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The corrected Fourier series (CFS) is proposed for solving partial differential equations (PDEs) with fractional time derivative on
a finite domain. In the previous work, we have been solving partial differential equations by using corrected Fourier series. The
fractional derivatives are described in Riemann sense. Some numerical examples are presented to show the solutions.

1. Introduction

In recent years, differential equations of fractional orders have
been appearingmore andmore frequently in various research
and applications in the fluid mechanics, viscoelasticity, biol-
ogy, physics, and engineering; see [1, 2].There are somemeth-
ods usually used in solving the fractional partial differential
equations such as Laplace and Fourier transform, variational
iteration method, and differential transformmethods. In this
study, we want to use the corrected Fourier series method in
solving the problems.

In [3], corrected Fourier series method has been used
in solving classical PDEs problems. The corrected Fourier
series is a combination of the uniformly convergent Fourier
series and the correction functions and consists of algebraic
polynomials and Heaviside step function.

2. Basic Definitions

TheRiemann-Liouville fractional integral is themost popular
definition that we always find in the study of fractional
calculus.

Definition 1. TheRiemann-Liouville fractional integral oper-
ator of order 𝛼 > 0 of a function 𝑓(𝑥) is defined as

𝐽
𝛼

𝑓 (𝑥) =

1

Γ (𝛼)

∫

𝑥

0

(𝑥 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠. (1)

Jumarie’s modified Riemann-Liouville derivative of order
𝛼 is defined by the following definition.

Definition 2. Let 𝑓 : R → R, 𝑥 → 𝑓(𝑥) denote a
continuous function. Its fractional derivative of order 𝛼 is
defined as follows:

for 𝛼 < 0,

𝐷
𝛼

𝑥
=

1

Γ (−𝛼)

∫

𝑥

0

(𝑥 − 𝑠)
−𝛼−1

(𝑓 (𝑠) − 𝑓 (0)) 𝑑𝑠, (2)

for 𝛼 > 0,

𝐷
𝛼

𝑥
=

1

Γ (1 − 𝛼)

𝑑

𝑑𝑥

∫

𝑥

0

(𝑥 − 𝑠)
−𝛼

(𝑓 (𝑠) − 𝑓 (0)) 𝑑𝑠,

where 0 < 𝛼 < 1,

0
𝐷
𝛼

𝑥
𝑓 (𝑥) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥
𝑛

∫

𝑥

0

(𝑥 − 𝑠)
𝑛−𝛼−1

[𝑓 (𝑠) − 𝑓 (0)] 𝑑𝑠,

(3)

where 𝑛 − 1 < 𝛼 < 𝑛 with 𝑛 ∈ 𝑁.

Definition 3 (see [4–7]). Fractional derivative of com-
pounded function is defined as

𝑑
𝛼

𝑓 ≅ Γ (1 + 𝛼) 𝑑𝑓, 0 < 𝛼 < 1. (4)
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Table 1

𝑡 𝑥 𝛼 = 1.25 𝛼 = 1.5 𝛼 = 1.75

𝛼 = 2

CFS Exact

0.2

0.25 0.248566 0.351241 0.295434 0.248567 0.262584
0.50 0.542423 0.602263 0.548652 0.542423 0.550334
0.75 0.832454 0.852586 0.801804 0.832454 0.863252
1.00 1.115475 1.102422 1.054999 1.115475 1.201334

Table 2

𝛼 𝛼 = 1.25 𝛼 = 1.5 𝛼 = 1.75

𝑥 FCFS VIM FCFS VIM FCFS VIM
0.25 0.248566 0.263175 0.351241 0.262840 0.295434 0.262670
0.50 0.542423 0.552700 0.602263 0.551362 0.548652 0.550680
0.75 0.832454 0.868575 0.852586 0.865566 0.801804 0.864029
1.00 1.115475 1.210800 1.102422 1.205450 1.054999 1.202718

Definition 4 (see [4–7]). The integral with respect to (𝑑𝑡)
𝛼 is

defined as the solution of the fractional differential equation
𝑑𝑥 = 𝑓 (𝑥) (𝑑𝑡)

𝛼

, 𝑡 ≥ 0, 𝑥 (0) = 0, 0 < 𝛼 < 1. (5)

Lemma 5 (see [4–7]). Let 𝑓(𝑥) denote a continuous function;
then the solution of 𝑦(𝑥), 𝑦(0) = 0, (5) is defined as

𝑦 = ∫

𝑥

0

𝑓 (𝜉) (𝑑𝜉)
𝛼

= 𝛼 ∫

𝑥

0

(𝑥 − 𝜉)
𝛼−1

𝑓 (𝜉) 𝑑𝜉,

0 < 𝛼 < 1.

(6)

3. Corrected Fourier Series

The CFS is described in the form of
𝑢 (𝑥, 𝑡) = ∑

|𝑛|<∞

∑

|𝑚|<∞

𝐴
𝑛𝑚

𝑒
𝑖𝛼
𝑛
𝑥

𝑒
𝑖𝛽
𝑚
𝑡

+ ∑

|𝑚|<∞

(𝑎
1𝑚

𝑥 + 𝑎
2𝑚

𝑥
2

2!

+ 𝑎
3𝑚

𝑥
3

3!

) 𝑒
𝑖𝛽
𝑚
𝑡

+ ∑

|𝑛|<∞

(𝑏
1𝑛

𝑡 + 𝑏
2𝑛

𝑡
2

2!

+ 𝑏
3𝑛

𝑡
3

3!

) 𝑒
𝑖𝛼
𝑛
𝑥

+

3

∑

𝑙=1

3

∑

𝑙
0
=1

𝑑
𝑙𝑙
0

𝑥
𝑙

𝑙!

𝑡
𝑙
0

𝑙
0
!

,

(7)

where 𝛼
𝑛

= 2𝑛𝜋/𝑥
0
and 𝛽

𝑚
= 2𝑚𝜋/𝑡

0
.

Due to the periodicity of either 𝑒
𝑖𝛼
𝑛
𝑥 or 𝑒
𝑖𝛽
𝑚
𝑡, we can cancel

out the first three terms on the right-hand side of (7) because
they are identically zero. Based on the endpoints values of
𝑢(𝑥, 𝑡) and its partial derivative, we obtain the following linear
equations:

3

∑

𝑙=1

3

∑

𝑙
0
=1

𝑑
𝑙𝑙
0

𝑥
𝑙−𝑗

(𝑙 − 𝑗)!

𝑡
𝑙
0
−𝑗
0

(𝑙
0

− 𝑗
0
)!

𝐻 (𝑙 − 𝑗) 𝐻 (𝑙
0

− 𝑗
0
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥
0

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑡
0

0

=

𝜕
𝑗+𝑗
0
𝑢 (𝑥, 𝑡)

𝜕𝑥
𝑗
𝜕𝑡
𝑗
0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥
0

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑡
0

0

,

(8)

Table 3

𝑥

𝛼 = 2

VIM CFS
0.25 0.262584 0.245396
0.50 0.550334 0.516298
0.75 0.863252 0.787390
1.00 1.201334 1.058374

where 𝑗 = 0, 1, 2 and 𝑗
0

= 0, 1, 2.
Next, we want to determine the coefficients 𝑎

1𝑚
, 𝑎
2𝑚
, and

𝑎
3𝑚
. With respect to 𝑥, the endpoints effect of 𝑢(𝑥, 𝑡) and its

partial derivatives yields

𝜕
2

𝑢

𝜕𝑥
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥
0

0

= ∑

|𝑚|≤𝑀

𝑎
3𝑚

𝑥
0
𝑒
𝑖𝛽
𝑚
𝑡

+

3

∑

𝑙
0
=1

𝑑
3𝑙
0

𝑥
0

𝑡
𝑙
0

𝑙
0
!

,

𝜕𝑢

𝜕𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥
0

0

= ∑

|𝑚|≤𝑀

(𝑎
2𝑚

𝑥
0

+ 𝑎
3𝑚

𝑥
2

0

2!

) 𝑒
𝑖𝛽
𝑚
𝑡

+

3

∑

𝑙=2

3

∑

𝑙
0
=1

𝑑
𝑙𝑙
0

𝑥
𝑙−1

0

(𝑙 − 1)!

𝑡
𝑙
0

𝑙
0
!

,

𝑢|
𝑥
0

0
= ∑

|𝑚|≤𝑀

(𝑎
1𝑚

𝑥
0

+ 𝑎
2𝑚

𝑥
2

0

2!

+ 𝑎
3𝑚

𝑥
3

0

3!

) 𝑒
𝑖𝛽
𝑚
𝑡

+

3

∑

𝑙=1

3

∑

𝑙
0
=1

𝑑
𝑙𝑙
0

𝑥
𝑙

0

𝑙!

𝑡
𝑙
0

𝑙
0
!

.

(9)

Again, due to the periodicity of 𝑒
𝑖𝛼
𝑛
𝑥, the first and third terms

of (7) and its partial derivatives are identically zero. Then, by
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Table 4

𝛼 0.25 0.5 0.75
𝑥 FCFS VIM FCFS VIM FCFS VIM
0.25 0.184853 0.155391 0.180014 0.155803 0.180899 0.179254
0.50 0.290771 0.211629 0.280927 0.301919 0.283769 0.347363
0.75 0.382190 0.300891 0.369521 0.429263 0.374601 0.493874
1.00 0.521740 0.371445 0.506676 0.529918 0.512320 0.609679

applying the Fourier projection on the basis function 𝑒
𝑖𝛽
𝑚
𝑡, we

solved for 𝑎
1𝑚

, 𝑎
2𝑚
, and 𝑎

3𝑚
:

𝑎
3𝑚

=

1

𝑥
0

(𝐹
2
⟨

𝜕
2

𝑢

𝜕𝑥
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥
0

0

⟩

𝑚

−

3

∑

𝑙
0
=1

𝑑
3𝑙
0

𝑥
0
𝐹
2
⟨

𝑡
𝑙
0

𝑙
0
!

⟩

𝑚

) ,

𝑎
2𝑚

=

1

𝑥
0

× (𝐹
2
⟨

𝜕𝑢

𝜕𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥
0

0

⟩

𝑚

−

3

∑

𝑙=2

3

∑

𝑙
0
=1

𝑑
𝑙𝑙
0

𝑥
𝑙−1

0

(𝑙 − 1)!

𝐹
2
⟨

𝑡
𝑙
0

𝑙
0
!

⟩

𝑚

− 𝑎
3𝑚

𝑥
2

0

2!

) ,

𝑎
1𝑚

=

1

𝑥
0

× (𝐹
2
⟨𝑢|
𝑥
0

0
⟩
𝑚

−

3

∑

𝑙=1

3

∑

𝑙
0
=1

𝑑
𝑙𝑙
0

𝑥
𝑙

0

𝑙!

𝐹
2
⟨

𝑡
𝑙
0

𝑙
0
!

⟩

𝑚

− 𝑎
2𝑚

𝑥
2

0

2!

− 𝑎
3𝑚

𝑥
3

0

3!

) .

(10)

Similar in the case with respect to 𝑡, we have

𝑏
3𝑛

=

1

𝑡
0

(𝐹
1
⟨

𝜕
2

𝑢

𝜕𝑡
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑡
0

0

⟩

𝑛

−

3

∑

𝑙=1

𝑑
𝑙3

𝐹
1
⟨

𝑥
𝑙

𝑙!

⟩

𝑛

𝑡
0
) ,

𝑏
2𝑛

=

1

𝑡
0

× (𝐹
1
⟨

𝜕𝑢

𝜕𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑡
0

0

⟩

𝑛

−

3

∑

𝑙=1

3

∑

𝑙
0
=2

𝑑
𝑙𝑙
0

𝐹
1
⟨

𝑥
𝑙

𝑙!

⟩

𝑛

×

𝑡
𝑙
0
−1

0

(𝑙
0

− 1)!

− 𝑏
3𝑛

𝑡
2

0

2!

) ,

Table 5

𝑡 𝑥

𝛼 = 1

VIM CFS

0.2

0.25 0.202557 0.245396
0.50 0.392520 0.516298
0.75 0.558079 0.787390
1.00 0.688938 1.058374

𝑏
1𝑛

=

1

𝑡
0

× (𝐹
1
⟨𝑢|
𝑡
0

0
⟩
𝑛

−

3

∑

𝑙=1

3

∑

𝑙
0
=1

𝑑
𝑙𝑙
0

𝐹
1
⟨

𝑥
𝑙

𝑙!

⟩

𝑛

𝑡
𝑙
0

0

𝑙
0
!

− 𝑏
2𝑛

𝑡
2

0

2!

− 𝑏
3𝑛

𝑡
3

0

3!

) .

(11)

4. Fractional Corrected Fourier Series

In this paper, we consider the following general form of the
linear time-fractional equation:

𝜕
𝛼

𝑢

𝜕𝑡
𝛼

+ 𝑎
0

(𝑥) 𝑢 (𝑥, 𝑡) + 𝑎
1

(𝑥)

𝜕𝑢

𝜕𝑥

+ 𝑎
2

(𝑥)

𝜕
2

𝑢

𝜕𝑥
2

= 𝑓 (𝑥, 𝑡)

(12)

and subject to the initial conditions

𝑢 (𝑥, 0) = 𝑓 (𝑥) ,

as 0 < 𝛼 ≤ 1, 𝑥 ∈ [0, 𝑥
0
] , 𝑡 ∈ [0, 𝑡

0
] ,

𝑢 (𝑥, 0) = 𝑓 (𝑥) ,

𝜕𝑢 (𝑥, 0)

𝜕𝑡

= 𝑔 (𝑥) ,

as 1 < 𝛼 ≤ 2, 𝑥 ∈ [0, 𝑥
0
] , 𝑡 ∈ [0, 𝑡

0
] .

(13)

For the case of 𝛼 = 1, the fractional equation reduces to the
classical linear PDE and is similar to the case of 𝛼 = 2.
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Table 6

𝑡 𝑥 𝛼 = 0.25 𝛼 = 0.5 𝛼 = 7.5

𝛼 = 1

FCFS exact

1

0.25 0.077299 0.140985 0.136142 0.173193 0.169892
0.50 0.699350 0.697982 0.597600 0.690081 0.679570
0.75 1.350993 1.305838 1.256308 1.618244 1.529034
1.00 2.157733 2.196163 2.187799 2.692081 2.718282

Table 7

𝑡 𝑥

𝛼 = 0.25 𝛼 = 0.5 𝛼 = 0.75

FCFS Homotopy FCFS Homotopy FCFS Homotopy

1

0.25 0.077299 0.131454 0.140985 0.133024 0.136142 0.130504
0.50 0.699350 0.525816 0.697982 0.532095 0.597600 0.522016
0.75 1.350993 1.183085 1.305838 1.197213 1.256308 1.174540
1.00 2.157733 2.103263 2.196163 2.128379 2.187799 2.088065

Definition 6. For 𝑚 to be the smallest integer that exceeds
𝛼, the modified Riemann-Liouville time-fractional derivative
operator of order 𝛼 > 0 is defined as

𝐷
𝛼

∗𝑡
𝑢 (𝑥, 𝑡) =

𝜕
𝛼

𝑢

𝜕𝑡
𝛼

=

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

1

Γ (𝑚 − 𝛼)

𝜕
𝑚

𝜕𝑡
𝑚

×∫

𝑡

0

(𝑡 − 𝜏)
𝑚−𝛼−1

(𝑢 (𝑥, 𝜏) − 𝑢 (𝑥, 0)) 𝑑𝜏,

for 𝑚 − 1 < 𝛼 < 𝑚,

𝜕
𝑚

𝑢 (𝑥, 𝑡)

𝜕𝑡
𝑚

, for 𝛼 = 𝑚 ∈ 𝑁,

(14)

where 𝑚 − 1 < 𝛼 < 𝑚 with 𝑚 ∈ 𝑁.

To obtain the nine unknowns 𝑑
𝑙𝑙
0

(𝑙, 𝑙
0

= 1, 2, 3) in (7), we
solve the following linear equations:

3

∑

𝑙=1

3

∑

𝑙
0
=1

𝑑
𝑙𝑙
0

𝜆
𝑙
0

𝑥
𝑙−𝑗

(𝑙 − 𝑗)!

𝑡
1+𝑙
0
−𝛼

𝐻 (𝑙 − 𝑗) 𝐻 (𝑙
0

− 𝑗
0
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥
0

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑡
0

0

=

𝜕
𝑗+(𝑗
0
+𝛼)

𝑢(𝑥, 𝑡)

𝜕𝑥
𝑗
𝜕𝑡
𝑗
0
+𝛼

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥
0

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑡
0

0

,

(15)

where 𝑗 = 0, 1, 2, 𝑗
0

= 0, 1, 2, and 𝜆
𝑙
0

= ((−1)
2𝑙
0

)(Γ(𝛼 − (𝑙
0

+

2)) ⋅ ((𝑙
0

+ 2) − 𝛼)/Γ(1 − 𝛼)Γ(𝛼 − 1)).
Then, we arrange the order of equations as 𝑗 = 0, 𝑗

0
=

0, 1, 2; 𝑗 = 1, 𝑗
0

= 0, 1, 2; and 𝑗 = 2, 𝑗
0

= 0, 1, 2; we can have
the nine unknowns𝑑

11
,𝑑
12
,𝑑
13
,𝑑
21
,𝑑
22
,𝑑
23
,𝑑
31
,𝑑
32
, and𝑑

33

in a vector form.Then, we solve this coefficient in the matrix
form. By solving thematrix, we can determine the coefficients
𝑑
𝑙𝑙
0

(𝑙 = 𝑙
0

= 1, 2, 3).

Table 8

𝑡 𝑥

𝛼 = 1

FCFS Homotopy CFS

1

0.25 0.173193 0.166667 0.170034
0.50 0.690081 0.666667 0.612833
0.75 1.618244 1.500000 1.592353
1.00 2.692081 2.666667 2.682901

5. Numerical Results

Problem 7 (see [2]). We consider the linear time-fractional
wave equation

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑡
𝛼

=

1

2

𝑥
2
𝜕
2

𝑢 (𝑥, 𝑡)

𝜕𝑥
2

, 1 < 𝛼 ≤ 2, 𝑡 > 0

𝑢 (𝑥, 0) = 𝑥,

𝜕𝑢 (𝑥, 0)

𝜕𝑡

= 𝑥
2

.

(16)

The exact solution for the case 𝛼 = 2 is given by 𝑢(𝑥, 𝑡) =

𝑥 + 𝑥
2 sinh 𝑡 (see Table 1).

For comparison between fractional corrected Fourier
series (FCFS) and variational iteration method (VIM) where
we take 𝑡 = 0.2. (See Tables 2 and 3.)

To be cleared here, for 𝛼 = 2, we solve it by using original
corrected Fourier series.

Problem 8 (see [2]). Consider

𝜕
𝛼

𝑢

𝜕𝑡

=

𝜕
2

𝑢

𝜕𝑥
2
, 0 < 𝑡 < 1, 0 < 𝑥 < 1, 0 < 𝛼 < 1, (17)

where 𝑢(𝑥, 0) = sin(𝑥). For 𝑡 = 0.2, see Tables 4 and 5.
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Problem 9 (see [8]). Let us first consider the following time-
fractional differential equation as follows:

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑡
𝛼

=

1

2

𝑥
2
𝜕
2

𝑢 (𝑥, 𝑡)

𝜕𝑥
2

, 0 < 𝛼 ≤ 1, 𝑡 > 0

𝑢 (𝑥, 0) = 𝑥
2

, 𝑢 (0, 𝑡) = 0,

𝑢 (1, 𝑡) = 𝑒
𝑡

.

(18)

The exact solution for the case 𝛼 = 1 is given by 𝑢(𝑥, 𝑡) =

𝑥
2

𝑒
𝑡 (see Table 6).
For comparison between corrected Fourier series and

other methods see Tables 7 and 8.

6. Conclusion

In this paper, with the presence of the modified Riemann-
Liouville derivative, the corrected Fourier series has been
proposed to solve the fractional partial differential problems.
The solutions of problems are shown for different values in
the given Tables 1–8. It is shown that there is smaller error in
between CFS method and other methods.
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