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We presented the Nagumo equation using the concept of fractional calculus. With the help of two analytical techniques including
the homotopy decomposition method (HDM) and the new development of variational iteration method (NDVIM), we derived an
approximate solution. Both methods use a basic idea of integral transform and are very simple to be used.

1. Introduction

TheNagumo equation with linear or nonlinear diffusion and
convection has broadly been useful to population dynamics,
ecology, neurophysiology, chemical reactions, and flame
propagation [1–3]. In particular, the case where the equation
involves degenerate nonlinear diffusion is of considerable
interest [4–8]. In this case, a travelling wave front solution
of sharp type is known to exist for exactly one value of
the wave speed. Such wave fronts, for instance, represent
collective motion of populations in particular collective cell
spreading, invasion in ecology, and concentration in chemical
reactions [9–15]. However, it has been showing that the real
world problems describe via fractional order derivative gives
better prediction [16–20]. It is, therefore, important; further
extend the nonlinear Nagumo equation using the concept of
fractional derivative order.

It is something very difficult to obtain the exact solution
of nonlinear equation with fractional order derivative. Many
scholars sometimes, to avoid this difficulty, solve this class of
problem numerically. However, even with numerical scheme
it is also difficult to provide a numerical solution for nonlinear
equations. Thus, many scholars, to access the behaviour of
the solution of the real problem under study, present an
approximate solution of this type of equations.

In the literature, there exist several analytical techniques
[21–25] to deal with nonlinear equations including frac-
tional type. The purpose of this work is to present an
approximate solution for the generalized nonlinear Nagumo
equation withnonlinear diffusion and convection via the
well-known variational iteration method (VIM) and the
homotopy decomposition method (HDM). The nonlinear
fractional Nagumo equation considered here is given below
as

𝜕
𝛼

𝑢

𝜕𝑡𝛼
+ 𝛽𝑢
𝑛

𝜕𝑢

𝜕𝑥
=

𝜕

𝜕𝑥
[𝛼𝑢
𝑛

𝜕𝑢

𝜕𝑥
]

+ 𝛾𝑢 (1 − 𝑢
𝑚

) (𝑢
𝑚

− 𝛿) , 0 < 𝛼 ≤ 1,

(1)

𝑢 (𝑥, 0) = 𝑓 (𝑥) , (2)

𝑢 (0, 𝑡) = 𝑔 (𝑡) , (3)

where 𝛼, 𝛽, 𝛾, and 𝛿 are constants, and for the sake of
simplicity in this paper, we consider 𝑚 = 𝑛 = 1 = 𝛿. The
concept of fractional order is not well by some scholars; in
order to accommodate those, we present in the next section
the basic information regarding this concept.
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2. Basic Information about Fractional Calculus

There exists a vast literature on different definitions of frac-
tional derivatives. The most popular ones are the Riemann-
Liouville and the Caputo derivatives. For Caputo we have the
following.

Definition 1 (see [26–30]). A real function𝑓(𝑥), 𝑥 > 0, is said
to be in the space 𝐶

𝜇
, 𝜇 ∈ R if there exists a real number

𝑝 > 𝜇, such that 𝑓(𝑥) = 𝑥
𝑝

ℎ(𝑥), where ℎ(𝑥) ∈ 𝐶[0, ∞), and
it is said to be in space 𝐶

𝑚

𝜇
if 𝑓
(𝑚)

∈ 𝐶
𝜇
, 𝑚 ∈ N.

Definition 2 (partial derivatives of fractional order [31–34]).
Assume now that 𝑓(𝑥) is a function of 𝑛 variables 𝑥

𝑖
, 𝑖 =

1, . . . , 𝑛 also of class𝐶 on𝐷 ∈ R
𝑛
.We define partial derivative

of order 𝛼 for 𝑓 with respect to 𝑥
𝑖
, the function

𝑎𝜕
𝛼

𝑥
𝑓 =

1

Γ (𝑚 − 𝛼)
∫

𝑥𝑖

𝑎

(𝑥
𝑖
− 𝑡)
𝑚−𝛼−1

𝜕
𝑚

𝑥𝑖

𝑓 (𝑥
𝑗
)
𝑥𝑗=𝑡

𝑑𝑡, (4)

where 𝜕
𝑚

𝑥𝑖

is the usual partial derivative of integer order 𝑚.

Definition 3 (see [26–30]). The Riemann-Liouville fractional
integral operator of order𝛼 ≥ 0, of a function𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥ −1,

is defined as

𝐽
𝛼

𝑓 (𝑥) =
1

Γ (𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡, 𝛼 > 0, 𝑥 > 0,

𝐽
0

𝑓 (𝑥) = 𝑓 (𝑥) .

(5)

Properties of the operator can be found in [31–38]; we men-
tion only the following.

For

𝑓 ∈ 𝐶
𝜇
, 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0, 𝛾 > −1,

𝐽
𝛼

𝐽
𝛽

𝑓 (𝑥) = 𝐽
𝛼+𝛽

𝑓 (𝑥) ,

𝐽
𝛼

𝐽
𝛽

𝑓 (𝑥) = 𝐽
𝛽

𝐽
𝛼

𝑓 (𝑥) ,

𝐽
𝛼

𝑥
𝛾

=
Γ (𝛾 + 1)

Γ (𝛼 + 𝛾 + 1)
𝑥
𝛼+𝛾

.

(6)

3. Basic Information of the HDM and VIM

In this section, we shall present the basic information of
the chosen analytical methods: the homotopy decomposition
method and variational iteration method; we shall start with
the homotopy decomposition method.

3.1. Information about the HDM. The interested reader can
find the full detail of the methodology of the homo-
topy decomposition method in [39–42]. This relatively new
method was recently used to solve some nonlinear frac-
tional partial differential equations. However, since the new
development of the variational iteration method using the
Laplace transform was recently introduced, we shall present
its methodology in the following subsection.

3.2. Some Information about the Variational IterationMethod.
In its initial development, the essential nature of the method
was to construct the following correction functional for (2)
when 𝛼 is a natural number:

𝑤
𝑛+1

(𝑥, 𝑡) = 𝑤
𝑛

(𝑥, 𝑡)

+ ∫

𝑡

0

𝜆 (𝑡, 𝜏) [−
𝜕
𝑚

𝑤 (𝑥, 𝜏)

𝜕𝑡𝑚
+ 𝐿 (𝑤

𝑛
(𝑥, 𝜏))

+ 𝑁 (𝑤
𝑛

(𝑥, 𝜏)) + 𝑘 (𝑥, 𝜏)] 𝑑𝜏,

(7)

where 𝜆(𝑡, 𝜏) is the so-called Lagrange multiplier [43] and
𝑤
𝑛
(𝑥, 𝑡) is the 𝑛-approximate solution. However, this devel-

opment was not suitable for equations with fractional order
derivative [43]. Therefore, in their work, they apply the
new development of the VIM proposed in [44] to find
the Lagrange multiplier. In this new VIM, the first step of
the basic character of the method is to apply the Laplace
transform on both sides of (2) to obtain

𝑠
𝑚

𝑤 (𝑥, 𝑠) − 𝑠
𝑚−1

𝑤 (𝑥, 0) − ⋅ ⋅ ⋅ 𝑤
𝑚−1

(𝑥, 0)

= L [𝐿 (𝑤 (𝑥, 𝑡)) + 𝑁 (𝑤 (𝑥, 𝑡)) + 𝑘 (𝑥, 𝑡)] .

(8)

The recursive formula of (8) can now be used to put
forward the main recursive method connecting the Lagrange
multiplier as

𝑤
𝑛+1

(𝑥, 𝑠)

= 𝑤
𝑛

(𝑥, 𝑠)

+ 𝜆 (𝑠) [𝑠
𝑚

𝑤
𝑛

(𝑥, 𝑠) − 𝑠
𝑚−1

𝑤 (𝑥, 0) − ⋅ ⋅ ⋅ 𝑤
𝑚−1

(𝑥, 0)

−L [𝐿 (𝑤
𝑛

(𝑥, 𝑡)) + 𝑁 (𝑤
𝑛

(𝑥, 𝑡)) + 𝑘 (𝑥, 𝑡)] ] .

(9)

Now considering L[𝐿(𝑤
𝑛
(𝑥, 𝑡)) + 𝑁(𝑤

𝑛
(𝑥, 𝑡)) + 𝑘(𝑥, 𝑡)], the

restricted term; the Lagrange multiplier can be obtained as
[43]

𝜆 (𝑠) = −
1

𝑠𝑚
. (10)

Now, applying the inverse Laplace transform on both sides of
(9), we obtain the following iteration:

𝑤
𝑛+1

(𝑥, 𝑡)

= 𝑤
𝑛

(𝑥, 𝑡)

− L
−1

[
1

𝑠𝑚
[𝑠
𝑚

𝑤
𝑛

(𝑥, 𝑠) − 𝑠
𝑚−1

𝑤 (𝑥, 0) − ⋅ ⋅ ⋅ 𝑤
𝑚−1

(𝑥, 0)

− L [𝐿 (𝑤
𝑛

(𝑥, 𝑡))

+𝑁 (𝑤
𝑛

(𝑥, 𝑡)) + 𝑘 (𝑥, 𝑡) ]]] .

(11)
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4. Application to the Fractional
Nagumo Equation

In this section, we present the application of the homotopy
decomposition method and the new development of the so-
called variational iterationmethod to the nonlinear fractional
Nagumo equation. We shall start with the HDM.

4.1. Application of the HDM. Let us consider the fractional
nonlinear Nagumo Equation with the following initial con-
dition:

𝑢 (𝑥, 0) = 𝑥
2

,

𝜕
𝛼

𝑢

𝜕𝑡𝛼
+ 𝛽𝑢

𝜕𝑢

𝜕𝑥
=

𝜕

𝜕𝑥
[𝑎𝑢

𝜕𝑢

𝜕𝑥
] + 𝛾𝑢 (1 − 𝑢) (𝑢 − 1) ,

0 < 𝛼 ≤ 1.

(12)

Using the steps involved in the HDMwe arrive at the follow-
ing:
𝑢 (𝑥, 𝑡)

= 𝑢 (𝑥, 0)

+
1

Γ [1 − 𝛼]
∫

𝑡

0

(𝑡 − 𝜏)
1−𝛼

[−𝛽𝑢
𝜕𝑢

𝜕𝑥
+

𝜕

𝜕𝑥
[𝑎𝑢

𝜕𝑢

𝜕𝑥
]

+ 𝛾𝑢 (1 − 𝑢) (𝑢 − 1)] 𝑑𝜏.

(13)
Now, assume the solution of the above equation can be
expressed in series form as follows:

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛

(𝑥, 𝑡) . (14)

Replacing this in (13) and after comparing the term of the
same power of 𝑝, we obtain the following recursive formulas:

𝑢
0

(𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) ,

𝑢
1

(𝑥, 𝑡)

=
1

Γ [𝛼]
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

[−𝛽𝑢
0

𝜕𝑢
0

𝜕𝑥
+

𝜕

𝜕𝑥
[𝑎𝑢
0

𝜕𝑢
0

𝜕𝑥
]

+𝛾𝑢
0

(1 − 𝑢
0
) (𝑢
0

− 1) ] 𝑑𝜏,

𝑢
2

(𝑥, 𝑡)

=
1

Γ [𝛼]
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

[−𝛽𝐻
1

2
+ 𝑎𝐻
2

2
+ 𝑎𝐻
3

2

+𝛾𝐻
4

2
+ 𝛾𝐻
5

2
− 𝑢
1
] 𝑑𝜏.

(15)
Here,

𝐻
1

2
= 𝑢
0

(𝑥, 𝑡) 𝜕
𝑥
𝑢
1

(𝑥, 𝑡) + 𝑢
1

(𝑥, 𝑡) 𝜕
𝑥
𝑢
0

(𝑥, 𝑡) ,

𝐻
2

2
= 2𝜕
𝑥
𝑢
0

(𝑥, 𝑡) 𝜕
𝑥
𝑢
1

(𝑥, 𝑡) ,

𝐻
3

2
= 𝑢
0

(𝑥, 𝑡) 𝜕
𝑥𝑥

𝑢
1

(𝑥, 𝑡) + 𝑢
1

(𝑥, 𝑡) 𝜕
𝑥𝑥

𝑢
0

(𝑥, 𝑡) ,

𝐻
4

2
= 𝑢
2

0
(𝑥, 𝑡) 𝑢

1
(𝑥, 𝑡) + 𝑢

3

1
+ 𝑢
2

1
(𝑥, 𝑡) 𝑢

0
(𝑥, 𝑡) ,

𝐻
5

2
= 2𝑢
0

(𝑥, 𝑡) 𝑢
1

(𝑥, 𝑡) .

(16)

The general recursive formula for 𝑝 ≥ 3 is given as

𝑢
𝑛

(𝑥, 𝑡)

=
1

Γ [𝛼]
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

[−𝛽𝐻
1

𝑛
+ 𝑎𝐻
2

𝑛
+ 𝑎𝐻
3

𝑛

+𝛾𝐻
4

𝑛
+ 𝛾𝐻
5

𝑛
− 𝑢
𝑛−1

] 𝑑𝜏,

(17)

with

𝐻
1

𝑛
(𝑥, 𝑡) =

𝑛−1

∑

𝑗=0

𝑢
𝑗
(𝑥, 𝑡) 𝜕

𝑥
𝑢
𝑛−𝑗

(𝑥, 𝑡) ,

𝐻
2

𝑛
(𝑥, 𝑡) =

𝑛−1

∑

𝑗=0

𝜕
𝑥
𝑢
𝑗
(𝑥, 𝑡) 𝜕

𝑥
𝑢
𝑛−𝑗

(𝑥, 𝑡) ,

𝐻
3

𝑛
(𝑥, 𝑡) =

𝑛−1

∑

𝑗=0

𝑢
𝑗
(𝑥, 𝑡) 𝜕

𝑥𝑥
𝑢
𝑛−𝑗

(𝑥, 𝑡) ,

𝐻
4

𝑛
(𝑥, 𝑡) =

𝑛−1

∑

𝑗=0

𝑗

∑

𝑘=0

𝑢
𝑗
(𝑥, 𝑡) 𝑢

𝑗−𝑘
(𝑥, 𝑡) 𝑢

𝑛−𝑗−1
(𝑥, 𝑡) ,

𝐻
5

𝑛
(𝑥, 𝑡) =

𝑛−1

∑

𝑗=0

𝑢
𝑗
(𝑥, 𝑡) 𝑢

𝑛−𝑗
(𝑥, 𝑡) ,

(18)

so that, integrating the above set of integral equations, we
obtain the following:

𝑢
0

(𝑥, 𝑡) = 𝑥
2

,

𝑢
1

(𝑥, 𝑡) = −

𝑡
𝛼

𝑥
2

(−6𝑎 + 2𝑥𝛽 + (−1 + 𝑥
2

)
2

𝛾)

Γ (1 + 𝛼)
,

𝑢
2

(𝑥, 𝑡)

= 𝑡
2𝛼

𝑥
2

((48𝑎
2

+ 𝛾

− 2𝑎 (3 + 24𝑥𝛽 + 4𝛾 − 22𝑥
2

𝛾

+ 𝑥 (10𝑥𝛽
2

+ 𝑥𝛾 (−2 + 𝑥
2

− 2𝛾 + 3𝑥
2

𝛾 − 𝑥
6

𝛾)

+2𝛽 (1 + (2 − 8𝑥
2

+ 3𝑥
4

) 𝛾))))

×
1

Γ (1 + 2𝛼)
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+

𝑡
𝛼

𝑥
4

𝛾(−6𝑎 + 2𝑥𝛽 + (−1 + 𝑥
2

)
2

𝛾)
2

Γ (1 + 2𝛼)

Γ2 (1 + 𝛼) Γ (1 + 3𝛼)

−

𝑡
2𝛼

(−6𝑎 + 2𝑥𝛽 + (−1 + 𝑥
2

)
2

𝛾)
3

Γ (1 + 3𝛼)

Γ3 (1 + 𝛼) Γ (1 + 4𝛼)
).

(19)
Here, we have computed only three terms in the series solu-
tion. However, using the recursive formula, we can compute
the remaining terms, and the approximate solution is given
as follows:

𝑢 (𝑥, 𝑡) = 𝑢
0

(𝑥, 𝑡) + 𝑢
1

(𝑥, 𝑡) + 𝑢
2

(𝑥, 𝑡) + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ . (20)

4.2. New Development of the Variational Iteration Method. In
this subsection, we test the efficiency of the new development
of the variation iteration method by solving the nonlinear
fractional equation (1).Therefore, following themethodology
of NDVIM, we are at the following.

The Lagrange multiplier is

𝜆 (𝑠) = −
1

𝑠𝛼
(21)

and the recursive formula is given as
𝑢
𝑛+1

(𝑥, 𝑡)

= 𝑢
𝑛

(𝑥, 𝑡)

− L
−1

[
1

𝑠𝛼
[L [−𝛽𝑢

𝑛

𝜕𝑢
𝑛

𝜕𝑥

+
𝜕

𝜕𝑥
[𝑎𝑢
𝑛

𝜕𝑢
𝑛

𝜕𝑥
]

+𝛾𝑢
𝑛

(1 − 𝑢
𝑛
) (𝑢
𝑛

− 1) ]]]

(22)

with the initial term

𝑢
0

(𝑥, 𝑡) = 𝑥
2

, (23)
so that using the iteration formulas we obtain

𝑢
1

(𝑥, 𝑡) = 𝑥
2

−
𝑡
𝛼

Γ (1 + 𝛼)

× (6𝑎𝑥
2

− 2𝑥
3

𝛽 + 𝑥
2

(1 − 𝑥
2

) (𝑥
2

− 1) 𝛾) ,

(24)

𝑢
2

(𝑥, 𝑡)

= (𝑥
2

(𝑡
3𝛼

(−144𝑎
3

+ 12𝑎
2

× (18𝑥𝛽 + 4𝛾 − 22𝑥
2

𝛾 + 21𝑥
4

𝛾)

− 4𝑎 (12𝑥𝛽𝛾 − 54𝑥
3

𝛽𝛾

+ 48𝑥
5

𝛽𝛾 + 𝛾
2

+ 43𝑥
4

𝛾
2

− 48𝑥
6

𝛾
2

+ 18𝑥
8

𝛾
2

+ 2𝑥
2

(12𝛽
2

− 7𝛾
2

))

+ 𝑥 (2𝛽𝛾
2

+ 52𝑥
4

𝛽𝛾
2

− 52𝑥
6

𝛽𝛾
2

+ 18𝑥
8

𝛽𝛾
2

+ 26𝑥
7

𝛾
3

− 14𝑥
9

𝛾
3

+ 3𝑥
11

𝛾
3

+ 4𝑥
2

(3𝛽
3

− 5𝛽𝛾
2

)

+ 6𝑥
5

(5𝛽
2

𝛾 − 4𝛾
3

) + 2𝑥 (5𝛽
2

𝛾 − 𝛾
3

)

+ 𝑥
3

(−36𝛽
2

𝛾 + 11𝛾
3

)))

× Γ (1 + 𝛼) Γ
2

(1 + 2𝛼) Γ (1 + 4𝛼)

+ 𝑡
2𝛼

(180𝑎
2

+ 6𝑥𝛽𝛾 − 20𝑥
3

𝛽𝛾 + 14𝑥
5

𝛽𝛾

+ 𝛾
2

+ 12𝑥
4

𝛾
2

− 10𝑥
6

𝛾
2

+ 3𝑥
8

𝛾
2

− 4𝑎 (23𝑥𝛽 + 9𝛾

− 25𝑥
2

𝛾 + 16𝑥
4

𝛾)

+2𝑥
2

(5𝛽
2

− 3𝛾
2

))

× Γ (1 + 3𝛼) Γ
3

(1 + 𝛼) Γ (1 + 4𝛼)

+ Γ (1 + 2𝛼) Γ (1 + 3𝛼)

× (𝑡
4𝛼

𝑥
4

𝛾

× (−6𝑎 + 2𝑥𝛽 + 𝛾 − 2𝑥
2

𝛾 + 𝑥
4

𝛾)
3

× Γ (1 + 3𝛼)

− (2𝑡
𝛼

(16𝑎 − 2𝑥𝛽 − 𝛾 + 2𝑥
2

𝛾 − 𝑥
4

𝛾)

−Γ (1 + 𝛼) ) Γ (1 + 𝛼)

×Γ
3

(1 + 𝛼) Γ (1 + 4𝛼))))

× (Γ
3

(1 + 𝛼) Γ (1 + 2𝛼)

× Γ (1 + 3𝛼) Γ (1 + 4𝛼) )
−1

.

(25)

Using the recursive formula, the remaining term can be
obtained but here, due to the length of this term,we computed
only three terms and the approximate solution case given as

𝑢 (𝑥, 𝑡) = 𝑢
2

(𝑥, 𝑡) . (26)

In the following section, we compare the approximate solu-
tion via HDM and NDVIM.

5. Numerical Results

We devote this section to the comparison of the numerical
solutions obtained via theHDMand theNDVIM for different
values of the fractional order derivative. In this case, we
chose 𝛼 = 1.5, 𝛾 = 1, and 𝑎 = 4. The following figures
show the numerical solution of the time fractional nonlinear
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Table 1: Comparison of numerical values for the approximate solutions via HDM and NDVIM.

𝑥 𝑡
HDM

𝛼 = 0.25

NDVIM
𝛼 = 0.25

HDM
𝛼 = 0.9

NDVIM
𝛼 = 0.9

−10

0 100 100 100 100
1 −1.14275 × 10

18

−1.14319 × 10
18

−3.24381 × 10
17

−3.24545 × 10
17

2 −2.28554 × 10
18

−2.28628 × 10
18

−3.93359 × 10
18

−3.93465 × 10
18

6 −6.85676 × 10
18

−6.85845 × 10
18

−2.05326 × 10
20

−2.05347 × 10
20

10 −1.1428 × 10
19

−1.14305 × 10
19

−1.29153 × 10
21

−1.29161 × 10
21

−5

0 25 25 25 25
1 −2.98096 × 10

12

−2.99989 × 10
12

−8.45746 × 10
11

−8.52756 × 10
11

2 −5.9636 × 10
12

−5.99543 × 10
12

−1.02663 × 10
13

−1.03118 × 10
13

6 −1.78972 × 10
13

−1.79697 × 10
13

−5.36272 × 10
14

−5.37156 × 10
14

10 −2.98327 × 10
13

−2.99391 × 10
13

−3.37376 × 10
15

−3.37727 × 10
15

5

0 25 25 25 25
1 −3.50932 × 10

12

−3.53141 × 10
12

−9.95678 × 10
11

−1.00386 × 10
12

2 −7.02052 × 10
12

−7.05766 × 10
12

−1.20856 × 10
13

−1.21387 × 10
13

6 −2.10687 × 10
13

−2.11533 × 10
13

−6.31281 × 10
14

−6.32312 × 10
14
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Figure 1: Approximate solution of the time-fractional nonlinear
Nagumo equation via the HDM for the value of alpha equal to 0.9.

Nagumo equation. Figure 1 show, the approximate solution
obtained via the HDM for 𝛼 = 0.9, Figure 2 shows the
approximate solution via the NDVIM. Figure 3 Show the
approximate solution obtained via the HDM for 𝛼 = 0.25

and Figure 4 shows the approximate solution via theNDVIM.
Table 1 shows the comparison of the numerical values of the
solution obtained via theHDMand theNDVIM, respectively,
for different values of alpha.

Both methods used the idea of iteration; the initial com-
ponents are obtained as the Taylor series of the exact solution.
On one hand, the new development of variational iteration
method makes use of the Laplace transform, the Lagrange
multiplier, and finally the inverse Laplace transform. On the
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Figure 2: Approximate solution of the time-fractional nonlinear
Nagumo equation via the NDVIM for the value of alpha equal to
0.9.

other hand, the HDM uses just a simple integral and the
perturbation technique. Both techniques are simple to imple-
ment and are very accurate.

6. Conclusion

The Nagumo equation is a very complex equation, for which
the exact solution does not exist. The Nagumo equation was
extended to the concept of fractional order derivative. The
resulting equation was further analyzed within the frame-
work of the homotopy decomposition method and the new
development of variational iteration method. Both methods
use a simple idea of integral transform.The numerical results
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Figure 3: Approximate solution of the time-fractional nonlinear
Nagumo equation via the HDM for the value of alpha equal to 0.25.

0
5

10

Distance
0

5

10

Ti
m
e

0

0
5

Distanc

5

Ti
m
e

×10
17

−1

−2

−3

u
(
x
,
t
)

−10

−5

Figure 4: We present in Table 1 the numerical values of the
approximate solutions obtained via both methods for different
values of alpha.

are presented to test the efficiency and the accuracy of both
methods. From their iteration formulas, one can conclude
that these twomethods are simple to be used and are powerful
weapons to handle fractional nonlinear equation type.
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