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This paper is concerned with the existence and multiplicity of fast homoclinic solutions for a class of damped vibration problems
with impulsive effects. Some new results are obtained under more relaxed conditions by using Mountain Pass Theorem and
SymmetricMountain PassTheorem in critical point theory.The results obtained in this paper generalize and improve some existing
works in the literature.

1. Introduction

Consider fast homoclinic solutions of the following problem:

𝑢


(𝑡) + 𝑞 (𝑡) 𝑢


(𝑡) − 𝑎 (𝑡) 𝑢 (𝑡)

+ ∇𝑉 (𝑡, 𝑢 (𝑡)) = 0, a.e. 𝑡 ∈ (𝑡
𝑗
, 𝑡
𝑗+1
) , 𝑗 ∈ Z,

Δ𝑢

(𝑡
𝑗
) = 𝑢


(𝑡
+

𝑗
) − 𝑢


(𝑡
−

𝑗
) = 𝐼 (𝑢 (𝑡

𝑗
)) , 𝑗 ∈ Z,

(1)

where 𝑉 : R × R → R is of class 𝐶1, ∇𝑉(𝑡, 𝑢(𝑡)) =

𝜕𝑉(𝑡, 𝑢(𝑡))/𝜕𝑢, 𝐼 : R → R, 𝑎 ∈ 𝐶(R, (0, +∞)), 𝑎(𝑡) → +∞

as |𝑡| → +∞, Z denotes the sets of integers, and 𝑡
𝑗
(𝑗 ∈ Z)

are impulsive points. Moreover, there exist a positive integer
𝑝 and a positive constant 𝑇 such that 0 < 𝑡

0
< 𝑡

1
< ⋅ ⋅ ⋅ <

𝑡
𝑝−1

< 𝑇, 𝑡
𝑙+𝑘𝑝

= 𝑡
𝑙
+ 𝑘𝑇, ∀𝑘 ∈ Z, 𝑙 = 0, 1, . . . , 𝑝 − 1,

𝑢

(𝑡
+

𝑗
) = lim

ℎ→0
+𝑢


(𝑡
𝑗
+ ℎ) and 𝑢(𝑡−

𝑗
) = lim

ℎ→0
−𝑢


(𝑡
𝑗
− ℎ)

represent the right and left limits of𝑢(𝑡) at 𝑡 = 𝑡
𝑗
, respectively,

𝑞 : R → R is a continuous function, and 𝑄(𝑡) = ∫

𝑠

0
𝑞(𝑠)𝑑𝑠

with
lim

|𝑡|→+∞

𝑄 (𝑡) = +∞. (2)

When 𝐼 ≡ 0, problem (1) becomes the following damped
vibration problem:

𝑢


(𝑡) + 𝑞 (𝑡) 𝑢


(𝑡) − 𝑎 (𝑡) 𝑢 (𝑡)

+ ∇𝑉 (𝑡, 𝑢 (𝑡)) = 0, a.e. 𝑡 ∈ R.
(3)

Chen et al. [1] investigated problem (3) and obtained some
results of fast homoclinic solutions by critical point theory.

When 𝑞(𝑡) ≡ 0 and 𝑎(𝑡) ≡ 0, problem (1) becomes the
following problem:

𝑢


(𝑡) + ∇𝑉 (𝑡, 𝑢 (𝑡)) = 0, a.e. 𝑡 ∈ (𝑡
𝑗
, 𝑡
𝑗+1
) , 𝑗 ∈ Z,

Δ𝑢

(𝑡
𝑗
) = 𝑢


(𝑡
+

𝑗
) − 𝑢


(𝑡
−

𝑗
) = 𝐼 (𝑢 (𝑡

𝑗
)) , 𝑗 ∈ Z.

(4)

Fang and Duan [2] obtained the following result of homo-
clinic solutions for (4) by employingMountain PassTheorem,
a weak convergence argument, and a weak version of Lieb’s
methods.

Theorem A (see [2]). Assume that the following conditions
hold:

(V1) there exists a positive number 𝑇 such that

∇𝑉 (𝑡 + 𝑇, 𝑥) = ∇𝑉 (𝑡, 𝑥) ,

𝑉 (𝑡 + 𝑇, 𝑥) = 𝑉 (𝑡, 𝑥) ,

∀ (𝑡, 𝑥) ∈ R
2
;

(5)

(V2) lim
𝑥→0

(∇𝑉(𝑡, 𝑥)/𝑥) = 0 uniformly for 𝑡 ∈ R;
(V3) there exists a constant 𝜇 > 0 such that

𝜇𝑉 (𝑡, 𝑥) ≤ (∇𝑉 (𝑡, 𝑥) , 𝑥) , ∀ (𝑡, 𝑥) ∈ R ×R \ {0} ; (6)
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(V4) there exist constants 𝑏
0
> 0 and 𝑏 > 0 such that

𝑉 (𝑡, 𝑥) ≥ 𝑏
0
|𝑥|

𝜇
, ∀𝑡 ∈ R, |𝑥| ≥ 1;

𝑉 (𝑡, 𝑥) ≤ 𝑏|𝑥|
𝜇
, ∀𝑡 ∈ R, |𝑥| ≤ 1;

(7)

(I) there exists a constant 𝑏
1
with 0 < 𝑏

1
< (𝜇−2)/(𝜇+2)𝑝𝑇

such that

|𝐼 (𝑥)| ≤ 𝑏
1
|𝑥| , 2 ∫

𝑥

0

𝐼 (𝑡) 𝑑𝑡 − 𝐼 (𝑥) 𝑥 ≤ 0. (8)

Then, problem (4) possesses a nontrivial weak homoclinic orbit.

For 𝐼 ̸= 0, problem (1) involves impulsive effects. Impul-
sive differential equations are suitable for the mathematical
simulation of evolutionary processes in which the parameters
undergo relatively long periods of smooth variation followed
by a short-term rapid change (that is jumps) in their values.
Impulsive differential equations are often investigated in
various fields of science and technology, for example, many
biological phenomena involving thresholds, bursting rhythm
models in medicine and biology, optimal control models
in economics, pharmacokinetics, and frequency modulated
systems, and so on. For more details of impulsive differential
equations, we refer the readers to the books [3, 4].

In recent years, some researchers have paid attention to
the existence and multiplicity of solutions for impulsive dif-
ferential equations via variational methods. See, for example,
[1, 5–17] and references therein.However, there are fewpapers
[2, 18, 19] concerning homoclinic solutions of impulsive
differential equations by variational methods. So, it is a novel
method to employ variational methods to investigate the
existence of homoclinic solutions for impulsive differential
equations.

Motivated by the above papers, we will establish some
new results for (1). In order to introduce the concept of fast
homoclinic solutions for (1), we first state some properties of
the weighted Sobolev space 𝐸 on which certain variational
functional associated with (1) is defined and the fast homo-
clinic solutions are the critical points of the certain functional.

Let

𝐸 = {𝑢 ∈ 𝐻
1,2

(R,R) | ∫
R

𝑒
𝑄(𝑡)

[






𝑢


(𝑡)







2

+ 𝑎 (𝑡) |𝑢 (𝑡)|
2
] 𝑑𝑡

< +∞, {𝑢 (𝑡
𝑗
)}

+∞

𝑗=−∞
∈ 𝑙

2
,

𝑢 (±∞) = 0, 𝑢 (𝑘𝑇) = 0, 𝑘 ∈ Z} ,

(9)

where 𝑄(𝑡) is defined in (2) and 𝑙
2 denotes the space of

sequences whose second powers are summable on Z; that is,

∑

𝑗∈Z






𝑎
𝑗







2

< +∞, ∀𝑎 = {𝑎
𝑗
}

+∞

𝑗=−∞
∈ 𝑙

2
. (10)

The space 𝑙2 is equipped with the following norm:

‖𝑎‖
𝑙
2 = (∑

𝑗∈Z






𝑎
𝑗







2

)

1/2

. (11)

For 𝑢, V ∈ 𝐸, let

⟨𝑢, V⟩ = ∫
R

𝑒
𝑄(𝑡)

[(𝑢


(𝑡) , V (𝑡)) + (𝑎 (𝑡) 𝑢 (𝑡) , V (𝑡))] 𝑑𝑡.

(12)

Similar to [2], it is easy to check that 𝐸 is a Hilbert space with
the norm given by

‖𝑢‖ = (∫

R

𝑒
𝑄(𝑡)

[






𝑢


(𝑡)







2

+ 𝑎 (𝑡) |𝑢 (𝑡)|
2
] 𝑑𝑡)

1/2

. (13)

It is obvious that

𝐸 ⊂ 𝐿
2
(𝑒
𝑄(𝑡)

) (14)

with the embedding being continuous. Here, 𝐿𝑝(𝑒𝑄(𝑡))(2 ≤

𝑝 < +∞) denotes the Banach spaces of functions on R with
values in R under the norm

‖𝑢‖
𝑝
= {∫

R

𝑒
𝑄(𝑡)

|𝑢 (𝑡)|
𝑝
𝑑𝑡}

1/𝑝

. (15)

Similar to [1], we have the following definition of fast
homoclinic solutions.

Definition 1. If (2) holds, a solution of (1) is called a fast
homoclinic solution if 𝑢 ∈ 𝐸.

Here and in subsequence, (, ) and | ⋅ | denote the inner
product and norm in R, respectively. 𝐶

𝑖
(𝑖 = 0, 1, . . .) denote

different positive constants. Now, we state our main results.

Theorem 2. Suppose that 𝑞, 𝑎, 𝐼, and 𝑉 satisfy (2), (V1), and
the following conditions:

(A) 𝑎 ∈ 𝐶(R, (0, +∞)) and 𝑎(𝑡) → +∞ as |𝑡| → +∞,
(V2) 𝑉(𝑡, 𝑥) = 𝑉

1
(𝑡, 𝑥) − 𝑉

2
(𝑡, 𝑥), 𝑉

1
, 𝑉

2
∈ 𝐶

1
(R × R,R),

and there exists a constant 𝑅 > 0 such that
|∇𝑉 (𝑡, 𝑥)| = 𝑜 (|𝑥|)

as 𝑥 → 0 uniformly in 𝑡 ∈ (−∞, −𝑅] ∪ [𝑅, +∞) ,

(16)

(V3) there is a constant 𝜇 > 2 such that

0 < 𝜇𝑉
1
(𝑡, 𝑥) ≤ (∇𝑉

1
(𝑡, 𝑥) , 𝑥) , ∀ (𝑡, 𝑥) ∈ R ×R \ {0} ,

(17)

(V5) 𝑉
2
(𝑡, 0) = 0 and there exists a constant  ∈ (2, 𝜇) such

that
𝑉
2
(𝑡, 𝑥) ≥ 0, (∇𝑉

2
(𝑡, 𝑥) , 𝑥) ≤ 𝑉

2
(𝑡, 𝑥) ,

∀ (𝑡, 𝑥) ∈ R ×R,
(18)

(I) 𝐼 ∈ 𝐶(R,R) and there exists a constant 𝑐 with 0 < 𝑐 <
( − 2)𝑒

0
/( + 2)𝑝𝑇 such that

|𝐼 (𝑥)| ≤ 𝑐 |𝑥| , (𝐼 (𝑥) − 𝐼 (𝑦) , 𝑥 − 𝑦) ≥ 0, ∀𝑥, 𝑦 ∈ R,

(19)

where 𝑒
0
= 𝑒

min{𝑄(𝑡):𝑡∈R}.
Then, problem (1) has at least one nontrivial fast homoclinic

solution.
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Theorem 3. Suppose that 𝑞, 𝑎, 𝑉, and 𝐼 satisfy (2), (V1), (A),
(V3), (I), and the following conditions:

(V2) 𝑉(𝑡, 𝑥) = 𝑉
1
(𝑡, 𝑥) − 𝑉

2
(𝑡, 𝑥), 𝑉

1
, 𝑉

2
∈ 𝐶

1
(R × R,R),

and

|∇𝑉 (𝑡, 𝑥)| = 𝑜 (|𝑥|) as 𝑥 → 0 uniformly in 𝑡 ∈ R,

(20)

(V5) 𝑉
2
(𝑡, 0) = 0 and there exists a constant  ∈ (2, 𝜇) such

that

(∇𝑉
2
(𝑡, 𝑥) , 𝑥) ≤ 𝑉

2
(𝑡, 𝑥) , ∀ (𝑡, 𝑥) ∈ R ×R. (21)

Then, problem (1) has at least one nontrivial fast homoclinic
solution.

Theorem 4. Suppose that 𝑞, 𝑎, 𝑉, and 𝐼 satisfy (2), (V1), (A),
(V2), (V3), (V5), (I), and the following condition:

(V6) 𝐼(−𝑡) = −𝐼(𝑡), 𝑉(𝑡, −𝑥) = 𝑉(𝑡, 𝑥), ∀(𝑡, 𝑥) ∈ R ×R.

Then, problem (1) has an unbounded sequence of fast homo-
clinic solutions.

Theorem 5. Suppose that 𝑞, 𝑎, 𝑉, and 𝐼 satisfy (2), (V1), (A),
(V2), (V3), (V5), (I), and (V6). Then, problem (1) has an
unbounded sequence of fast homoclinic solutions.

The rest of this paper is organized as follows. In Section 2,
some preliminaries are presented. In Section 3, we give the
proofs of our results. In Section 4, some examples are given
to illustrate our results.

2. Preliminaries

Let 𝐸 and ‖ ⋅ ‖ be given in Section 1. By a similar argument in
[2, 20], we have the following important lemma.

Lemma 6. For any 𝑢 ∈ 𝐸,

‖𝑢‖
∞
≤

1

√2𝑒
0√
𝑎
0

‖𝑢‖

=

1

√2𝑒
0√
𝑎
0

{∫

R

𝑒
𝑄(𝑠)

[






𝑢


(𝑠)







2

+ 𝑎 (𝑠) |𝑢 (𝑠)|
2
] 𝑑𝑠}

1/2

,

(22)

|𝑢 (𝑡)| ≤ {∫

+∞

𝑡

𝑒
−𝑄(𝑠)

[𝑎 (𝑠)]
−1/2

× [𝑒
𝑄(𝑠)

(






𝑢


(𝑠)







2

+ 𝑎 (𝑠) |𝑢 (𝑠)|
2
)] 𝑑𝑠}

1/2

,

(23)

|𝑢 (𝑡)| ≤ {∫

𝑡

−∞

𝑒
−𝑄(𝑠)

[𝑎 (𝑠)]
−1/2

× [𝑒
𝑄(𝑠)

(






𝑢


(𝑠)







2

+ 𝑎 (𝑠) |𝑢 (𝑠)|
2
)] 𝑑𝑠}

1/2

,

(24)
∞

∑

𝑗=−∞






𝑢 (𝑡

𝑗
)







2

≤

𝑝𝑇

𝑒
0






𝑢





2

2
, (25)

where ‖𝑢‖
∞

= ess sup
𝑡∈R|𝑢(𝑡)|, 𝑎0 = min

𝑡∈R{𝑎(𝑡)}, and 𝑒0 is
the same as that in assumption (I).

The following two lemmas are Mountain Pass Theorem
and Symmetric Mountain Pass Theorem, which are useful in
the proofs of our theorems.

Lemma 7 (see [21]). Let 𝐸 be a real Banach space and 𝜑 ∈

𝐶
1
(𝐸,R) satisfying (PS)-condition. Suppose that 𝜑(0) = 0 and

(i) there exist constants 𝜌, 𝛼 > 0 such that 𝜑
𝜕𝐵
𝜌
(0)
≥ 𝛼;

(ii) there exists an 𝑒 ∈ 𝐸 \ 𝐵
𝜌
(0) such that 𝜑(𝑒) ≤ 0.

Then, 𝜑 possesses a critical value 𝑐 ≥ 𝛼 which can be
characterized as 𝑐 = inf

ℎ∈Φ
max

𝑠∈[0,1]
𝜑(ℎ(𝑠)), where Φ = {ℎ ∈

𝐶([0, 1], 𝐸) | ℎ(0) = 0, ℎ(1) = 𝑒} and 𝐵
𝜌
(0) is an open ball in

𝐸 of radius 𝜌 centered at 0.

Lemma 8 (see [21]). Let 𝐸 be a real Banach space and 𝜑 ∈

𝐶
1
(𝐸,R) with 𝐼 even. Assume that 𝜑(0) = 0 and 𝜑 satisfies

(PS)-condition, assumption (i) of Lemma 7, and the following
condition:

(iii) for each finite dimensional subspace 𝐸 ⊂ 𝐸, there is
𝑟 = 𝑟(𝐸


) > 0 such that 𝜑(𝑢) ≤ 0, for 𝑢 ∈ 𝐸


\ 𝐵

𝑟
(0),

and 𝐵
𝑟
(0) is an open ball in 𝐸 of radius 𝑟 centered at 0.

Then, 𝜑 possesses an unbounded sequence of critical values.

Remark 9. Since it is very difficult to check condition (iii)
of Lemma 8, few results about infinitely many homoclinic
solutions can be seen in the literature by using Lemma 8,
let alone infinitely many fast homoclinic solutions obtained
by this lemma. Motivated by the idea of [22], we will use
Lemma 8 to prove that problem (1) has infinitely many
homoclinic fast solutions.

Lemma 10. Assume that (V3) and (V5) or (V5) hold. Then,
for every (𝑡, 𝑥) ∈ R ×R,

(i) 𝑠−𝜇𝑉
1
(𝑡, 𝑠𝑥) is nondecreasing on (0, +∞);

(ii) 𝑠−𝑉
2
(𝑡, 𝑠𝑥) is nonincreasing on (0, +∞).
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The proof of Lemma 10 is routine and we omit it.
The functional 𝜑 corresponding to (1) on 𝐸 is given by

𝜑 (𝑢) = ∫

R

1

2

𝑒
𝑄(𝑡)

[






𝑢


(𝑡)







2

+ 𝑎 (𝑡) |𝑢 (𝑡)|
2
] 𝑑𝑡

− ∫

R

𝑉 (𝑡, 𝑢 (𝑡)) 𝑑𝑡 +

∞

∑

𝑗=−∞

∫

𝑢(𝑡
𝑗
)

0

𝐼 (𝑠) 𝑑𝑠, 𝑢 ∈ 𝐸.

(26)

We now show that 𝜑 ∈ 𝐶1(𝐸,R) and, for 𝑢, V ∈ 𝐸,

⟨𝜑


(𝑢) , V⟩

= ∫

R

𝑒
𝑄(𝑡)

[(𝑢


(𝑡) , V (𝑡)) + (𝑎 (𝑡) 𝑢 (𝑡) , V (𝑡))

− (∇𝑉 (𝑡, 𝑢 (𝑡)) , V (𝑡))] 𝑑𝑡

+

∞

∑

𝑗=−∞

(𝐼 (𝑢 (𝑡
𝑗
)) , V (𝑡

𝑗
)) .

(27)

Firstly, we show that 𝜑 : 𝐸 → R. By (V2), for any given
𝜀
0
> 0, there exists 𝛾

0
> 0 such that

|∇𝑉 (𝑡, 𝑥)| ≤ 2𝜀𝑒
0
𝑎
0
|𝑥| ,

𝑡 ∈ (−∞, −𝑅] ∪ [𝑅, +∞) , |𝑥| ≤ 𝛾
0
,

(28)

where 𝑎
0
= min

𝑡∈R{𝑎(𝑡)}, 𝑒0 is the same as that in assumption
(I). Then, by 𝑉(𝑡, 0) = 0 and (28), we have

|𝑉 (𝑡, 𝑥)| =











∫

1

0

(∇𝑉 (𝑡, 𝑠𝑥) , 𝑥) 𝑑𝑠











≤ 𝜀𝑒
0
𝑎
0
|𝑥|

2
,

∀𝑡 ∈ (−∞, −𝑅] ∪ [𝑅, +∞) , 𝑥 ∈ R.

(29)

Therefore, from (29), we have









∫

R\(−𝑅,𝑅)

𝑉 (𝑡, 𝑢 (𝑡)) 𝑑𝑡










≤ ∫

R\(−𝑅,𝑅)
|𝑉 (𝑡, 𝑢 (𝑡))| 𝑑𝑡

≤ ∫

R\(−𝑅,𝑅)

𝜀𝑒
0
𝑎
0
|𝑢 (𝑡)|

2
𝑑𝑡

≤ ∫

R\(−𝑅,𝑅)

𝜀𝑒
𝑄(𝑡)

𝑎 (𝑡) |𝑢 (𝑡)|
2
𝑑𝑡

≤ ∫

R

𝜀𝑒
𝑄(𝑡)

𝑎 (𝑡) |𝑢 (𝑡)|
2
𝑑𝑡 ≤ 𝜀‖𝑢‖

2
, 𝑢 ∈ 𝐸.

(30)

From (I) and Lemma 6, we have
∞

∑

𝑗=−∞











∫

𝑢(𝑡
𝑗
)

0

𝐼 (𝑠) 𝑑𝑠











≤

∞

∑

𝑗=−∞

∫

max{0,𝑢(𝑡
𝑗
)}

min{0,𝑢(𝑡𝑗)}
|𝐼 (𝑠)| 𝑑𝑠

≤

1

2

∞

∑

𝑗=−∞

𝑐






𝑢 (𝑡

𝑗
)







2

≤

𝑐𝑝𝑇

2𝑒
0






𝑢





2

2
≤

𝑐𝑝𝑇

2𝑒
0

‖𝑢‖
2
.

(31)

It follows from (26), (30), and (31) that 𝜑 : 𝐸 → R. Next, we
prove that 𝜑 ∈ 𝐶1(𝐸,R). Rewrite 𝜑 as the following:

𝜑 (𝑢) = 𝜑
1
(𝑢) − 𝜑

2
(𝑢) + 𝜑

3
(𝑢) , (32)

where

𝜑
1
(𝑢) := ∫

R

1

2

𝑒
𝑄(𝑡)

[






𝑢


(𝑡)







2

+ 𝑎 (𝑡) |𝑢 (𝑡)|
2
] 𝑑𝑡,

𝜑
2
(𝑢) := ∫

R

𝑉 (𝑡, 𝑢 (𝑡)) 𝑑𝑡, 𝜑
3
(𝑢) :=

∞

∑

𝑗=−∞

∫

𝑢(𝑡
𝑗
)

0

𝐼 (𝑠) 𝑑𝑠.

(33)

It is easy to check that 𝜑
1
, 𝜑

3
∈ 𝐶

1
(𝐸,R) and

⟨𝜑


1
(𝑢) , V⟩ = ∫

R

𝑒
𝑄(𝑡)

[(𝑢


(𝑡) , V (𝑡)) + (𝑎 (𝑡) 𝑢 (𝑡) , V (𝑡))] 𝑑𝑡,

⟨𝜑


3
(𝑢) , V⟩ =

∞

∑

𝑗=−∞

(𝐼 (𝑢 (𝑡
𝑗
)) , V (𝑡

𝑗
)) ,

∀𝑢, V ∈ 𝐸.
(34)

Next, we prove that 𝜑
2
∈ 𝐶

1
(𝐸,R) and

⟨𝜑


2
(𝑢) , V⟩ = ∫

R

(∇𝑉 (𝑡, 𝑢 (𝑡)) , V (𝑡)) 𝑑𝑡, ∀𝑢, V ∈ 𝐸.

(35)

Let 𝑢
𝑛

→ 𝑢 in 𝐸, without loss of generality, and we can
assume that ‖𝑢

𝑛
‖ ≤ 𝛾

0
. Since 𝑉 ∈ 𝐶

1
(R ×R,R), we have





∇𝑉 (𝑡, 𝑢

𝑛
(𝑡)) , V (𝑡)



≤ max
|𝑥|≤𝛾
0
/√2𝑒
0√𝑎0

|∇𝑉 (𝑡, 𝑥)| |V (𝑡)|

:= 𝐶
0
|V (𝑡)| , ∀𝑡 ∈ [−𝑅, 𝑅] .

(36)

By (29) and (36), we have





∇𝑉 (𝑡, 𝑢

𝑛
(𝑡)) , V (𝑡)



≤ 𝜀𝑒
0
𝑎
0





𝑢
𝑛
(𝑡)




|V (𝑡)| + 𝐶

0
|V (𝑡)|

≤ 𝜀𝑒
𝑄(𝑡)

𝑎 (𝑡) (




𝑢
𝑛
(𝑡) − 𝑢 (𝑡)





+ |𝑢 (𝑡)|) |V (𝑡)| + 𝐶

0
|V (𝑡)|

:= 𝑔
𝑛
(𝑡) , 𝑡 ∈ R.

(37)
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Since 𝑢
𝑛
(𝑡) → 𝑢(𝑡), for almost every 𝑡 ∈ R, we have

lim
𝑛→+∞

𝑔
𝑛
(𝑡) = 𝜀𝑒

𝑄(𝑡)
𝑎 (𝑡) |𝑢 (𝑡)| |V (𝑡)| + 𝐶

0
|V (𝑡)| := 𝑔 (𝑡) ,

lim
𝑛→+∞

∫

R

𝑔
𝑛
(𝑡) 𝑑𝑡

= lim
𝑛→+∞

∫

R

[𝜀𝑒
𝑄(𝑡)

𝑎 (𝑡) (




𝑢
𝑛
(𝑡) − 𝑢 (𝑡)





+ |𝑢 (𝑡)|) |V (𝑡)|

+ 𝐶
0
|V (𝑡)| ] 𝑑𝑡

= lim
𝑛→+∞

∫

R

𝜀𝑒
𝑄(𝑡)

𝑎 (𝑡) (




𝑢
𝑛
(𝑡) − 𝑢 (𝑡)





) 𝑑𝑡

+ ∫

R

[𝜀𝑒
𝑄(𝑡)

𝑎 (𝑡) |𝑢 (𝑡)| |V (𝑡)| + 𝐶
0
|V (𝑡)|] 𝑑𝑡

= ∫

R

[𝜀𝑒
𝑄(𝑡)

𝑎 (𝑡) |𝑢 (𝑡)| |V (𝑡)| + 𝐶
0
|V (𝑡)|] 𝑑𝑡

:= ∫

R

𝑔 (𝑡) 𝑑𝑡 < +∞.

(38)

Then, by (37), (38), and Lebesgue’s dominated convergence
theorem, we have

lim
𝑛→+∞

∫

R

(∇𝑉 (𝑡, 𝑢
𝑛
(𝑡)) , V (𝑡)) 𝑑𝑡

= ∫

R

(∇𝑉 (𝑡, 𝑢 (𝑡)) , V (𝑡)) 𝑑𝑡.
(39)

Therefore, for any 𝑢, V ∈ 𝐸 and for any function 𝜃 : R →

(0, 1), from (39), we have

⟨𝜑


2
(𝑢) , V⟩

= lim
ℎ→0

+

𝜑
2
(𝑢 + ℎV) − 𝜑

2
(𝑢)

ℎ

= lim
ℎ→0

+

1

ℎ

∫

R
[𝑉 (𝑡, 𝑢 (𝑡) + ℎV (𝑡)) − 𝑉 (𝑡, 𝑢 (𝑡))] 𝑑𝑡

= lim
ℎ→0

+

∫

R

(∇𝑉 (𝑡, 𝑢 (𝑡) + 𝜃 (𝑡) ℎV (𝑡)) , V (𝑡)) 𝑑𝑡

= ∫

R

(∇𝑉 (𝑡, 𝑢 (𝑡)) , V (𝑡)) 𝑑𝑡, ∀𝑢, V ∈ 𝐸.

(40)

Finally, we prove that 𝜑
2
∈ 𝐶

1
(𝐸,R). From (40), 𝑢

𝑛
→ 𝑢 in

𝐸, and 𝑉 ∈ 𝐶
1
(R ×R,R), we have

lim
𝑛→+∞






⟨𝜑



2
(𝑢

𝑛
) − 𝜑



2
(𝑢) , V⟩







= lim
𝑛→+∞









∫

R

(∇𝑉 (𝑡, 𝑢
𝑛
(𝑡)) − ∇𝑉 (𝑡, 𝑢 (𝑡)) , V (𝑡)) 𝑑𝑡









≤ lim
𝑛→+∞

∫

R





∇𝑉 (𝑡, 𝑢

𝑛
(𝑡)) − ∇𝑉 (𝑡, 𝑢 (𝑡))





|V (𝑡)| 𝑑𝑡

= ∫

R

lim
𝑛→+∞





∇𝑉 (𝑡, 𝑢

𝑛
(𝑡)) − ∇𝑉 (𝑡, 𝑢 (𝑡))






× |V (𝑡)| 𝑑𝑡 = 0, ∀V ∈ 𝐸.

(41)

This shows that 𝜑
2
∈ 𝐶

1
(𝐸,R). Therefore, 𝜑 ∈ 𝐶

1
(𝐸,R) and

(27) holds. Similarly, we can prove 𝜑 ∈ 𝐶
1
(𝐸,R) and (27)

holds by (V1), (V2), and (I). Furthermore, the critical points
of 𝜑 in 𝐸 are classical solutions of (1) with 𝑢(±∞) = 0.

3. Proofs of Theorems

Proof of Theorem 2. It is clear that 𝜑(0) = 0. We first show
that the functional 𝜑 satisfies the (PS)-condition. Let {𝑢

𝑛
} ⊂

𝐸 satisfying 𝜑(𝑢
𝑛
) which is bounded and let 𝜑(𝑢

𝑛
) → 0 as

𝑛 → ∞. Then, there exists a constant 𝐶
1
> 0 such that





𝜑 (𝑢

𝑛
)




≤ 𝐶

1
,






𝜑

(𝑢

𝑛
)





𝐸
∗
≤ 𝜇𝐶

1
. (42)

From (I) and (25), we have

∞

∑

𝑗=−∞

(𝐼 (𝑢 (𝑡
𝑗
)) , 𝑢 (𝑡

𝑗
)) ≤

∞

∑

𝑗=−∞






𝐼 (𝑢 (𝑡

𝑗
))












𝑢 (𝑡

𝑗
)







≤

∞

∑

𝑗=−∞

𝑐






𝑢 (𝑡

𝑗
)







2

≤

𝑐𝑝𝑇

𝑒
0






𝑢





2

2
.

(43)

From (26), (27), (31), (42), (43), (V3), and (V5), we have

2𝐶
1
+ 2𝐶

1





𝑢
𝑛






≥ 2𝜑 (𝑢
𝑛
) −

2

𝜇

⟨𝜑

(𝑢

𝑛
) , 𝑢

𝑛
⟩

=

𝜇 − 2

𝜇





𝑢
𝑛






2

+ 2

∞

∑

𝑗=−∞

∫

𝑢(𝑡
𝑗
)

0

𝐼 (𝑠) 𝑑𝑠 −

2

𝜇

∞

∑

𝑗=−∞

(𝐼 (𝑢
𝑛
(𝑡
𝑗
)) , 𝑢

𝑛
(𝑡
𝑗
))

− 2∫

R

𝑒
𝑄(𝑡)

[𝑉
1
(𝑡, 𝑢

𝑛
(𝑡)) −

1

𝜇

(∇𝑉
1
(𝑡, 𝑢

𝑛
(𝑡)) , 𝑢

𝑛
(𝑡))] 𝑑𝑡

+ 2∫

R

𝑒
𝑄(𝑡)

[𝑉
2
(𝑡, 𝑢

𝑛
(𝑡)) −

1

𝜇

(∇𝑉
2
(𝑡, 𝑢

𝑛
(𝑡)) , 𝑢

𝑛
(𝑡))] 𝑑𝑡

≥

𝜇 − 2

𝜇





𝑢
𝑛






2

−

𝑐𝑝𝑇

𝑒
0






𝑢


𝑛







2

2
−

2𝑐𝑝𝑇

𝜇𝑒
0






𝑢


𝑛







2

2

≥ (

𝜇 − 2

𝜇

−

(𝜇 + 2) 𝑐𝑝𝑇

𝜇𝑒
0

)




𝑢
𝑛






2

.

(44)

Since 𝜇 >  > 2 and 0 < 𝑐 < ( − 2)𝑒
0
/( + 2)𝑝𝑇, the above

inequalities imply that there exists a constant𝐶
2
> 0 such that





𝑢
𝑛





≤ 𝐶

2
, 𝑛 ∈ N. (45)

Now, we prove that 𝑢
𝑛
→ 𝑢

0
in𝐸. Passing to a subsequence if

necessary, it can be assumed that 𝑢
𝑛
⇀ 𝑢

0
in 𝐸. For any given

number 𝜀 > 0, by (V2), we can choose 𝜉 > 0 such that

|∇𝑉 (𝑡, 𝑥)| ≤ 𝜀𝑎
0
|𝑥| for |𝑡| ≥ 𝑅, |𝑥| ≤ 𝜉. (46)
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Since 𝑄(𝑡) → ∞ as |𝑡| → ∞, we can choose 𝑅
0
> 𝑅 such

that

𝑄 (𝑡) ≥ ln(𝐶2
𝜉

) for |𝑡| ≥ 𝑅
0
. (47)

From (A), we can choose 𝑅
0
> 𝑅 such that

𝑎 (𝑡) ≥

𝐶
2

𝜉

for |𝑡| ≥ 𝑅


0
. (48)

It follows from (23), (45), (47), and (48) that





𝑢
𝑛
(𝑡)





2

≤ {∫

+∞

𝑡

𝑒
−𝑄(𝑠)

[𝑎 (𝑠)]
−1/2

× [𝑒
𝑄(𝑠)

(






𝑢


(𝑠)







2

+ 𝑎 (𝑠) |𝑢 (𝑠)|
2
)] 𝑑𝑠

}

}

}

1/2

≤

𝜉
2

𝐶
2

2





𝑢
𝑛






2

≤ 𝜉
2 for 𝑡 ≥ 𝑅

1
, 𝑛 ∈ N,

(49)

where 𝑅
1
= max{𝑅

0
, 𝑅



0
}. Similarly, by (24), (45), (47), and

(48), we have





𝑢
𝑛
(𝑡)





2

≤ 𝜉
2 for 𝑡 ≤ −𝑅

1
, 𝑛 ∈ N. (50)

Since 𝑢
𝑛
⇀ 𝑢

0
in 𝐸, it is easy to verify that 𝑢

𝑛
(𝑡) converges to

𝑢
0
(𝑡) pointwise for all 𝑡 ∈ R. Hence, it follows from (49) and

(50) that





𝑢
0
(𝑡)




≤ 𝜉 for 𝑡 ∈ (−∞, −𝑅

1
] ∪ [𝑅

1
, +∞) . (51)

Since 𝑒𝑄(𝑡) ≥ 𝑒
0
> 0 on [−𝑅

1
, 𝑅

1
] = 𝐽, the operator defined by

𝑆 : 𝐸 → 𝐻
1
(𝐽) : 𝑢 → 𝑢|

𝐽
is a linear continuous map. So,

𝑢
𝑛
→ 𝑢

0
in 𝐻1

(𝐽). Sobolev theorem implies that 𝑢
𝑛
→ 𝑢

0

uniformly on 𝐽, so there is 𝑛
0
∈ N such that

∫

𝑅
1

−𝑅
1

𝑒
𝑄(𝑡) 




∇𝑉 (𝑡, 𝑢

𝑛
(𝑡)) − ∇𝑉 (𝑡, 𝑢

0
(𝑡))






×




𝑢
𝑛
(𝑡) − 𝑢

0
(𝑡)




𝑑𝑡 < 𝜀 for 𝑛 ≥ 𝑛

0
.

(52)

From (45), (46), (49), (50), and (51), we have

∫

R\[−𝑅
1
,𝑅
1
]

𝑒
𝑄(𝑡) 




∇𝑉 (𝑡, 𝑢

𝑛
(𝑡)) − ∇𝑉 (𝑡, 𝑢

0
(𝑡))






×




𝑢
𝑛
(𝑡) − 𝑢

0
(𝑡)




𝑑𝑡

≤ ∫

R\[−𝑅
1
,𝑅
1
]

𝑒
𝑄(𝑡)

(




∇𝑉 (𝑡, 𝑢

𝑛
(𝑡))





+




∇𝑉 (𝑡, 𝑢

0
(𝑡))





)

× (




𝑢
𝑛
(𝑡)




+




𝑢
0
(𝑡)




) 𝑑𝑡

≤ 𝜀∫

R\[−𝑅
1
,𝑅
1
]

𝑒
𝑄(𝑡)

𝑎
0
(




𝑢
𝑛
(𝑡)




+




𝑢
0
(𝑡)




)

× (




𝑢
𝑛
(𝑡)




+




𝑢
0
(𝑡)




) 𝑑𝑡

≤ 2𝜀∫

R\[−𝑅
1
,𝑅
1
]

𝑒
𝑄(𝑡)

𝑎
0
(




𝑢
𝑛
(𝑡)





2

+




𝑢
0
(𝑡)





2

) 𝑑𝑡

≤ 2𝜀∫

R\[−𝑅
1
,𝑅
1
]

𝑒
𝑄(𝑡)

[𝑎 (𝑡)




𝑢
𝑛
(𝑡)





2

+ 𝑎 (𝑡)




𝑢
0
(𝑡)





2

] 𝑑𝑡

≤ 2𝜀 (




𝑢
𝑛






2

+




𝑢
0






2

) ≤ 2𝜀 (𝐶
2

2
+




𝑢
0






2

) , 𝑛 ∈ N.

(53)

It follows from (52) and (53) that

∫

R

𝑒
𝑄(𝑡) 




∇𝑉 (𝑡, 𝑢

𝑛
(𝑡)) − ∇𝑉 (𝑡, 𝑢

0
(𝑡))










𝑢
𝑛
(𝑡) − 𝑢

0
(𝑡)




𝑑𝑡 → 0 as 𝑛 → ∞.

(54)

From (27) and (I), as 𝑛 → ∞, we have

0 ← ⟨𝜑

(𝑢

𝑛
) − 𝜑


(𝑢

0
) , 𝑢

𝑛
− 𝑢

0
⟩

=




𝑢
𝑛
− 𝑢

0






2

+

∞

∑

𝑗=−∞

(𝐼 (𝑢
𝑛
(𝑡
𝑗
)) − 𝐼 (𝑢

0
(𝑡
𝑗
)) , 𝑢

𝑛
(𝑡
𝑗
) − 𝑢

0
(𝑡
𝑗
))

− ∫

R

𝑒
𝑄(𝑡)

(∇𝑉 (𝑡, 𝑢
𝑛
(𝑡)) − ∇𝑉 (𝑡, 𝑢

0
(𝑡)) , 𝑢

𝑛
(𝑡) − 𝑢

0
(𝑡)) 𝑑𝑡

≥




𝑢
𝑛
− 𝑢

0






2

− ∫

R

𝑒
𝑄(𝑡)

(∇𝑉 (𝑡, 𝑢
𝑛
(𝑡)) − ∇𝑉 (𝑡, 𝑢

0
(𝑡)) , 𝑢

𝑛
(𝑡) − 𝑢

0
(𝑡)) 𝑑𝑡.

(55)

It follows from (54) and (55) that





𝑢
𝑛
− 𝑢

0






2

→ 0 as 𝑛 → ∞. (56)

Hence, 𝑢
𝑛
→ 𝑢

0
in 𝐸 by (56). This shows that 𝜑 satisfies

(PS)-condition.
We now show that there exist constants 𝜌, 𝛼 > 0 such that

assumption (i) of Lemma 7 holds. From (V2), there exists 𝛿 ∈
(0, 1) such that

|∇𝑉 (𝑡, 𝑥)| ≤

𝑎
0

2

|𝑥| for |𝑡| ≥ 𝑅, |𝑥| ≤ 𝛿. (57)

By 𝑉(𝑡, 0) = 0 and (57), we have

|𝑉 (𝑡, 𝑥)| ≤

𝑎
0

4

|𝑥|
2 for |𝑡| ≥ 𝑅, |𝑥| ≤ 𝛿. (58)

Let

𝐶
3
= sup{𝑉1 (𝑡, 𝑥)

𝑎
0

| 𝑡 ∈ [−𝑅, 𝑅] , 𝑥 ∈ R, |𝑥| = 1} . (59)
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Setting𝜎 = min{1/(4𝐶
3
+1)

1/(𝜇−2)
, 𝛿} and ‖𝑢‖ = √2𝑒

0√
𝑎
0
𝜎 :=

𝜌, it follows from Lemma 6 that |𝑢(𝑡)| ≤ 𝜎 ≤ 𝛿 < 1 for 𝑡 ∈ R.
From Lemma 10 (i) and (59), we have

∫

𝑅

−𝑅

𝑒
𝑄(𝑡)

𝑉
1
(𝑡, 𝑢 (𝑡)) 𝑑𝑡

≤ ∫

{𝑡∈[−𝑅,𝑅]:𝑢(𝑡) ̸= 0}

𝑒
𝑄(𝑡)

𝑉
1
(𝑡,

𝑢 (𝑡)

|𝑢 (𝑡)|

) |𝑢 (𝑡)|
𝜇
𝑑𝑡

≤ 𝐶
3
∫

𝑅

−𝑅

𝑒
𝑄(𝑡)

𝑎
0
|𝑢 (𝑡)|

𝜇
𝑑𝑡

≤ 𝐶
3
𝜎
𝜇−2

∫

𝑅

−𝑅

𝑒
𝑄(𝑡)

𝑎
0
|𝑢 (𝑡)|

2
𝑑𝑡

≤ 𝐶
3
𝜎
𝜇−2

∫

𝑅

−𝑅

𝑒
𝑄(𝑡)

𝑎 (𝑡) |𝑢 (𝑡)|
2
𝑑𝑡

≤

1

4

∫

𝑅

−𝑅

𝑒
𝑄(𝑡)

𝑎 (𝑡) |𝑢 (𝑡)|
2
𝑑𝑡.

(60)

By (V5), (31), (58), and (60), we have

𝜑 (𝑢) =

1

2

‖𝑢‖
2
+

∞

∑

𝑗=−∞

∫

𝑢(𝑡
𝑗
)

0

𝐼 (𝑠) 𝑑𝑠

− ∫

R

𝑒
𝑄(𝑡)

𝑉 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

≥

1

2

‖𝑢‖
2
+

∞

∑

𝑗=−∞

∫

𝑢(𝑡
𝑗
)

0

𝐼 (𝑠) 𝑑𝑠

− ∫

R\[−𝑅,𝑅]

𝑒
𝑄(𝑡)

𝑉 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

− ∫

𝑅

−𝑅

𝑒
𝑄(𝑡)

𝑉
1
(𝑡, 𝑢 (𝑡)) 𝑑𝑡

≥

1

2

‖𝑢‖
2
−

𝑐𝑝𝑇

2𝑒
0






𝑢





2

2

−

1

4

∫

R\[−𝑅,𝑅]

𝑎
0
𝑒
𝑄(𝑡)

|𝑢 (𝑡)|
2
𝑑𝑡

−

1

4

∫

𝑅

−𝑅

𝑒
𝑄(𝑡)

𝑎 (𝑡) |𝑢 (𝑡)|
2
𝑑𝑡

≥

1

2

‖𝑢‖
2
−

𝑐𝑝𝑇

2𝑒
0






𝑢





2

2

−

1

4

∫

R\[−𝑅,𝑅]

𝑒
𝑄(𝑡)

𝑎 (𝑡) |𝑢 (𝑡)|
2
𝑑𝑡

−

1

4

∫

𝑅

−𝑅

𝑒
𝑄(𝑡)

𝑎 (𝑡) |𝑢 (𝑡)|
2
𝑑𝑡

=

1

2

‖𝑢‖
2
−

𝑐𝑝𝑇

2𝑒
0






𝑢





2

2

−

1

4

∫

R

𝑒
𝑄(𝑡)

𝑎 (𝑡) |𝑢 (𝑡)|
2
𝑑𝑡

≥ min{1
2

−

𝑐𝑝𝑇

2𝑒
0

,

1

4

} ‖𝑢‖
2
.

(61)

Therefore, we can choose a constant 𝛼 > 0 depending on 𝜌
such that 𝜑(𝑢) ≥ 𝛼 for any 𝑢 ∈ 𝐸 with ‖𝑢‖ = 𝜌, which shows
that 𝜑 satisfies assumption (i) of Lemma 7.

Finally, it remains to show that 𝜑 satisfies assumption (ii)
of Lemma 7. From Lemma 10 (ii) and (22), we have for any
𝑢 ∈ 𝐸

∫

3

−3

𝑒
𝑄(𝑡)

𝑉
2
(𝑡, 𝑢 (𝑡)) 𝑑𝑡

= ∫

{𝑡∈[−3,3]:|𝑢(𝑡)|>1}

𝑒
𝑄(𝑡)

𝑉
2
(𝑡, 𝑢 (𝑡)) 𝑑𝑡

+ ∫

{𝑡∈[−3,3]:|𝑢(𝑡)|≤1}

𝑒
𝑄(𝑡)

𝑉
2
(𝑡, 𝑢 (𝑡)) 𝑑𝑡

≤ ∫

{𝑡∈[−3,3]:|𝑢(𝑡)|>1}

𝑒
𝑄(𝑡)

𝑉
2
(𝑡,

𝑢 (𝑡)

|𝑢 (𝑡)|

) |𝑢 (𝑡)|

𝑑𝑡

+ ∫

3

−3

𝑒
𝑄(𝑡)max

|𝑥|≤1

𝑉
2
(𝑡, 𝑥) 𝑑𝑡

≤ ‖𝑢‖


∞
∫

3

−3

𝑒
𝑄(𝑡)max

|𝑥|=1

𝑉
2
(𝑡, 𝑥) 𝑑𝑡

+ ∫

3

−3

𝑒
𝑄(𝑡)max

|𝑥|≤1

𝑉
2
(𝑡, 𝑥) 𝑑𝑡

≤ (

1

√2𝑒
0√
𝑎
0

)



‖𝑢‖

∫

3

−3

𝑒
𝑄(𝑡)max

|𝑥|=1

𝑉
2
(𝑡, 𝑥) 𝑑𝑡

+ ∫

3

−3

𝑒
𝑄(𝑡)max

|𝑥|≤1

𝑉
2
(𝑡, 𝑥) 𝑑𝑡

= 𝐶
4
‖𝑢‖


+ 𝐶

5
,

(62)

where 𝐶
4
= (1/√2𝑒

0√
𝑎
0
)



∫

3

−3
𝑒
𝑄(𝑡)max

|𝑥|=1
𝑉
2
(𝑡, 𝑥)𝑑𝑡, 𝐶

5
=

∫

3

−3
𝑒
𝑄(𝑡)max

|𝑥|≤1
𝑉
2
(𝑡, 𝑥)𝑑𝑡. Take 𝜔 ∈ 𝐸 such that

|𝜔 (𝑡)| = {

1, for |𝑡| ≤ 1,

0, for |𝑡| ≥ 3,

(63)

and |𝜔(𝑡)| ≤ 1 for |𝑡| ∈ (1, 3]. For 𝑠 > 1, from Lemma 10 (i)
and (63), we get

∫

1

−1

𝑒
𝑄(𝑡)

𝑉
1
(𝑡, 𝑠𝜔 (𝑡)) 𝑑𝑡 ≥ 𝑠

𝜇
∫

1

−1

𝑒
𝑄(𝑡)

𝑉
1
(𝑡, 𝜔 (𝑡)) 𝑑𝑡

= 𝐶
6
𝑠
𝜇
,

(64)
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where 𝐶
6
= ∫

1

−1
𝑒
𝑄(𝑡)

𝑉
1
(𝑡, 𝜔(𝑡))𝑑𝑡 > 0. From (26), (31), (62),

(63), and (64), we get for 𝑠 > 1

𝜑 (𝑠𝜔) =

𝑠
2

2

‖𝜔‖
2
+

∞

∑

𝑗=−∞

∫

𝑠𝜔(𝑡)

0

𝐼 (𝑡) 𝑑𝑡

+ ∫

R

𝑒
𝑄(𝑡)

[𝑉
2
(𝑡, 𝑠𝜔 (𝑡)) − 𝑉

1
(𝑡, 𝑠𝜔 (𝑡))] 𝑑𝑡

≤

𝑠
2

2

‖𝜔‖
2
+

𝑐𝑝𝑇𝑠
2

2𝑒
0






𝜔





2

2

+ ∫

3

−3

𝑒
𝑄(𝑡)

𝑉
2
(𝑡, 𝑠𝜔 (𝑡)) 𝑑𝑡

− ∫

1

−1

𝑒
𝑄(𝑡)

𝑉
1
(𝑡, 𝑠𝜔 (𝑡)) 𝑑𝑡

≤ (

𝑒
0
+ 𝑐𝑝𝑇

2𝑒
0

) 𝑠
2

‖𝜔‖
2
+ 𝐶

4
𝑠


‖𝜔‖

+ 𝐶

5
− 𝐶

6
𝑠
𝜇
.

(65)

Since 𝜇 >  > 2 and 𝐶
6
> 0, it follows from (65) that there

exists 𝑠
1
> 1 such that ‖𝑠

1
𝜔‖ > 𝜌 and 𝜑(𝑠

1
𝜔) < 0. Set 𝑒 =

𝑠
1
𝜔(𝑡), and then 𝑒 ∈ 𝐸, ‖𝑒‖ = ‖𝑠

1
𝜔‖ > 𝜌, and 𝜑(𝑒) = 𝜑(𝑠

1
𝜔) <

0. By Lemma 7, 𝜑 has a critical value 𝑐 > 𝛼 given by

𝑐 = inf
𝑔∈Φ

max
𝑠∈[0,1]

𝜑 (𝑔 (𝑠)) , (66)

where

Φ = {𝑔 ∈ 𝐶 ([0, 1] , 𝐸) : 𝑔 (0) = 0, 𝑔 (1) = 𝑒} . (67)

Hence, there exists 𝑢∗ ∈ 𝐸 such that

𝜑 (𝑢
∗
) = 𝑐, 𝜑


(𝑢

∗
) = 0. (68)

The function 𝑢
∗ is a desired solution of problem (1). Since

𝑐 > 0, 𝑢∗ is a nontrivial fast homoclinic solution.The proof is
complete.

Proof of Theorem 3. In the proof of Theorem 2, the condition
𝑉
2
(𝑡, 𝑥) ≥ 0 in (V5) is only used in the proofs of (45) and

assumption (i) of Lemma 7.Therefore, we only need to prove
that (45) and assumption (i) of Lemma 7 still hold if we use
(V2) and (V5) instead of (V2) and (V5), respectively. We
first prove that (45) holds. From (V3), (V5), (26), (27), (31),
(42), and (43), we have

2𝐶
1
+

2𝐶
1
𝜇







𝑢
𝑛






≥ 2𝜑 (𝑢
𝑛
) −

2



⟨𝜑

(𝑢

𝑛
) , 𝑢

𝑛
⟩

=

( − 2)







𝑢
𝑛






2

+ 2∫

R

𝑒
𝑄(𝑡)

[𝑉
2
(𝑡, 𝑢

𝑛
(𝑡)) −

1



(∇𝑉
2
(𝑡, 𝑢

𝑛
(𝑡)) , 𝑢

𝑛
(𝑡))] 𝑑𝑡

− 2∫

R

𝑒
𝑄(𝑡)

[𝑉
1
(𝑡, 𝑢

𝑛
(𝑡)) −

1



(∇𝑉
1
(𝑡, 𝑢

𝑛
(𝑡)) , 𝑢

𝑛
(𝑡))] 𝑑𝑡

+ 2

∞

∑

𝑗=−∞

∫

𝑢(𝑡
𝑗
)

0

𝐼 (𝑡) 𝑑𝑡 −

2



∞

∑

𝑗=−∞

(𝐼 (𝑢 (𝑡
𝑗
)) , 𝑢 (𝑡

𝑗
))

≥

( − 2)







𝑢
𝑛






2

−

𝑐𝑝𝑇

𝑒
0






𝑢


𝑛







2

2
−

2𝑐𝑝𝑇

𝑒
0






𝑢


𝑛







2

2

≥

( − 2)







𝑢
𝑛






2

−

𝑐𝑝𝑇

𝑒
0





𝑢
𝑛






2

−

2𝑐𝑝𝑇

𝑒
0





𝑢
𝑛






2

= (

 − 2



−

( + 2) 𝑐𝑝𝑇

𝑒
0

)




𝑢
𝑛






2

,

(69)

which implies that there exists a constant 𝐶
2
> 0 such that

(45) holds. Next, we prove that assumption (i) of Lemma 7
still holds. From (V2), there exists 𝛿 ∈ (0, 1) such that

|∇𝑉 (𝑡, 𝑥)| ≤

𝑎
0

2

|𝑥| for 𝑡 ∈ R, |𝑥| ≤ 𝛿. (70)

By 𝑉(𝑡, 0) = 0 and (70), we have

|𝑉 (𝑡, 𝑥)| ≤

𝑎
0

4

|𝑥|
2 for 𝑡 ∈ R, |𝑥| ≤ 𝛿. (71)

Let ‖𝑢‖ = √2𝑒
0√
𝑎
0
𝛿 := 𝜌, and it follows from Lemma 6 that

|𝑢(𝑡)| ≤ 𝛿. It follows from (31) and (71) that

𝜑 (𝑢) =

1

2

‖𝑢‖
2
+

∞

∑

𝑗=−∞

∫

𝑢(𝑡
𝑗
)

0

𝐼 (𝑡) 𝑑𝑡

− ∫

R

𝑒
𝑄(𝑡)

𝑉 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

≥

1

2

‖𝑢‖
2
−

𝑐𝑝𝑇

2𝑒
0






𝑢





2

2

−

1

4

∫

R

𝑎
0
𝑒
𝑄(𝑡)

|𝑢 (𝑡)|
2
𝑑𝑡

≥

1

2

‖𝑢‖
2
−

𝑐𝑝𝑇

2𝑒
0






𝑢





2

2

−

1

4

∫

R

𝑎 (𝑡) 𝑒
𝑄(𝑡)

|𝑢 (𝑡)|
2
𝑑𝑡

≥ min{1
2

−

𝑐𝑝𝑇

2𝑒
0

,

1

4

} ‖𝑢‖
2
.

(72)

Therefore, we can choose a constant 𝛼 > 0 depending on 𝜌
such that 𝜑(𝑢) ≥ 𝛼 for any 𝑢 ∈ 𝐸 with ‖𝑢‖ = 𝜌. The proof of
Theorem 3 is complete.

Proof of Theorem 4. Condition (V6) shows that 𝜑 is even. In
view of the proof of Theorem 2, we know that 𝜑 ∈ 𝐶

1
(𝐸,R)

and satisfies (PS)-condition and assumption (i) of Lemma 7.
Now, we prove that (iii) of Lemma 8 holds. Let 𝐸 be a
finite dimensional subspace of 𝐸. Since all norms of a finite
dimensional space are equivalent, there exists 𝑑 > 0 such that

‖𝑢‖ ≤ 𝑑‖𝑢‖
∞
, 𝑢 ∈ 𝐸


. (73)
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Assume that dim𝐸 = 𝑚 and {𝑢
1
, 𝑢

2
, . . . , 𝑢

𝑚
} is a base of 𝐸

such that





𝑢
𝑖





= 𝑑, 𝑖 = 1, 2, . . . , 𝑚. (74)

For any 𝑢 ∈ 𝐸, there exist 𝜆
𝑖
∈ R, 𝑖 = 1, 2, . . . , 𝑚 such that

𝑢 (𝑡) =

𝑚

∑

𝑖=1

𝜆
𝑖
𝑢
𝑖
(𝑡) for 𝑡 ∈ R. (75)

Let

‖𝑢‖
∗
=

𝑚

∑

𝑖=1





𝜆
𝑖










𝑢
𝑖





. (76)

It is easy to see that ‖ ⋅ ‖
∗
is a norm of 𝐸. Hence, there exists

a constant 𝑑 > 0 such that 𝑑‖𝑢‖
∗
≤ ‖𝑢‖. Since 𝑢

𝑖
∈ 𝐸, by

Lemma 6, we can choose 𝑅
2
> 𝑅 such that





𝑢
𝑖
(𝑡)




<

𝑑

𝛿

𝑚 + 𝑑

, |𝑡| > 𝑅

2
, 𝑖 = 1, 2, . . . , 𝑚, (77)

where 𝛿 is given in (71). Let

Θ = {

𝑚

∑

𝑖=1

𝜆
𝑖
𝑢
𝑖
(𝑡) : 𝜆

𝑖
∈ R, 𝑖 = 1, 2, . . . , 𝑚;

𝑚

∑

𝑖=1





𝜆
𝑖





= 1}

= {𝑢 ∈ 𝐸

: ‖𝑢‖

∗
= 𝑑} .

(78)

Hence, for 𝑢 ∈ Θ, let 𝑡
0
= 𝑡

0
(𝑢) ∈ R such that





𝑢 (𝑡

0
)




= ‖𝑢‖

∞
. (79)

Then, by (73)–(76), (78), and (79), we have

𝑑𝑑

= 𝑑𝑑



𝑚

∑

𝑖=1





𝜆
𝑖





= 𝑑



𝑚

∑

𝑖=1





𝜆
𝑖










𝑢
𝑖





= 𝑑



‖𝑢‖
∗

≤ ‖𝑢‖ ≤ 𝑑‖𝑢‖
∞
= 𝑑





𝑢 (𝑡

0
)




= 𝑑












𝑚

∑

𝑖=1

𝜆
𝑖
𝑢
𝑖
(𝑡
0
)












≤ 𝑑

𝑚

∑

𝑖=1





𝜆
𝑖










𝑢
𝑖
(𝑡
0
)




, 𝑢 ∈ Θ.

(80)

This shows that |𝑢(𝑡
0
)| ≥ 𝑑

 and there exists 𝑖
0
∈ {1, 2, . . . , 𝑚}

such that |𝑢
𝑖
0

(𝑡
0
)| ≥ 𝑑


/𝑚, which together with (77) implies

that |𝑡
0
| ≤ 𝑅

2
. Let 𝑅

3
= 𝑅

2
+ 1 and

𝛾 = min
{
{

{
{

{

𝑒
𝑄(𝑡)

𝑉
1
(𝑡, 𝑥) : −𝑅

3
≤ 𝑡 ≤ 𝑅

3
,

𝑑


√2

≤ |𝑥| ≤

𝑑

√2𝑒
0√
𝑎
0

}
}

}
}

}

.

(81)

Since 𝑉
1
(𝑡, 𝑥) > 0 for all 𝑡 ∈ R and 𝑥 ∈ R \ {0} and 𝑉

1
∈

𝐶
1
(R × R,R), it follows that 𝛾 > 0. For any 𝑢 ∈ 𝐸, from

Lemmas 6 and 10 (i), we have

∫

𝑅
3

−𝑅
3

𝑒
𝑄(𝑡)

𝑉
2
(𝑡, 𝑢 (𝑡)) 𝑑𝑡

= ∫

{𝑡∈[−𝑅
3
,𝑅
3
]:|𝑢(𝑡)|>1}

𝑒
𝑄(𝑡)

𝑉
2
(𝑡, 𝑢 (𝑡)) 𝑑𝑡

+ ∫

{𝑡∈[−𝑅
3
,𝑅
3
]:|𝑢(𝑡)|≤1}

𝑒
𝑄(𝑡)

𝑉
2
(𝑡, 𝑢 (𝑡)) 𝑑𝑡

≤ ∫

{𝑡∈[−𝑅
3
,𝑅
3
]:|𝑢(𝑡)|>1}

𝑒
𝑄(𝑡)

𝑉
2
(𝑡,

𝑢 (𝑡)

|𝑢 (𝑡)|

) |𝑢 (𝑡)|

𝑑𝑡

+ ∫

𝑅
3

−𝑅
3

𝑒
𝑄(𝑡)max

|𝑥|≤1

𝑉
2
(𝑡, 𝑥) 𝑑𝑡

≤ ‖𝑢‖


∞
∫

𝑅
3

−𝑅
3

𝑒
𝑄(𝑡)max

|𝑥|=1

𝑉
2
(𝑡, 𝑥) 𝑑𝑡

+ ∫

𝑅
3

−𝑅
3

𝑒
𝑄(𝑡)max

|𝑥|≤1

𝑉
2
(𝑡, 𝑥) 𝑑𝑡

≤ (

1

√2𝑒
0√
𝑎
0

)



‖𝑢‖

∫

𝑅
3

−𝑅
3

𝑒
𝑄(𝑡)max

|𝑥|=1

𝑉
2
(𝑡, 𝑥) 𝑑𝑡

+ ∫

𝑅
3

−𝑅
3

𝑒
𝑄(𝑡)max

|𝑥|≤1

𝑉
2
(𝑡, 𝑥) 𝑑𝑡

= 𝐶
7
‖𝑢‖


+ 𝐶

8
,

(82)

where 𝐶
7
= (1/√2𝑒

0√
𝑎
0
)



∫

𝑅
3

−𝑅
3

𝑒
𝑄(𝑡)max

|𝑥|=1
𝑉
2
(𝑡, 𝑥)𝑑𝑡 and

𝐶
8

= ∫

𝑅
3

−𝑅
3

𝑒
𝑄(𝑡)max

|𝑥|≤1
𝑉
2
(𝑡, 𝑥)𝑑𝑡. Since 𝑢



𝑖
∈ 𝐿

2
(𝑒
𝑄(𝑡)

),
𝑖 = 1, 2, . . . , 𝑚, it follows that there exists 𝜀

1
∈

(0, (𝑑

)
2
𝑒
0
/32𝑚

2
𝑑
2
) such that

∫

𝑡+𝜀
1

𝑡−𝜀
1






𝑢


𝑖
(𝑠)






𝑑𝑠

= ∫

𝑡+𝜀
1

𝑡−𝜀
1

𝑒
−𝑄(𝑠)/2

𝑒
𝑄(𝑠)/2 




𝑢


𝑖
(𝑠)






𝑑𝑠

≤

1

√𝑒0

∫

𝑡+𝜀
1

𝑡−𝜀
1

𝑒
𝑄(𝑠)/2 




𝑢


𝑖
(𝑠)






𝑑𝑠

≤

1

√𝑒0

(2𝜀
1
)
1/2

(∫

𝑡+𝜀
1

𝑡−𝜀

𝑒
𝑄(𝑠)




𝑢


𝑖
(𝑠)







2

𝑑𝑠)

1/2

≤ (

2𝜀
1

𝑒
0

)

1/2





𝑢


𝑖





2

≤

𝑑


4𝑚

for 𝑡 ∈ R, 𝑖 = 1, 2, . . . , 𝑚.

(83)
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Then, for 𝑢 ∈ Θ with |𝑢(𝑡
0
)| = ‖𝑢‖

∞
and 𝑡 ∈ [𝑡

0
− 𝜀

1
, 𝑡
0
+ 𝜀

1
],

it follows from (75), (78), (79), (80), and (83) that

|𝑢 (𝑡)|
2
=




𝑢 (𝑡

0
)





2

+ 2∫

𝑡

𝑡
0

(𝑢


(𝑠) , 𝑢 (𝑠)) 𝑑𝑠

≥




𝑢 (𝑡

0
)





2

− 2∫

𝑡
0
+𝜀
1

𝑡
0
−𝜀
1

|𝑢 (𝑠)|






𝑢


(𝑠)






𝑑𝑠

≥




𝑢 (𝑡

0
)





2

− 2




𝑢 (𝑡

0
)




∫

𝑡
0
+𝜀
1

𝑡
0
−𝜀
1






𝑢


(𝑠)






𝑑𝑠

≥




𝑢 (𝑡

0
)





2

− 2




𝑢 (𝑡

0
)





𝑚

∑

𝑖=1





𝜆
𝑖





∫

𝑡
0
+𝜀
1

𝑡
0
−𝜀
1






𝑢


𝑖
(𝑠)






𝑑𝑠

≥

(𝑑

)

2

2

.

(84)

On the other hand, since ‖𝑢‖ ≤ 𝑑 for 𝑢 ∈ Θ, then

|𝑢 (𝑡)| ≤ ‖𝑢‖
∞
≤

𝑑

√2𝑒
0√
𝑎
0

, 𝑡 ∈ R, 𝑢 ∈ Θ. (85)

Therefore, from (81), (84), and (85), we have

∫

𝑅
3

−𝑅
3

𝑒
𝑄(𝑡)

𝑉
1
(𝑡, 𝑢 (𝑡)) 𝑑𝑡

≥ ∫

𝑡
0
+𝜀
1

𝑡
0
−𝜀
1

𝑒
𝑄(𝑡)

𝑉
1
(𝑡, 𝑢 (𝑡)) 𝑑𝑡 ≥ 2𝜀

1
𝛾 for 𝑢 ∈ Θ.

(86)

By (77) and (78), we have

|𝑢 (𝑡)| ≤

𝑚

∑

𝑖=1





𝜆
𝑖










𝑢
𝑖
(𝑡)




≤ 𝛿 for |𝑡| ≥ 𝑅

2
, 𝑢 ∈ Θ. (87)

By (26), (31), (58), (82), (86), (87), and Lemma 10, we have for
𝑢 ∈ Θ and 𝑟 > 1

𝜑 (𝑟𝑢)

=

𝑟
2

2

‖𝑢‖
2
+

∞

∑

𝑗=−∞

∫

𝑟𝑢(𝑡
𝑗
)

0

𝐼 (𝑡) 𝑑𝑡

+ ∫

R

𝑒
𝑄(𝑡)

[𝑉
2
(𝑡, 𝑟𝑢 (𝑡)) − 𝑉

1
(𝑡, 𝑟𝑢 (𝑡))] 𝑑𝑡

≤

𝑟
2

2

‖𝑢‖
2
+

𝑐𝑝𝑇𝑟
2

2𝑒
0






𝑢





2

2
+ 𝑟


∫

R

𝑒
𝑄(𝑡)

𝑉
2
(𝑡, 𝑢 (𝑡)) 𝑑𝑡

− 𝑟
𝜇
∫

R

𝑒
𝑄(𝑡)

𝑉
1
(𝑡, 𝑢 (𝑡)) 𝑑𝑡

=

𝑟
2

2

‖𝑢‖
2
+

𝑐𝑝𝑇𝑟
2

2𝑒
0






𝑢





2

2

+ 𝑟

∫

R\(−𝑅
3
,𝑅
3
)

𝑒
𝑄(𝑡)

𝑉
2
(𝑡, 𝑢 (𝑡)) 𝑑𝑡

− 𝑟
𝜇
∫

𝑅
3

−𝑅
3

𝑒
𝑄(𝑡)

𝑉
1
(𝑡, 𝑢 (𝑡)) 𝑑𝑡

− 𝑟
𝜇
∫

R\(−𝑅
3
,𝑅
3
)

𝑒
𝑄(𝑡)

𝑉
1
(𝑡, 𝑢 (𝑡)) 𝑑𝑡

+ 𝑟

∫

𝑅
3

−𝑅
3

𝑒
𝑄(𝑡)

𝑉
2
(𝑡, 𝑢 (𝑡)) 𝑑𝑡

≤

𝑟
2

2

‖𝑢‖
2
+

𝑐𝑝𝑇𝑟
2

2𝑒
0






𝑢





2

2

− 𝑟

∫

R\(−𝑅
3
,𝑅
3
)

𝑒
𝑄(𝑡)

𝑉 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

− 𝑟
𝜇
∫

𝑅
3

−𝑅
3

𝑒
𝑄(𝑡)

𝑉
1
(𝑡, 𝑢 (𝑡)) 𝑑𝑡 + 𝑟


∫

𝑅
3

−𝑅
3

𝑒
𝑄(𝑡)

𝑉
2
(𝑡, 𝑢 (𝑡)) 𝑑𝑡

≤

𝑟
2

2

‖𝑢‖
2
+

𝑐𝑝𝑇𝑟
2

2𝑒
0






𝑢





2

2
+

𝑟


4

∫

R\(−𝑅
3
,𝑅
3
)

𝑎
0
𝑒
𝑄(𝑡)

|𝑢 (𝑡)|
2
𝑑𝑡

+ 𝑟

(𝐶

7
‖𝑢‖


+ 𝐶

8
) − 2𝜀

1
𝛾𝑟

𝜇

≤

𝑟
2

2

‖𝑢‖
2
+

𝑐𝑝𝑇𝑟
2

2𝑒
0






𝑢





2

2

+

𝑟


4

∫

R\(−𝑅
3
,𝑅
3
)

𝑎 (𝑡) 𝑒
𝑄(𝑡)

|𝑢 (𝑡)|
2
𝑑𝑡

+ 𝑟

(𝐶

7
‖𝑢‖


+ 𝐶

8
) − 2𝜀

1
𝛾𝑟

𝜇

≤ (

1

2

+

𝑐𝑝𝑇

2𝑒
0

) 𝑟
2

‖𝑢‖
2
+

𝑟


4

‖𝑢‖
2
+ 𝑟


(𝐶

7
‖𝑢‖


+ 𝐶

8
)

− 2𝜀
1
𝛾𝑟

𝜇

≤ (

1

2

+

𝑐𝑝𝑇

2𝑒
0

) 𝑟
2
𝑑
2
+

𝑟


4

𝑑
2
+ 𝐶

7
(𝑟𝑑)


+ 𝐶

8
𝑟

− 2𝜀

1
𝛾𝑟

𝜇
.

(88)

Since 𝜇 >  > 2, there exists 𝑟
0

= 𝑟
0
(𝑐, 𝑝, 𝑇

,𝑒
0
, 𝑑, 𝑑


, 𝐶

7
, 𝐶

8
, 𝑅

2
, 𝑅

3
, 𝜀
1
, 𝛾) = 𝑟

0
(𝐸


) > 1 such that

𝜑 (𝑟𝑢) < 0 for 𝑢 ∈ Θ, 𝑟 ≥ 𝑟
0
. (89)

It follows that

𝜑 (𝑢) < 0 for 𝑢 ∈ 𝐸, ‖𝑢‖ ≥ 𝑑𝑟
0
, (90)

which shows that (iii) of Lemma 8 holds. By Lemma 8, 𝜑
possesses an unbounded sequence {𝑐

𝑛
}
∞

𝑛=1
of critical values

with 𝑐
𝑛
= 𝜑(𝑢

𝑛
), where 𝑢

𝑛
is such that 𝜑(𝑢

𝑛
) = 0 for 𝑛 =

1, 2, . . . . If {‖𝑢
𝑛
‖} is bounded, then there exists 𝐶

9
> 0 such

that





𝑢
𝑛





≤ 𝐶

9
for 𝑛 ∈ N. (91)
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By a similar fashion for the proof of (49) and (50), for the
given 𝛿 in (58), there exists 𝑅

4
> 𝑅 such that





𝑢
𝑛
(𝑡)




≤ 𝛿 for |𝑡| ≥ 𝑅

4
, 𝑛 ∈ N. (92)

Hence, by (22), (26), (31), (58), (91), and (92), we have

1

2





𝑢
𝑛






2

= 𝑐
𝑛
+ ∫

R

𝑒
𝑄(𝑡)

𝑉 (𝑡, 𝑢
𝑛
(𝑡)) 𝑑𝑡 −

∞

∑

𝑗=−∞

∫

𝑢
𝑛
(𝑡
𝑗
)

0

𝐼 (𝑡) 𝑑𝑡

= 𝑐
𝑛
+ ∫

R\(−𝑅
4
,𝑅
4
)

𝑒
𝑄(𝑡)

𝑉 (𝑡, 𝑢
𝑛
(𝑡)) 𝑑𝑡

+ ∫

𝑅
4

−𝑅
4

𝑒
𝑄(𝑡)

𝑉 (𝑡, 𝑢
𝑛
(𝑡)) 𝑑𝑡 −

∞

∑

𝑗=−∞

∫

𝑢
𝑛
(𝑡
𝑗
)

0

𝐼 (𝑡) 𝑑𝑡

≥ 𝑐
𝑛
−

1

4

∫

R\(−𝑅
4
,𝑅
4
)

𝑎
0
𝑒
𝑄(𝑡)




𝑢
𝑛
(𝑡)





2

𝑑𝑡

− ∫

𝑅
4

−𝑅
4

𝑒
𝑄(𝑡) 




𝑉 (𝑡, 𝑢

𝑛
(𝑡))





𝑑𝑡 −

𝑐𝑝𝑇

2𝑒
0






𝑢


𝑛







2

2

≥ 𝑐
𝑛
−

1

4

∫

R\(−𝑅
4
,𝑅
4
)

𝑒
𝑄(𝑡)

𝑎 (𝑡)




𝑢
𝑛
(𝑡)





2

𝑑𝑡

− ∫

𝑅
4

−𝑅
4

𝑒
𝑄(𝑡) 




𝑉 (𝑡, 𝑢

𝑛
(𝑡))





𝑑𝑡 −

𝑐𝑝𝑇

2𝑒
0






𝑢


𝑛







2

2

≥ 𝑐
𝑛
−

1

4





𝑢
𝑛






2

− ∫

𝑅
4

−𝑅
4

𝑒
𝑄(𝑡) max

|𝑥|≤√2𝑒
0√𝑎0𝐶9

|𝑉 (𝑡, 𝑥)| 𝑑𝑡

−

𝑐𝑝𝑇

2𝑒
0





𝑢
𝑛






2

.

(93)

It follows from (93) that

𝑐
𝑛
≤ (

3

4

+

𝑐𝑝𝑇

2𝑒
0

)




𝑢
𝑛






2

+ ∫

𝑅
3

−𝑅
3

𝑒
𝑄(𝑡) max

|𝑥|≤√2𝑒
0√𝑎0𝐶9

|𝑉 (𝑡, 𝑥)| 𝑑𝑡 < +∞.

(94)

This contradicts the fact that {𝑐
𝑛
}
∞

𝑛=1
is unbounded, and so

{‖𝑢
𝑛
‖} is unbounded. The proof is complete.

Proof of Theorem 5. In view of the proofs of Theorems 3 and
4, the conclusion of Theorem 5 holds. The proof is complete.

4. Examples

Example 1. Consider the following system:

𝑢


(𝑡) + 𝑡
3
𝑢


(𝑡) − 𝑎 (𝑡) 𝑢 (𝑡)

+ ∇𝑉 (𝑡, 𝑢 (𝑡)) = 0, a.e. 𝑡 ∈ (𝑡
𝑗
, 𝑡
𝑗+1
) , 𝑗 ∈ Z,

Δ𝑢

(𝑡
𝑗
) = 𝑢


(𝑡
+

𝑗
) − 𝑢


(𝑡
−

𝑗
) = 𝐼 (𝑢 (𝑡

𝑗
)) , 𝑗 ∈ Z,

(95)

where 𝑞(𝑡) = 𝑡3, 𝑡 ∈ R, 𝑢 ∈ R, 𝑎 ∈ 𝐶(R, (0, +∞)), and 𝑎(𝑡) →
+∞ as |𝑡| → +∞. Let

𝑉 (𝑡, 𝑥) =

𝑚

∑

𝑖=1

(𝑎
𝑖
+ 1 + sin 𝑡) |𝑥|𝜇𝑖 −

𝑛

∑

𝑗=1

(𝑏
𝑗
+ 1 + cos 𝑡) |𝑥|𝑗 ,

𝐼 (𝑥) =

(
1
− 2) 𝑥

4 (
1
+ 2) 𝑝𝜋

,

(96)

where 𝜇
1
> 𝜇

2
> ⋅ ⋅ ⋅ > 𝜇

𝑚
> 

1
> 

2
> ⋅ ⋅ ⋅ > 

𝑛
> 2, 𝑎

𝑖
, 𝑏
𝑗
> 0,

𝑖 = 1, . . . , 𝑚, and 𝑗 = 1, . . . , 𝑛. Let

𝑉
1
(𝑡, 𝑥) =

𝑚

∑

𝑖=1

(𝑎
𝑖
+ 1 + sin 𝑡) |𝑥|𝜇𝑖 ,

𝑉
2
(𝑡, 𝑥) =

𝑛

∑

𝑗=1

(𝑏
𝑗
+ 1 + cos 𝑡) |𝑥|𝑗 .

(97)

Then, it is easy to check that all the conditions of Theorem 4
are satisfied with 𝜇 = 𝜇

𝑚
and  = 

1
. Hence, problem (95) has

an unbounded sequence of fast homoclinic solutions.

Example 2. Consider the following system:

𝑢


(𝑡) + (𝑡 + 𝑡
3
) 𝑢



(𝑡) − 𝑎 (𝑡) 𝑢 (𝑡)

+ ∇𝑉 (𝑡, 𝑢 (𝑡)) = 0, a.e. 𝑡 ∈ (𝑡
𝑗
, 𝑡
𝑗+1
) , 𝑗 ∈ Z,

Δ𝑢

(𝑡
𝑗
) = 𝑢


(𝑡
+

𝑗
) − 𝑢


(𝑡
−

𝑗
) = 𝐼 (𝑢 (𝑡

𝑗
)) , 𝑗 ∈ Z,

(98)

where 𝑞(𝑡) = 𝑡 + 𝑡
3, 𝑡 ∈ R, 𝑢 ∈ R, 𝑎 ∈ 𝐶(R, (0, +∞)), and

𝑎(𝑡) → +∞ as |𝑡| → +∞. Let

𝑉 (𝑡, 𝑥) = (𝑎
1
+ 1 + sin 𝑡) |𝑥|𝜇1 + (𝑎

2
+ 2 + sin 𝑡) |𝑥|𝜇2

− 𝑏
1
(cos 𝑡) |𝑥|1 − (𝑏

2
+ 1 + cos 𝑡) |𝑥|2 ,

(99)

where 𝜇
1
> 𝜇

2
> 

1
> 

2
> 2, 𝑎

1
, 𝑎

2
> 0, 𝑏

1
, and 𝑏

2
> 0. Let

𝑉
1
(𝑡, 𝑥) = (𝑎

1
+ 1 + sin 𝑡) |𝑥|𝜇1 + (𝑎

2
+ 2 + sin 𝑡) |𝑥|𝜇2 ,

𝑉
2
(𝑡, 𝑥) = 𝑏

1
(cos 𝑡) |𝑥|1 + (𝑏

2
+ 1 + cos 𝑡) |𝑥|2 ,

𝐼 (𝑥) =

(
1
− 2) 𝑥

6 (
1
+ 2) 𝑝𝜋

.

(100)

Then, it is easy to check that all the conditions of Theorem 5
are satisfied with 𝜇 = 𝜇

2
and  = 

1
. Hence, by Theorem 5,

problem (98) has an unbounded sequence of fast homoclinic
solutions.



12 Abstract and Applied Analysis

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by the NNSF of China (no.
11301108), Guangxi Natural Science Foundation (no.
2013GXNSFBA019004), and the Scientific Research
Foundation of Guangxi EducationOffice (no. 201203YB093).

References

[1] P. Chen, X. Tang, and R. P. Agarwal, “Fast homoclinic solutions
for a class of damped vibration problems,” Applied Mathematics
and Computation, vol. 219, no. 11, pp. 6053–6065, 2013.

[2] H. Fang and H. Duan, “Existence of nontrivial weak homo-
clinic orbits for second-order impulsive differential equations,”
Boundary Value Problems, vol. 2012, article 138, 2012.

[3] D. D. Bainov and P. S. Simeonov, Impulsive Differential Equa-
tions: Periodic Solutions and Applications, Longman Scientific
& Tecgnical, New York, NY, USA, 1993.

[4] V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory
of Impulsive Differential Equations, World Scientific Press,
Singapore, 1989.

[5] P. Chen and X. H. Tang, “New existence and multiplicity of
solutions for some Dirichlet problems with impulsive effects,”
Mathematical and ComputerModelling, vol. 55, no. 3-4, pp. 723–
739, 2012.

[6] H. Chen and J. Sun, “An application of variational method to
second-order impulsive differential equation on the half-line,”
Applied Mathematics and Computation, vol. 217, no. 5, pp. 1863–
1869, 2010.

[7] Q. Zhang, W.-Z. Gong, and X. H. Tang, “Existence of subhar-
monic solutions for a class of second-order p-Laplacian systems
with impulsive effects,” Journal of Applied Mathematics, vol.
2012, Article ID 434938, 18 pages, 2012.

[8] Z. Luo, J. Xiao, and Y. Xu, “Subharmonic solutions with
prescribed minimal period for some second-order impulsive
differential equations,”Nonlinear Analysis:Theory, Methods and
Applications, vol. 75, no. 4, pp. 2249–2255, 2012.

[9] J. J. Nieto and D. O’Regan, “Variational approach to impulsive
differential equations,” Nonlinear Analysis: Real World Applica-
tions, vol. 10, no. 2, pp. 680–690, 2009.

[10] J. Sun and H. Chen, “Variational method to the impulsive
equation with neumann boundary conditions,” Boundary Value
Problems, vol. 2009, Article ID 316812, 2009.

[11] J. Sun, H. Chen, and L. Yang, “The existence and multiplicity
of solutions for an impulsive differential equation with two
parameters via a variational method,” Nonlinear Analysis: The-
ory, Methods and Applications, vol. 73, no. 2, pp. 440–449, 2010.

[12] J. Sun, H. Chen, J. J. Nieto, and M. Otero-Novoa, “The mul-
tiplicity of solutions for perturbed second-order Hamiltonian
systems with impulsive effects,” Nonlinear Analysis: Theory,
Methods and Applications, vol. 72, no. 12, pp. 4575–4586, 2010.

[13] J. Sun, H. Chen, and J. J. Nieto, “Infinitely many solutions
for second-order Hamiltonian system with impulsive effects,”
Mathematical and ComputerModelling, vol. 54, no. 1-2, pp. 544–
555, 2011.

[14] D. Zhang and B. Dai, “Existence of solutions for nonlinear
impulsive differential equations with Dirichlet boundary con-
ditions,”Mathematical and ComputerModelling, vol. 53, no. 5-6,
pp. 1154–1161, 2011.

[15] Z. Zhang and R. Yuan, “An application of variational methods
to Dirichlet boundary value problem with impulses,”Nonlinear
Analysis: RealWorld Applications, vol. 11, no. 1, pp. 155–162, 2010.

[16] J. Zhou and Y. Li, “Existence and multiplicity of solutions
for some Dirichlet problems with impulsive effects,” Nonlinear
Analysis: Theory, Methods and Applications, vol. 71, no. 7-8, pp.
2856–2865, 2009.

[17] J. Zhou and Y. Li, “Existence of solutions for a class of second-
order Hamiltonian systems with impulsive effects,” Nonlinear
Analysis: Theory, Methods and Applications, vol. 72, no. 3-4, pp.
1594–1603, 2010.

[18] X. Han and H. Zhang, “Periodic and homoclinic solutions
generated by impulses for asymptotically linear and sublinear
Hamiltonian system,” Journal of Computational and Applied
Mathematics, vol. 235, no. 5, pp. 1531–1541, 2011.

[19] H. Zhang and Z. Li, “Periodic and homoclinic solutions gener-
ated by impulses,” Nonlinear Analysis: Real World Applications,
vol. 12, no. 1, pp. 39–51, 2011.

[20] X. H. Tang and X. Lin, “Homoclinic solutions for a class of
second-order Hamiltonian systems,” Journal of Mathematical
Analysis and Applications, vol. 354, no. 2, pp. 539–549, 2009.

[21] P. H. Rabinowitz, Minimax Methods in Critical Point Theory
with Applications to Differential Equations, vol. 65 of CBMS
Regional Conference Series in Mathematics, The American
Mathematical Society, Providence, RI, USA, 1986.

[22] X. H. Tang and X. Lin, “Existence of infinitely many homoclinic
orbits in Hamiltonian systems,” Proceedings of the Royal Society
of Edinburgh A: Mathematics, vol. 141, no. 5, pp. 1103–1119, 2011.


