
𝑟
𝑧
𝑛
− 𝐽𝑧
𝑛
⟩ ≥ 0.

(49)

Since the monotone of theF, we have

G (𝑆
𝑟
𝑧
𝑛
, 𝑦) +

1

𝑟
⟨𝑦 − 𝑆

𝑟
𝑧
𝑛
, 𝐽𝑆
𝑟
𝑧
𝑛
− 𝐽𝑧
𝑛
⟩

≥ −F (𝑆
𝑟
𝑧
𝑛
, 𝑦) = F (𝑦, 𝑆

𝑟
𝑧
𝑛
) .

(50)

According to (48) and 𝑧
𝑛
⇀ 𝑝 and form (𝑓

3
) and (𝑔

2
), we

obtain

F (𝑦, 𝑝) ≤ G (𝑝, 𝑦) , ∀𝑦 ∈ 𝐶. (51)

For 𝑡 with 0 < 𝑡 ≤ 1 and 𝑦 ∈ 𝐻, let 𝑥
𝑡
= 𝑡𝑦 + (1 − 𝑡)𝑝; then by

the convexity ofF andG we have

0 = F (𝑥
𝑡
, 𝑥
𝑡
) +G (𝑥

𝑡
, 𝑥
𝑡
)

≤ 𝑡F (𝑥
𝑡
, 𝑦) + (1 − 𝑡)F (𝑥

𝑡
, 𝑝)

+ 𝑡G (𝑥
𝑡
, 𝑦) + (1 − 𝑡)G (𝑥

𝑡
, 𝜔)

≤ 𝑡F (𝑥
𝑡
, 𝑦) + 𝑡G (𝑥

𝑡
, 𝑦) .

(52)

Passing 𝑡 → 0
+ and by (𝑓

1
) and (𝑔

1
), we have 0 ≤

F(𝑝, 𝑦) +G(𝑝, 𝑦) for all 𝑦 ∈ 𝐻. Therefore, 𝑝 ∈ MEP(F,G).
So, we get 𝐹

𝑖𝑥
(𝑆
𝑟
) = MEP(F,G) = 𝐹

𝑖𝑥
(𝑆
𝑟
). Therefore, we

have that 𝑆
𝑟
is a relatively nonexpansive mapping. From

Lemma 6, then 𝐹
𝑖𝑥
(𝑆
𝑟
) = MEP(F,G) is closed and convex.

Step 5 (𝜙(𝑝, 𝑆
𝑟
𝑥) + 𝜙(𝑆

𝑟
𝑥, 𝑥) ≤ 𝜙(𝑝, 𝑥)). From (b) and (45),

for each 𝑥, 𝑦 ∈ 𝐸, we obtain

𝜙 (𝑆
𝑟
𝑥, 𝑆
𝑟
𝑦) + 𝜙 (𝑆

𝑟
𝑦, 𝑆
𝑟
𝑥)

≤ 𝜙 (𝑆
𝑟
𝑥, 𝑦) + 𝜙 (𝑆

𝑟
𝑦, 𝑥) − 𝜙 (𝑆

𝑟
𝑥, 𝑥) − 𝜙 (𝑆

𝑟
𝑦, 𝑦) .

(53)

Letting 𝑦 = 𝑝 ∈ 𝐹
𝑖𝑥
(𝑆
𝑟
), we obtain

𝜙 (𝑝, 𝑆
𝑟
𝑥) + 𝜙 (𝑆

𝑟
𝑥, 𝑥) ≤ 𝜙 (𝑝, 𝑥) . (54)

If G(𝑥, 𝑦) = 𝜓(𝑥) − 𝜓(𝑦) and form Theorems 12 and 14,
we obtain the following corollary.

Corollary 15 (see [24]). Let𝐸 be a smooth, strictly convex, and
reflexive Banach space, and 𝐶 be a nonempty closed convex
subset of 𝐸. Let F : 𝐶 × 𝐶 → 𝑅 be a bifunctions which
satisfy conditions (𝑓

1
)–(𝑓
4
). Let 𝜓 : 𝐶 → 𝑅 be a lower semi-

continuous and convex function. For 𝑟 > 0 and 𝑥 ∈ 𝐸. Then,
the following hold:

(i) 0 ≤ F(𝑧, 𝑦) + 𝜓(𝑦) − 𝜓(𝑧) + (1/𝑟)⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥
∗

⟩,
for all 𝑦 ∈ 𝐶.

(ii) If we define a mapping 𝑆
𝑟
: 𝐸 → 𝐶 as follows:

𝑆
𝑟
(𝑥) = {𝑥 ∈ 𝐶 | ≤ 0 ≤ 𝐹 (𝑧, 𝑦) + 𝜓 (𝑦)

−𝜓 (𝑧) +
1

𝑟
⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ , 𝑦 ∈ 𝐶} ,

(55)

and the mapping 𝑆
𝑟
has the following properties:

(a) 𝑆
𝑟
is single-valued;

(b) 𝑆
𝑟
is a firmly nonexpansive mapping, that is,

⟨𝑆
𝑟
𝑧 − 𝑆
𝑟
𝑦, 𝐽𝑆
𝑟
𝑧 − 𝐽𝑆

𝑟
𝑦⟩ ≤ ⟨𝑆

𝑟
𝑧 − 𝑆
𝑟
𝑦, 𝐽𝑧 − 𝐽𝑦⟩ ,

∀𝑧, 𝑦 ∈ 𝐸;

(56)

(c) 𝐹
𝑖𝑥
(𝑆
𝑟
) = MEP(F, 𝜓);

(d) MEP(F, 𝜓) is closed and convex;
(e) 𝜙(𝑝, 𝑆

𝑟
𝑧) + 𝜙(𝑆

𝑟
𝑧, 𝑧) ≤ 𝜙(𝑝, 𝑧).

4. Strong Convergence Theorems

In this section, we introduce a new iterative scheme for
finding a common element of the set of solutions of the
mixed equilibrium problems and the set of fixed points for
𝐼-asymptotically nonexpansive mapping in Banach spaces.

Theorem 16. Let𝐸 be uniformly smooth and uniformly convex
Banach space, and let 𝐶 be a nonempty closed convex subset
of 𝐸. Let F, G : 𝐶 × 𝐶 → 𝑅 be two bifunctions which
satisfy the conditions (𝑓

1
)–(𝑓
4
), (𝑔
1
)–(𝑔
3
), and (𝐻), and let

𝑇 be 𝐼-asymptotically nonexpansive self-mapping of 𝐶 with
sequences {𝑠

𝑛
} ⊂ [0,∞} such that ∑

∞

𝑛=1
𝑠
𝑛

< ∞, and
let 𝐼 be asymptotically nonexpansive self-mapping of 𝐶 with
sequences {𝑡

𝑛
} ⊂ [0,∞) such that ∑∞

𝑛=1
𝑡
𝑛
< ∞, and Ω =

𝐹
𝑖𝑥
(𝐼)⋂𝐹

𝑖𝑥
(𝑇)⋂MEP(F,G) ̸= 0. For an initial point𝑥

0
∈ 𝐶,

generate a sequence {𝑥
𝑛
} by

𝑢
𝑛
∈ 𝐶

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 F (𝑢
𝑛
, 𝑦) +G (𝑢

𝑛
, 𝑦) ≤

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝐽𝑢
𝑛
− 𝐽𝑥
𝑛
⟩ ,

∀𝑦 ∈ 𝐶,

𝑦
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇
𝑛

𝑢
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
(𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝐼
𝑛

𝑦
𝑛
, ∀𝑛 ≥ 1,

(57)
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where {𝛼
𝑛
} is a sequence in [0, 1], {𝛽

𝑛
} ⊂ [𝑎, 𝑏] for some 𝑎, 𝑏 ∈

(0, 1) and {𝑟
𝑛
} ⊂ [𝑑, +∞) for 𝑑 > 0. If the following conditions

are satisfied:

(i) ∑∞
𝑛=0

𝛼
𝑛
< ∞;

(ii) ∑∞
𝑛=0

𝛽
𝑛
< ∞;

(iii) lim inf
𝑛→∞

𝑟
𝑛
> 0,

then the sequence {𝑥
𝑛
} generated by (57) converges strongly to

a fixed point in Ω if and only if

lim inf
𝑛→∞

𝑑 (𝑥
𝑛
, Ω) = 0. (58)

Proof. We divide the proof into several steps.

Step 1 (The sequence {𝑥
𝑛
} is bounded). Let 𝑢

𝑛
= 𝑇
𝑟
𝑛

𝑥
𝑛
. Since𝑇

is a 𝐼-asymptotically nonexpansive mapping, it follows from
and Theorem 14 that Ω := 𝐹

𝑖𝑥
(𝑇)⋂𝐹

𝑖𝑥
(𝐼)⋂MEP(F,G) is

nonempty closed convex subset 𝐸 and for each 𝑝 ∈ Ω.

𝑥𝑛+1 − 𝑝


=
𝛼𝑛 (𝑥𝑛) + (1 − 𝛼

𝑛
) 𝐼
𝑛

𝑦
𝑛
− 𝑝



= 𝛼
𝑛

𝑥𝑛 − 𝑝
 + (1 − 𝛼

𝑛
)
𝐼
𝑛

𝑦
𝑛
− 𝑝



≤ 𝛼
𝑛

𝑥𝑛 − 𝑝
 + (1 − 𝛼

𝑛
) (1 + 𝑡

𝑛
)
𝑦𝑛 − 𝑝

 .

(59)

Again from (57), we obtain that

𝑦𝑛 − 𝑝
 =

𝛽𝑛𝑥𝑛 + (1 − 𝛽
𝑛
) 𝑇
𝑛

𝑢
𝑛
− 𝑝



≤ 𝛽
𝑛

𝑥𝑛 − 𝑝
 + (1 − 𝛽

𝑛
)
𝑇
𝑛

𝑢
𝑛
− 𝑝



≤ 𝛽
𝑛

𝑥𝑛 − 𝑝
 + (1 − 𝛽

𝑛
)

× (1 + 𝑠
𝑛
)
𝐼
𝑛

𝑢
𝑛
− 𝑝



≤ 𝛽
𝑛

𝑥𝑛 − 𝑝
 + (1 − 𝛽

𝑛
)

× (1 + 𝑠
𝑛
) (1 + 𝑡

𝑛
)
𝑇𝑟𝑥𝑛 − 𝑝



≤ 𝛽
𝑛

𝑥𝑛 − 𝑝
 + (1 − 𝛽

𝑛
)

× (1 + 𝑠
𝑛
) (1 + 𝑡

𝑛
)
𝑥𝑛 − 𝑝



= [1 + (1 − 𝛽
𝑛
) (𝑠
𝑛
+ 𝑡
𝑛
+ 𝑠
𝑛
𝑡
𝑛
)]
𝑥𝑛 − 𝑝

 .

(60)

From (59) and (60), we obtain

𝑥𝑛+1 − 𝑝


≤ 𝛼
𝑛

𝑥𝑛 − 𝑝
 + (1 − 𝛼

𝑛
) (1 + 𝑡

𝑛
)

× [1 + (1 − 𝛽
𝑛
) (𝑠
𝑛
+ 𝑡
𝑛
+ 𝑠
𝑛
𝑡
𝑛
)]
𝑥𝑛 − 𝑝



≤ 𝛼
𝑛

𝑥𝑛 − 𝑝
 + (1 − 𝛼

𝑛
) (1 + 𝑡

𝑛
)

× [1 + (1 − 𝛽
𝑛
) (𝑠
𝑛
+ 𝑡
𝑛
+ 𝑠
𝑛
𝑡
𝑛
)]
𝑥𝑛 − 𝑝



≤ (1 + 𝜌
𝑛
)
𝑥𝑛 − 𝑝

 ,

(61)

where
𝜌
𝑛
= (1 − 𝛼

𝑛
) (1 − 𝛽

𝑛
) (𝑠
𝑛
+ 𝑡
𝑛
+ 𝑠
𝑛
𝑡
𝑛
)

+ (1 − 𝛼
𝑛
) 𝑡
𝑛
+ (1 − 𝛼

𝑛
) (1 − 𝛽

𝑛
)

× 𝑡
𝑛
(𝑠
𝑛
+ 𝑡
𝑛
+ 𝑠
𝑛
𝑡
𝑛
) .

(62)

Moreover since {𝛼
𝑛
} ⊂ [0, 1], {𝛽

𝑛
} ⊂ [𝑎, 𝑏] for some 𝑎,

𝑏 ∈ (0, 1), ∑∞
𝑛=1

𝑠
𝑛
< ∞, and ∑

∞

𝑛=1
𝑡
𝑛
< ∞, it follow that

∑
∞

𝑛=1
𝜌
𝑛
< ∞. Form (60) and, by Lemma 7, we obtain that

the limit of {‖𝑥
𝑛
− 𝑝‖} exists for each 𝑝 ∈ Ω. This implies

that {‖𝑥
𝑛
− 𝑝‖} is bounded and so are {𝑥

𝑛
}, {𝑦
𝑛
}, {𝑢
𝑛
}, {𝐼𝑛𝑦

𝑛
},

and {𝑇
𝑛

𝑢
𝑛
}; on the other hand, we obtain that 𝑑(𝑥

𝑛+1
, Ω) ≤

(1 + 𝜌
𝑛
)𝑑(𝑥
𝑛
, Ω). Then by Lemma 7, lim

𝑛→∞
𝑑(𝑥
𝑛
, Ω) exists

and, by assumption lim inf
𝑛→∞

𝑑(𝑥
𝑛
, Ω) = 0, we obtain

lim
𝑛→∞

𝑑 (𝑥
𝑛
, Ω) = 0. (63)

Step 2 (lim
𝑛→∞

‖𝑥
𝑛
−𝑥
𝑛+1

‖ = 0). Taking lim sup on both sides
in the above inequality,

lim
𝑛→∞

𝑦𝑛 − 𝑝
 = 𝑑. (64)

Since 𝐼𝑛 is asymptotically nonexpansive self-mappings of 𝐶,
we can get that ‖𝐼𝑛𝑦

𝑛
−𝑝‖ ≤ (1+ 𝑡

𝑛
)‖𝑦
𝑛
−𝑝‖, which on taking

lim sup
𝑛→∞

and using (64), we obtain

lim sup
𝑛→∞

𝐼
𝑛

𝑦
𝑛
− 𝑝

 ≤ 𝑑. (65)

Further,
lim
𝑛→∞

𝑥𝑛+1 − 𝑝
 ≤ 𝑑. (66)

That means that
lim
𝑛→∞

𝛼𝑛 (𝑥𝑛) + (1 − 𝛼
𝑛
) 𝐼
𝑛

𝑦
𝑛
− 𝑝

 ≤ 𝑑,

lim
𝑛→∞

𝛼
𝑛

(𝑥𝑛) − 𝑝
 + (1 − 𝛼

𝑛
)
𝐼
𝑛

𝑦
𝑛
− 𝑝

 ≤ 𝑑.

(67)

It follows from Lemma 9 that
lim
𝑛→∞

𝐼
𝑛

𝑦
𝑛
− 𝑥
𝑛

 = 0. (68)

Moveover,
𝑥𝑛+1 − 𝑥

𝑛

 =
(1 − 𝛼

𝑛
) (𝐼
𝑛

𝑦
𝑛
− 𝑥
𝑛
)


= (1 − 𝛼
𝑛
)
𝐼
𝑛

𝑦
𝑛
− 𝑥
𝑛

 .

(69)

Thus, from (68), we have
lim
𝑛→∞

𝑥𝑛+1 − 𝑥
𝑛

 = 0. (70)

Step 3 (lim
𝑛→∞

‖𝑥
𝑛
− 𝑇
𝑛

𝑢
𝑛
‖ = 0). Use (57) again, and

Lemma 8 that for 𝑟 = sup
𝑛≥1

{‖𝑥
𝑛
‖, ‖𝑢
𝑛
‖, ‖𝑇
𝑛

𝑢
𝑛
‖}, there exists

a strictly increasing, continuous and convex function ℎ :

[1, 2] → 𝑅 that ℎ(0) = 0 and
𝑥𝑛+1 − 𝑝



2

≤ 𝛼
𝑛

𝑥𝑛 − 𝑝


2

+ (1 − 𝛼
𝑛
)
𝐼
𝑛

𝑦
𝑛
− 𝑝



2

− 𝛼
𝑛
(1 − 𝛼

𝑛
) ℎ (

𝑥𝑛 − 𝐼
𝑛

𝑦
𝑛



2

)

≤ 𝛼
𝑛

𝑥𝑛 − 𝑝


2

+ (1 − 𝛼
𝑛
) (1 + 𝑡

𝑛
)
𝑦𝑛 − 𝑝



2

− 𝛼
𝑛
(1 − 𝛼

𝑛
) ℎ (

𝑥𝑛 − 𝐼
𝑛

𝑦
𝑛



2

)
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≤ 𝛼
𝑛

𝑥𝑛 − 𝑝


2

+ (1 − 𝛼
𝑛
) (1 + 𝑡

𝑛
)

× (𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ (1 − 𝛽
𝑛
)
𝑇
𝑛

𝑢
𝑛
− 𝑝



2

−𝛽
𝑛
(1 − 𝛽

𝑛
) ℎ (

𝑥𝑛 − 𝑇
𝑛

𝑢
𝑛



2

))

− 𝛼
𝑛
(1 − 𝛼

𝑛
) ℎ (

𝑥𝑛 − 𝐼
𝑛

𝑦
𝑛



2

)

≤ 𝛼
𝑛

𝑥𝑛 − 𝑝


2

+ (1 − 𝛼
𝑛
) (1 + 𝑡

𝑛
)

× (𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ (1 − 𝛽
𝑛
) (1 + 𝑠

𝑛
)
𝑢𝑛 − 𝑝



2

−𝛽
𝑛
(1 − 𝛽

𝑛
) ℎ (

𝑥𝑛 − 𝑇
𝑛

𝑢
𝑛



2

))

− 𝛼
𝑛
(1 − 𝛼

𝑛
) ℎ (

𝑥𝑛 − 𝐼
𝑛

𝑦
𝑛



2

)

≤ 𝛼
𝑛

𝑥𝑛 − 𝑝


2

+ (1 − 𝛼
𝑛
)

× (1 + 𝑡
𝑛
) (𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ (1 − 𝛽
𝑛
) (1 + 𝑠

𝑛
)
𝑥𝑛 − 𝑝



2

−𝛽
𝑛
(1 − 𝛽

𝑛
) ℎ (

𝑥𝑛 − 𝑇
𝑛

𝑢
𝑛



2

))

− 𝛼
𝑛
(1 − 𝛼

𝑛
) ℎ (

𝑥𝑛 − 𝐼
𝑛

𝑦
𝑛



2

)

≤ (1 + 𝜌
𝑛
)
𝑥𝑛 − 𝑝



2

− (1 − 𝛼
𝑛
)

× (1 + 𝑡
𝑛
) 𝛽
𝑛
(1 − 𝛽

𝑛
) ℎ (

𝑥𝑛 − 𝑇
𝑛

𝑢
𝑛



2

)

− 𝛼
𝑛
(1 − 𝛼

𝑛
) ℎ (

𝑥𝑛 − 𝐼
𝑛

𝑦
𝑛



2

) ,

(71)

where

𝜌
𝑛
= (1 − 𝛼

𝑛
) (1 − 𝛽

𝑛
)

× (𝑠
𝑛
+ 𝑡
𝑛
+ 𝑠
𝑛
𝑡
𝑛
) + (1 − 𝛼

𝑛
) 𝑡
𝑛
+ (1 − 𝛼

𝑛
)

× (1 − 𝛽
𝑛
) 𝑡
𝑛
(𝑠
𝑛
+ 𝑡
𝑛
+ 𝑠
𝑛
𝑡
𝑛
) .

(72)

From the discuss of the Step 1, we can easily know that
∑
∞

𝑛=1
𝜌
𝑛
< ∞. On the other hand, by (71) and the bounded

sequence of {𝑥
𝑛
}, we obtain that

(1 − 𝛼
𝑛
) (1 + 𝑡

𝑛
) 𝛽
𝑛
(1 − 𝛽

𝑛
) ℎ (

𝑥𝑛 − 𝑇
𝑛

𝑢
𝑛

)

≤ 𝜙 (𝑥
𝑛
, 𝑝) − 𝜙 (𝑥

𝑛+1
, 𝑝) + 𝜌

𝑛
𝜙 (𝑥
𝑛
, 𝑝) .

(73)

From lim
𝑛→∞

ℎ(‖𝑥
𝑛
−𝑇
𝑛

𝑢
𝑛
‖) = 0, (73) and the property of ℎ,

we have

lim
𝑛→∞

𝑥𝑛 − 𝑇
𝑛

𝑢
𝑛

 = 0. (74)

The same as the proof of (74), we can easily obtain that

lim
𝑛→∞

𝑥𝑛 − 𝐼
𝑛

𝑦
𝑛

 = 0. (75)

From (57), we obtain that
𝑦𝑛 − 𝑥

𝑛

 ≤ (1 − 𝛽
𝑛
)
𝑥𝑛 − 𝑇

𝑛

𝑢
𝑛

 . (76)

It follows that

lim
𝑛→∞

𝑥𝑛 − 𝑦
𝑛

 = 0. (77)

Step 4 (lim
𝑛→∞

‖𝑥
𝑛
− 𝑢
𝑛
‖ = 0). Let 𝑝 ∈ Ω =

𝐹
𝑖𝑥
(𝐼)⋂𝐹

𝑖𝑥
(𝑇)⋂MEP(F,G). Then, from (59) and (60), it

follows that
𝑢𝑛+1 − 𝑝

 =

𝑇
𝑟
𝑛+1

𝑥
𝑛+1

− 𝑝


≤
𝑥𝑛+1 − 𝑝



≤
𝛼𝑛𝑥𝑛 + (1 − 𝛼

𝑛
) 𝐼
𝑛

𝑦
𝑛
− 𝑝



≤ 𝛼
𝑛

𝑥𝑛 − 𝑝
 + (1 − 𝛼

𝑛
)

× (1 + 𝑡
𝑛
)
𝑦𝑛 − 𝑝



≤ 𝛼
𝑛

𝑥𝑛 − 𝑝
 + (1 − 𝛼

𝑛
) (1 + 𝑡

𝑛
)

× [𝛽
𝑛

𝑥𝑛 − 𝑝
 + (1 − 𝛽

𝑛
)

× (1 + 𝑠
𝑛
) (1 + 𝑡

𝑛
)
𝑢𝑛 − 𝑝

]

≤ [𝛼
𝑛
+ (1 − 𝛼

𝑛
) (1 + 𝑡

𝑛
) 𝛽
𝑛
]

×
𝑥𝑛 − 𝑝

 + (1 − 𝛼
𝑛
) (1 − 𝛽

𝑛
)

× (1 + 𝑠
𝑛
) (1 + 𝑡

𝑛
)
2 𝑢𝑛 − 𝑝



≤ 𝑀
1

𝑥𝑛 − 𝑝
 + (1 +𝑀

2
)
𝑢𝑛 − 𝑝

 ,

(78)

where

𝑀
1
= 𝛼
𝑛
+ (1 − 𝛼

𝑛
) (1 + 𝑡

𝑛
) 𝛽
𝑛
,

𝑀
2
= [𝑡
𝑛
(2 + 𝑡
𝑛
) (1 + 𝑠

𝑛
) + 𝑠
𝑛
] (𝛼
𝑛
𝛽
𝑛
− 𝛼
𝑛
− 𝛽
𝑛
)

+ (𝑡
𝑛
(2 + 𝑡
𝑛
) (1 + 𝑠

𝑛
) + 𝑠
𝑛
)

+ (𝛼
𝑛
𝛽
𝑛
− 𝛼
𝑛
− 𝛽
𝑛
) .

(79)

Moreover since {𝛼
𝑛
} ⊂ [0, 1], {𝛽

𝑛
} ⊂ [𝑎, 𝑏] for some 𝑎, 𝑏 ∈

(0, 1),∑∞
𝑛=1

𝑠
𝑛
< ∞ and∑∞

𝑛=1
𝑡
𝑛
< ∞, we can easily claim that

∑
∞

𝑛=1
𝑀
1
< ∞ and ∑

∞

𝑛=1
𝑀
2
< ∞. By Lemma 7, we obtain

that lim
𝑛→∞

‖𝑢
𝑛
−𝑝‖ exists and fromTheorem 14(b) and (78),

we have
𝑥𝑛 − 𝑢

𝑛

 ≤
𝑥𝑛 − 𝑝

 −

𝑇
𝑟
𝑛

𝑥
𝑛
− 𝑝



=
𝑥𝑛 − 𝑝

 −
𝑢𝑛 − 𝑝



≤ 𝑀
1

𝑥𝑛−1 − 𝑝
 + (1 +𝑀

2
)

×
𝑢𝑛−1 − 𝑝

 −
𝑢𝑛 − 𝑝



≤ 𝑀
1

𝑥𝑛−1 − 𝑝
 +𝑀

2

𝑢𝑛−1 − 𝑝


+
𝑢𝑛−1 − 𝑝

 −
𝑢𝑛 − 𝑝

 .

(80)

Thus, since {𝑢
𝑛
} converges, ∑∞

𝑛=1
𝑀
1
< ∞ and ∑

∞

𝑛=1
𝑀
2
< ∞

and {𝑥
𝑛
} is bounded, it follows form Lemma 7 that

lim
𝑛→∞

𝑥𝑛 − 𝑢
𝑛

 = 0. (81)



Abstract and Applied Analysis 9

Step 5 (lim
𝑛→∞

‖𝑢
𝑛
− 𝑇
𝑛

𝑢
𝑛
‖ = 0). By using the triangle

inequality, we have
𝑇
𝑛

𝑢
𝑛
− 𝑢
𝑛

 ≤
𝑇
𝑛

𝑢
𝑛
− 𝑥
𝑛

 +
𝑥𝑛 − 𝑢

𝑛

 . (82)

Thus, from (74) and (81), we obtain that
lim
𝑛→∞

𝑢𝑛 − 𝑇
𝑛

𝑢
𝑛

 = 0. (83)

Step 6 (lim
𝑛→∞

‖𝑥
𝑛
− 𝑇
𝑛

𝑥
𝑛
‖ = lim

𝑛→∞
‖𝑥
𝑛
− 𝐼
𝑛

𝑥
𝑛
‖ = 0). By

using the triangle inequality again, we obtain
𝑥𝑛 − 𝑇

𝑛

𝑥
𝑛

 ≤
𝑥𝑛 − 𝑇

𝑛

𝑢
𝑛

 +
𝑇
𝑛

𝑥
𝑛
− 𝑇
𝑛

𝑢
𝑛



≤
𝑥𝑛 − 𝑇

𝑛

𝑢
𝑛

 + (1 + 𝑠
𝑛
)
𝑥𝑛 − 𝑢

𝑛

 .

(84)

From (74) and (81), we have
lim
𝑛→∞

𝑥𝑛 − 𝑇
𝑛

𝑥
𝑛

 = 0. (85)

From (57), we have
𝑥𝑛 − 𝐼

𝑛

𝑥
𝑛

 ≤
𝑥𝑛 − 𝐼

𝑛

𝑦
𝑛

 +
𝐼
𝑛

𝑥
𝑛
− 𝐼
𝑛

𝑦
𝑛



≤
𝑥𝑛 − 𝐼

𝑛

𝑦
𝑛

 + (1 + 𝑡
𝑛
)
𝑥𝑛 − 𝑦

𝑛



≤
𝑥𝑛 − 𝐼

𝑛

𝑦
𝑛

 + (1 + 𝑡
𝑛
)

× (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝐼

𝑛

𝑦
𝑛

 .

(86)

From {𝛼
𝑛
} ⊂ [0, 1], ∑∞

𝑛=1
𝑡
𝑛
< ∞, and (68), we obtain

lim
𝑛→∞

𝑥𝑛 − 𝐼
𝑛

𝑥
𝑛

 = 0. (87)

Step 7 (𝑥∗ ∈ Ω = 𝐹
𝑖𝑥
(𝐼)⋂𝐹

𝑖𝑥
(𝑇)⋂MEP(F,G)). Since {𝑢

𝑛
}

is bounded, there exists a subsequence {𝑢
𝑛
𝑘

} of {𝑢
𝑛
} such that

{𝑢
𝑛
𝑘

} converges weakly to 𝑥∗ ∈ 𝐶 when 𝑥
∗

= 𝐽
−1

𝑝
∗ for some

𝑝
∗

∈ 𝐽(𝐶). From (61), we have that {𝑥
𝑛
𝑘

} converges weakly to
𝑥
∗

∈ 𝐶 and, by (77), we also have that {𝑦
𝑛
𝑘

} converges weakly
to 𝑥
∗

∈ 𝐶. Also, by (85), (87), and Lemma 11, we obtain that
𝑥
∗

∈ 𝐹
𝑖𝑥
(𝐼)⋂𝐹

𝑖𝑥
(𝑇).

Next, we show that 𝑥∗ ∈ MEP(F,G); that is, 𝐽𝑥∗ =

𝑝 ∈ 𝐽(MEP(F,G)). Since 𝐽 is uniformly norm-to-norm
continuous on bounded subset of 𝐸, it follows from (61) that

lim
𝑛→∞

𝐽𝑥𝑛 − 𝐽𝑢
𝑛

 = 0. (88)

From the assumption 𝑟
𝑛
∈ [𝑑,∞), one sees

lim
𝑛→∞

𝐽𝑥𝑛 − 𝐽𝑢
𝑛



𝑟
𝑛

= 0. (89)

Since {𝑥
𝑛
} is bounded and so is {𝐽𝑥

𝑛
}, there exists a subse-

quence {𝐽𝑥
𝑛
𝑘

} of {𝐽𝑥
𝑛
} such that {𝐽𝑥

𝑛
⇀ 𝑝
∗

}. Since {𝑢
𝑛
} is

bounded, by (89), we also obtain {𝐽𝑢
𝑛
⇀ 𝑝
∗

}. Noticing that
𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑥
𝑛
, we obtain

F (𝑢
𝑛
, 𝑦) ≤ G (𝑦, 𝑢

𝑛
) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝐽𝑢
𝑛
− 𝐽𝑥
𝑛
⟩ , 𝑦 ∈ 𝐶,

F (𝑢
𝑛
𝑘

, 𝑦) ≤ G (𝑦, 𝑢
𝑛
𝑘

) + ⟨𝑦 − 𝑢
𝑛
𝑘

,

𝐽𝑢
𝑛
𝑘

− 𝐽𝑥
𝑛
𝑘

𝑟
𝑛

⟩ ,

𝑦 ∈ 𝐶.

(90)

According to (89), we obtain lim
𝑘→∞

(‖𝐽𝑥
𝑛
𝑘

− 𝐽𝑢
𝑛
𝑘

‖/𝑟
𝑛
𝑘

) = 0.
Then, by the conditions of (𝑓

2
) and (ℎ

2
), we obtain

1

𝑟
𝑛

𝑦 − 𝑢
𝑛



𝐽𝑥𝑛 − 𝐽𝑢
𝑛

 ≥ ⟨𝑦 − 𝑢
𝑛
, 𝐽𝑢
𝑛
− 𝐽𝑥
𝑛
⟩

≥ −F (𝑢
𝑛
, 𝑦) +G (𝑦, 𝑢

𝑛
)

≥ F (𝑦, 𝑢
𝑛
) +G (𝑦, 𝑢

𝑛
) .

(91)

Since (1/𝑟
𝑛
)‖𝐽𝑥
𝑛
− 𝐽𝑢
𝑛
‖ ⇀ 0 and {𝐽𝑢

𝑛
⇀ 𝑝
∗

}, we obtain

F (𝑦, 𝑝
∗

) +G (𝑦, 𝑝
∗

) ≤ 0. (92)

For 𝑡 with 0 < 𝑡 ≤ 1 and 𝑦 ∈ 𝐸, let 𝑦
𝑡
= 𝑡𝑦 + (1 − 𝑡)𝑝

∗, we
obtain

F (𝑦
𝑡
, 𝑝
∗

) +G (𝑦
𝑡
, 𝑝
∗

) ≤ 0. (93)

So, from the conditions of (𝑓
1
), (𝑓
3
), (ℎ
1
), and (ℎ

3
), we have

0 = F (𝑦
𝑡
, 𝑦
𝑡
) +G (𝑦

𝑡
, 𝑦
𝑡
)

≤ 𝑡F (𝑦
𝑡
, 𝑦) + (1 − 𝑡)F (𝑦

𝑡
, 𝑝
∗

)

+ 𝑡G (𝑦
𝑡
, 𝑦) + (1 − 𝑡)G (𝑦

𝑡
, 𝑝
∗

)

≤ F (𝑦
𝑡
, 𝑦) +G (𝑦

𝑡
, 𝑦) .

(94)

Consequently

F (𝑦
𝑡
, 𝑦) +G (𝑦

𝑡
, 𝑦) ≥ 0 (95)

by (𝑓
2
) and (ℎ

2
), as 𝑡 → 0, and we obtain 𝑝

∗

∈ MEP(F,G).

Step 8 (The sequence of {𝑥
𝑛
} converges strongly to a common

Ω). From Step 1 and (61), for all 𝑝 ∈ Ω, ‖𝑥
𝑛+1

− 𝑝‖ ≤

(1 + 𝜌
𝑛
)‖𝑥
𝑛
− 𝑝‖ for 𝑛 ≥ 1 with ∑

∞

𝑛=1
𝜌
𝑛
< ∞. This implies

that 𝑑(𝑥
𝑛+1

− Ω) ≤ (1 + 𝜌
𝑛
)𝑑(𝑥
𝑛
− Ω). Then by Lemma 7,

lim
𝑛→∞

𝑑(𝑥
𝑛+1

− Ω) exists. Also by Step 6, lim
𝑛→∞

‖𝑥
𝑛
−

𝑇
𝑛

𝑥
𝑛
‖ = ‖𝑥

𝑛
− 𝐼
𝑛

𝑥
𝑛
‖ = 0, and by the condition (A) in

Definition 10 which guarantees that lim
𝑛→∞

f(𝑑(𝑥
𝑛+1

−Ω)) =

0. Since f is a nondecreasing function and f(0) = 0, it follows
that lim

𝑛→∞
𝑑(𝑥
𝑛
− Ω). Form (81), we obtain

𝑥𝑛 − 𝑥
𝑛+𝑚

 ≤
𝑥𝑛 − 𝑢

𝑛

 +
𝑥𝑛+𝑚 − 𝑢

𝑛+𝑚

 . (96)

We know that {𝑥
𝑛
} is Cauchy sequence in 𝐶 for all numbers

𝑚, 𝑛. This implies that {𝑥
𝑛
} converges strongly to 𝑝 ∈ Ω. This

completes the proof.

If 𝑇 is an asymptotically quasi-nonexpansive self-
mapping in Theorem 16, we easily obtain the following
corollary.

Corollary 17. Let 𝐸 be uniformly smooth and uniformly
convex Banach space, and let 𝐶 be a nonempty closed convex
subset of 𝐸. LetF, G : 𝐶 × 𝐶 → 𝑅 be two bifunctions which
satisfy the conditions (𝑓

1
)–(𝑓
4
), (𝑔
1
)–(𝑔
3
), and (𝐻), and let 𝑇

be asymptotically quasi-nonexpansive self-mapping of 𝐶 with
sequences {𝑠

𝑛
} ⊂ [0,∞} such that ∑∞

𝑛=1
𝑠
𝑛
< ∞, and let 𝐼 be



10 Abstract and Applied Analysis

identity self-mapping of𝐶, andΩ = 𝐹
𝑖𝑥
(𝑇)⋂MEP(F,G) ̸= 0.

For an initial point 𝑥
0
∈ 𝐶, generate a sequence {𝑥

𝑛
} by

𝑢
𝑛
∈ 𝐶

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

F (𝑢
𝑛
, 𝑦) +G (𝑢

𝑛
, 𝑦)

≤
1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝐽𝑢
𝑛
− 𝐽𝑥
𝑛
⟩, ∀𝑦 ∈ 𝐶,

𝑦
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇
𝑛

𝑢
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑦
𝑛
, ∀𝑛 ≥ 1,

(97)

where {𝛼
𝑛
} is a sequence in [0, 1], {𝛽

𝑛
} ⊂ [𝑎, 𝑏] for some 𝑎, 𝑏 ∈

(0, 1) and {𝑟
𝑛
} ⊂ [𝑑, +∞) for 𝑑 > 0. If the following conditions

are satisfied:

(i) ∑∞
𝑛=0

𝛼
𝑛
< ∞;

(ii) ∑∞
𝑛=0

𝛽
𝑛
< ∞;

(iii) lim inf
𝑛→∞

𝑟
𝑛
> 0,

then the sequence {𝑥
𝑛
} generated by (97) converges strongly to

a fixed point in Ω if and only if lim inf
𝑛→∞

𝑑(𝑥
𝑛
, Ω) = 0.

5. Numerical Example

In this section, we introduce an example of numerical test to
illustrate the algorithms given in Corollary 17.

Example 1. Let 𝐸 = 𝑅, 𝐶 = [−2000, 2000]. The mixed
equilibrium problem is to find 𝑥 ∈ 𝐶 such that

F (𝑥, 𝑦) +G (𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶, (98)

where we define F(𝑥, 𝑦) = −3𝑥
2

+ 2𝑥𝑦 + 𝑦
2 and G(𝑥, 𝑦) =

𝑥
2

+ 3𝑥𝑦 − 4𝑦
2.

Now, we can easily know that F and G satisfy the
conditions (𝑓

1
)–(𝑓
4
), (𝑔
1
)–(𝑔
3
), and (𝐻) as follows:

(𝑓
1
) F(𝑥, 𝑥) = −3𝑥

2

+ 2𝑥𝑥 + 𝑥
2

= 0 for all 𝑥 ∈

[−2000, 2000];
(𝑓
2
)F(𝑥, 𝑦) +F(𝑦, 𝑥) = −2(𝑥 − 𝑦)

2

≤ 0 for all 𝑥, 𝑦 ∈

[−2000, 2000];
(𝑓
3
) for all 𝑥, 𝑦, 𝑧 ∈ [−2000, 2000],

lim sup
𝑡→0
+

F (𝑥 + 𝑡 (𝑧 − 𝑥) , 𝑦)

= lim sup
𝑡→0
+

− 3(𝑥 + 𝑡 (𝑧 − 𝑥))
2

+ 2𝑥 + 𝑡 (𝑧 − 𝑥) 𝑦 + 𝑦
2

= −3𝑥
2

+ 2𝑥𝑦 + 𝑦
2

≤ F (𝑥, 𝑦) ;

(99)

(𝑓
4
) for each 𝑥 ∈ [−2000, 2000], 𝜃(𝑦) = F(𝑥, 𝑦) =

−3𝑥
2

+2𝑥𝑦+𝑦
2 is convex and weakly lower semicon-

tinuous.

(𝑔
1
) G(𝑥, 𝑥) = 𝑥

2

+ 3𝑥𝑥 − 4𝑥
2

= 0 for each 𝑥 ∈

[−2000, 2000];
(𝑔
2
)G(𝑥, 𝑦) +G(𝑦, 𝑥) = −3(𝑥 − 𝑦)

2

≤ 0 for all 𝑥, 𝑦 ∈

[−2000, 2000], and weakly upper semicontinuous in
first variable;
(𝑔
3
) for each 𝑥 ∈ [−2000, 2000], 𝜃(𝑦) = G(𝑥, 𝑦) =

𝑥
2

+ 3𝑥𝑦 − 4𝑦
2 is convex.

Next, we find the formula of 𝑆
𝑟
𝑥. From Theorem 14, we

can claim that 𝑆
𝑟
𝑥 is single-valued, for any 𝑦 ∈ 𝐶, 𝑟 > 0,

F (𝑥, 𝑦) +G (𝑥, 𝑦) +
1

𝑟
⟨𝑥 − 𝑧, 𝑦 − 𝑥⟩

⇐⇒ −3𝑟𝑦
2

+ (5𝑟𝑥 + 𝑥 − 𝑧) 𝑦

+ 𝑥𝑧 − 2𝑟𝑥
2

− 𝑥
2

≥ 0.

(100)

Let 𝑀(𝑦) = −3𝑟𝑦
2

+ (5𝑟𝑥 + 𝑥 − 𝑧)𝑦 + 𝑥𝑧 − 2𝑟𝑥
2

− 𝑥
2. Then

𝑀(𝑦) is a quadratic function of 𝑦 with coefficients 𝑎 = −3𝑟,
𝑏 = 5𝑟𝑥 + 𝑥 − 𝑧, and 𝑐 = 𝑥𝑧 − 2𝑟𝑥

2

− 𝑥
2. So its discriminant

Δ = 𝑏
2

− 4𝑎𝑐 is

Δ = (5𝑟𝑥 + 𝑥 − 𝑧)
2

− 4 (−3𝑟) (𝑥𝑧 − 2𝑟𝑥
2

− 𝑥
2

)

= ((𝑟 + 1) 𝑥 − 𝑧)
2

.

(101)

According to𝑀(𝑦) ≥ 0 for all 𝑦 ∈ 𝐶, form Δ ≤ 0, that is

((𝑟 + 1) 𝑥 − 𝑧)
2

≤ 0. (102)

Therefore, it follows that

𝑥 =
𝑧

𝑟 + 1
(103)

and so

𝑆
𝑟
𝑧 =

𝑧

𝑟 + 1
. (104)

Now, let 𝐶 = [−1/𝜋, 1/𝜋] and |𝑘| < 1, and define a
mapping 𝑇 : 𝐶 → 𝐶 by

𝑇 (𝑥) =

{

{

{

𝑘𝑥 sin 1

𝑥
, if 𝑥 ̸= 0,

0 if 𝑥 = 0,

(105)

for all 𝑥 ∈ 𝐶. From the example in [25–27], we can
easily know that 𝑇 is an asymptotically quasi-nonexpansive
mapping; furthermore 𝐹

𝑖𝑥
(𝑇) = {0}.

According toTheorem 14, we obtain

𝐹
𝑖𝑥
(𝑆
𝑟
) = MEP (F,G) = 0, 𝐹

𝑖𝑥
(𝑇) = 0, (106)

and so Ω = 0. Therefore, all the assumptions in Corollary 17
are satisfied. we can obtain the following numerical algo-
rithms.

Algorithm 18. Let 𝑟
𝑛
= 1, 𝛼

𝑛
= 1/𝑛

2, and 𝛽
𝑛
= 1/2𝑛

2. It is
claim to check that

∞

∑

𝑛=0

𝛼
𝑛
< ∞,

∞

∑

𝑛=0

𝛽
𝑛
< ∞,

lim inf
𝑛→∞

𝑟
𝑛
= 1.

(107)
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Figure 1: Convergence of iterative sequence {𝑥
𝑛
}.

For an initial value 𝑥
0
= 0.2 and 𝑘 = 0.5, let the sequences

{𝑢
𝑛
} and {𝑥

𝑛
} generate by

𝑇 (𝑥) =
1

2
𝑥 sin 1

𝑥
,

𝑢
𝑛
= 𝑆
𝑟
(𝑥
𝑛
) =

1

2
𝑥
𝑛
,

𝑥
𝑛+1

=
1 + 𝑛
2

2𝑛4
𝑥
𝑛
+

(1 − 𝑛) (1 − 2𝑛
2

)

4𝑛4
𝑇
𝑛

𝑥
𝑛
,

∀𝑛 ≥ 1.

(108)

Then, by the Corollary 17, the sequence {𝑥
𝑛
} converges

to a solution of Example 1. Let ‖𝑥
𝑛+1

− 𝑥
𝑛
‖ ≤ 10

−5 and 𝑥
∗

be the fixed point of the Algorithm 18. Using the software
of MATLAB, we generated a sequence {𝑥

𝑛
} convergence to

𝑥
∗

= 𝑥
7
= 0 as shown in Figure 1.

Hence the sequence 𝑥
𝑛
converges strongly to solve Exam-

ple 1.
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