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A class of Lotka-Volterra mutualistic system with time delays of benefit and feedback delays is introduced. By analyzing the
associated characteristic equation, the local stability of the positive equilibrium and existence of Hopf bifurcation are obtained
under all possible combinations of two or three delays selecting from multiple delays. Not only explicit formulas to determine
the properties of the Hopf bifurcation are shown by using the normal form method and center manifold theorem, but also the
global continuation of Hopf bifurcation is investigated by applying a global Hopf bifurcation result due to Wu (1998). Numerical
simulations are given to support the theoretical results.

1. Introduction

In recent years, population models have merited a great deal
of attention due to their theoretical and practical significance
since the pioneering theoretical works by Lotka [1] and
Volterra [2]; see [3–6] and references therein. Generally
speaking, there are three kinds of fundamental forms of the
interactions between two species such as competition, coop-
eration, and prey-predation in population biology. Among
these interactions, the competition mechanism has been
paying extreme attention because it possesses very significant
function as a kind of restriction factor in the process of
evolvement of biology.

It is well known that time delays of one type or another
have been incorporated into mathematical models of popu-
lation dynamics due to maturation time, capturing time, or
other reasons. The effect of the past history on the stability
of the system is an important problem in population biology.
In general, delay differential equations exhibit much more
complicated dynamics than ordinary differential equations
since a time delay could cause a stable equilibrium to become
unstable and cause the population to fluctuate. In 2002, Jin
and Ma [3] investigated the competition model with four
delays:

�̇� (𝑡) = 𝑥 (𝑡) [𝑟

1
− 𝑎

11
𝑥 (𝑡 − 𝜏

11
) − 𝑎

12
𝑦 (𝑡 − 𝜏

12
)] ,

̇𝑦 (𝑡) = 𝑦 (𝑡) [𝑟

2
− 𝑎

21
𝑥 (𝑡 − 𝜏

21
) − 𝑎

22
𝑦 (𝑡 − 𝜏

22
)] ,

(1)

where 𝜏

11
, 𝜏

22
> 0 are maturation times and 𝜏

12
, 𝜏

21
> 0

are called the hunting delays for the prey and the predator
species, respectively. The result was that time delay in the
competitive Lotka-Volterra system does not harm the bound-
edness and persistence. Song et al. [4] analyzed the stability
of the interior positive equilibrium and the existence of local
Hopf bifurcation for system (1) with 𝜏

11
= 𝜏

22
= 0 by

taking the delay 𝜏 = 𝜏

12
+ 𝜏

21
as the bifurcation parameter.

Their results showed that changes of hunting delays for
system (1) do not lead to the occurrence of Hopf bifurcation
when interspecies competition is weaker than intraspecies
competition. Zhang et al. [5] studied the stability and Hopf
bifurcation of system (1) with 𝜏

11
= 𝜏

12
= 𝜏

21
= 𝜏

22
= 𝜏.

Zhang [6] also investigated the dynamics of system (1) only
when 𝜏

11
= 𝜏

22
= 𝜏 and 𝜏

12
= 𝜏

21
= 0.

In fact, predator-prey system with time delays has also
been investigated by lots of authors [7–11]. Faria [7] consid-
ered the delayed predator-prey system of the form

�̇� (𝑡) = 𝑥 (𝑡) [𝑟

1
− 𝑎

11
𝑥 (𝑡) − 𝑎

12
𝑦 (𝑡 − 𝜏

1
)] ,

̇𝑦 (𝑡) = 𝑦 (𝑡) [−𝑟

2
+ 𝑎

21
𝑥 (𝑡 − 𝜏

2
) − 𝑎

22
𝑦 (𝑡)] ,

(2)
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where 𝑥(𝑡) and 𝑦(𝑡) can be interpreted as the popula-
tion densities of the prey and the predator at the time 𝑡,
respectively, and 𝜏

1
and 𝜏

2
denote the hunting delay and

the time of predator maturation. In [7], taking the single
delay, 𝜏

2
, as a parameter and assuming the ratio 𝜏

1
/𝜏

2
to be

constant, the author studied the properties of the local Hopf
bifurcation. Song et al. [8] obtained the properties of the local
Hopf bifurcation as well as the global existence of periodic
solutions by choosing the sum 𝜏 = 𝜏

1
+ 𝜏

2
as a bifurcation

parameter. Yan and Li [9] considered the following delayed
predator-prey system:

�̇� (𝑡) = 𝑥 (𝑡) [𝑟

1
− 𝑎

11
𝑥 (𝑡 − 𝜏) − 𝑎

12
𝑦 (𝑡)] ,

̇𝑦 (𝑡) = 𝑦 (𝑡) [−𝑟

2
+ 𝑎

21
𝑥 (𝑡) − 𝑎

22
𝑦 (𝑡 − 𝜏)] ,

(3)

where 𝜏 denotes the feedback time delay of prey species to
the growth of species itself, and also for the predator. They
found that the unique positive equilibrium of system (3) will
no longer be absolutely stable and the switches from stability
to instability to stability disappear as the feedback time delay
increases monotonously from zero, which had been obtained
for system (3) by Song and Wei [12].

However, the research for cooperative systems with time
delays is still relatively little because delays in mutualistic sys-
tems usually deprive the boundedness and persistence in [13].
But time delays in prey-predator and competitive systems do
not harm these properties [3, 14, 15]. Two species cohabit
a common habitat and each species enhances the average
growth rate of the other; this type of ecological interaction
is known as facultative mutualism. Mutual phenomenon can
increase viability and make species persistently multiply. As
far as we know, the research on mutual system is less than
prey-predator system and competitive system. At present, the
known results of mutual systemmainly focus on stability and
persistence [16, 17]. Research on the ecologic system stability
of positive equilibrium and existence of periodic solutions
is very crucial, which can help us to realize the law for
species quantity and predict the trend for species quantity. In
1997, He and Gopalsamy [17] considered the Lotka-Volterra
mutualistic system with delay

�̇� (𝑡) = 𝑥 (𝑡) [𝑏

1
− 𝑎

11
𝑥 (𝑡 − 𝜏) + 𝑎

12
𝑦 (𝑡 − 𝜏)] ,

̇𝑦 (𝑡) = 𝑦 (𝑡) [𝑏

2
+ 𝑎

21
𝑥 (𝑡 − 𝜏) − 𝑎

22
𝑦 (𝑡 − 𝜏)] ,

(4)

and obtained the stability of the positive equilibrium and the
existence of Hopf bifurcation when 𝑎

11
𝑎

22
> 𝑎

12
𝑎

21
. Meng

and Wei [18] studied the following system with delay:

�̇� (𝑡) = 𝑟

1
𝑥 (𝑡) [1 −

𝑥 (𝑡 − 𝜏)

𝑘

1

] + 𝑎𝑥 (𝑡) 𝑦 (𝑡) ,

̇𝑦 (𝑡) = 𝑟

2
𝑦 (𝑡) [1 −

𝑦 (𝑡 − 𝜏)

𝑘

2

] + 𝑏𝑥 (𝑡) 𝑦 (𝑡) ,

(5)

where 𝑎 and 𝑏 are the rates of transmission between two
species.They found that there are stability switches and Hopf
bifurcation occurring when the delay 𝜏 passes through a
sequence of critical values.

In general, the delays appearing in different terms of
an ecological system are not equal. Therefore, it is more
realistic to consider dynamical system with different delays.
Motivated by the references [6, 9, 17], we consider the
following two-species Lotka-Volterramutualistic systemwith
multiple delays:

�̇� (𝑡) = 𝑥 (𝑡) [𝑏

1
− 𝑎

11
𝑥 (𝑡 − 𝜏

1
) + 𝑎

12
𝑦 (𝑡 − 𝜏

2
)] ,

̇𝑦 (𝑡) = 𝑦 (𝑡) [𝑏

2
+ 𝑎

21
𝑥 (𝑡 − 𝜏

3
) − 𝑎

22
𝑦 (𝑡 − 𝜏

4
)] ,

(6)

where 𝑥(𝑡) and 𝑦(𝑡) are the densities of two species at the time
𝑡 and 𝑏

1
and 𝑏

2
are the intrinsic growth rates of the two species.

𝜏

1
is the feedback delay of one species to its grow and 𝜏

4
is

the feedback delay of the other species; 𝜏
2
and 𝜏

3
are the time

delays of the benefit. The coefficients 𝑏
𝑖
, 𝑎

𝑖𝑗
(𝑖, 𝑗 = 1, 2) are all

positive constants and 𝜏

𝑖
(𝑖 = 1, 2, 3, 4) ≥ 0. In addition, we

would like tomention the work of F. Q. Zhang and Y. J. Zhang
[19], who considered the system (6) only with 𝜏

1
= 𝜏

4
= 𝜏 and

𝜏

2
+𝜏

3
= 2𝜏. In fact, feedback delay on different species should

not be same, and the benefit period should not be equal to
the feedback time delay. Thus, how does every delay or the
combined two or three delays of the above four delays have
an effect on the dynamics of system (6)? The purpose of this
paper is to answer this question partially.

This paper is organized as follows. In Section 2, by analyz-
ing the characteristic equation of linearized system of system
(6) at the positive equilibrium, some sufficient conditions
ensuring the local stability of the positive equilibrium and
the existence of Hopf bifurcation are obtained. Some explicit
formulas determining the direction and stability of periodic
solutions bifurcating from Hopf bifurcations are given by
applying the normal form method and center manifold
theory due to Hassard et al. [20] in Section 3. In Section 4,
we show the global existence of the periodic solutions due
to a global Hopf bifurcation result of Wu [21] for functional
differential equations. To support our theoretical predictions,
some numerical simulations are included in Section 5. A brief
discussion is also given in the last section.

2. Local Stability and Hopf Bifurcation

For convenience, letting 𝑥 = (𝑎

11
/𝑏

1
)𝑥, 𝑦 = (𝑎

22
/𝑏

2
)𝑦 and

dropping the bars for simplification of notation, system (6) is
transformed into

�̇� (𝑡) = 𝑟

1
𝑥 (𝑡) [1 − 𝑥 (𝑡 − 𝜏

1
) + 𝑎𝑦 (𝑡 − 𝜏

2
)] ,

̇𝑦 (𝑡) = 𝑟

2
𝑦 (𝑡) [1 + 𝑏𝑥 (𝑡 − 𝜏

3
) − 𝑦 (𝑡 − 𝜏

4
)] ,

(7)

where 𝑟

1
= 𝑏

1
, 𝑟
2
= 𝑏

2
, 𝑎 = 𝑎

12
𝑏

2
/𝑎

22
𝑏

1
, and 𝑏 = 𝑎

21
𝑏

1
/𝑎

11
𝑏

2
.

From the point view of biological meaning, we are inter-
ested in the positive equilibrium. It is obvious that system (7)
has a unique positive equilibrium 𝐸

∗
(𝑥

∗
, 𝑦

∗
) defined by

𝑥

∗
=

1 + 𝑎

1 − 𝑎𝑏

, 𝑦

∗
=

1 + 𝑏

1 − 𝑎𝑏

,
(8)

provided that the following condition

(H1) 0 < 𝑎𝑏 < 1

is satisfied.
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Next, we will consider the stability of the positive equilib-
rium and the existence of Hopf bifurcation.

Letting 𝑢

1
(𝑡) = 𝑥(𝑡) − 𝑥

∗, 𝑢
2
(𝑡) = 𝑦(𝑡) − 𝑦

∗, system (7)
can be transformed into

�̇�

1
(𝑡) = 𝑟

1
(𝑢

1
(𝑡) + 𝑥

∗
) [−𝑢

1
(𝑡 − 𝜏

1
) + 𝑎𝑢

2
(𝑡 − 𝜏

2
)] ,

�̇�

2
(𝑡) = 𝑟

2
(𝑢

2
(𝑡) + 𝑦

∗
) [𝑏𝑢

1
(𝑡 − 𝜏

3
) − 𝑢

2
(𝑡 − 𝜏

4
)] .

(9)

Linearizing system (9) at (0, 0) and rewriting 𝑢

1
, 𝑢

2
as 𝑥, 𝑦,

system (9) is rewritten as

�̇� (𝑡) = 𝛼

1
𝑥 (𝑡 − 𝜏

1
) + 𝛼

2
𝑦 (𝑡 − 𝜏

2
) ,

̇𝑦 (𝑡) = 𝛼

3
𝑥 (𝑡 − 𝜏

3
) + 𝛼

4
𝑦 (𝑡 − 𝜏

4
) ,

(10)

where 𝛼

1
= −𝑟

1
𝑥

∗, 𝛼
2
= 𝑎𝑟

1
𝑥

∗, 𝛼
3
= 𝑏𝑟

2
𝑦

∗, and 𝛼

4
= −𝑟

2
𝑦

∗.
The associated characteristic equation of system (10) with

𝜏

1
= 𝜏

2
= 𝜏

3
= 𝜏

4
= 0 is

𝜆

2
− (𝛼

1
+ 𝛼

4
) 𝜆 + 𝛼

1
𝛼

4
− 𝛼

2
𝛼

3
= 0. (11)

It is obvious that 𝜆 = 0 is not the root of (11). All roots of (11)
have negative real parts since −(𝛼

1
+ 𝛼

4
) = 𝑟

1
𝑥

∗
+ 𝑟

2
𝑦

∗
> 0

and 𝛼

1
𝛼

4
−𝛼

2
𝛼

3
= 𝑟

1
𝑟

2
𝑥

∗
𝑦

∗
(1 − 𝑎𝑏) > 0 if (H1) holds. So, the

equilibrium point 𝐸∗(𝑥∗, 𝑦∗) is locally asymptotically stable
when (H1) holds.

2.1. Only Considering 𝜏

2
and 𝜏

3
. The characteristic equation

of system (10) with 𝜏

1
= 𝜏

4
= 0 is

𝜆

2
− (𝛼

1
+ 𝛼

4
) 𝜆 + 𝛼

1
𝛼

4
− 𝛼

2
𝛼

3
𝑒

−𝜆(𝜏
2
+𝜏
3
)
= 0.

(12)

In the following, we will discuss the distribution of roots of
(12) while 𝜏

2
and 𝜏

3
are given different values.

When 𝜏

2
= 0 and 𝜏

3
= 0, (12) becomes (11). Thus,

the positive equilibrium 𝐸

∗
(𝑥

∗
, 𝑦

∗
) is locally asymptotically

stable when (H1) holds.

Case 1A. Consider 𝜏
2

̸= 0, 𝜏
3
= 0. Equation (12) can bewritten

in the form

𝜆

2
− (𝛼

1
+ 𝛼

4
) 𝜆 + 𝛼

1
𝛼

4
− 𝛼

2
𝛼

3
𝑒

−𝜆𝜏
2
= 0.

(13)

We first introduce the following result which was proved
by Ruan and Wei [22] using Rouch’s theorem.

Lemma 1. Consider the exponential polynomial

𝑃 (𝜆, 𝑒

−𝜆𝜏
1
, . . . , 𝑒

−𝜆𝜏
𝑚
)

= 𝜆

𝑛
+ 𝑝

0

1
𝜆

𝑛−1
+ ⋅ ⋅ ⋅ + 𝑝

0

𝑛−1
𝜆 + 𝑝

0

𝑛

+ [𝑝

1

1
𝜆

𝑛−1
+ ⋅ ⋅ ⋅ + 𝑝

1

𝑛−1
𝜆 + 𝑝

1

𝑛
] 𝑒

−𝜆𝜏
1
+ ⋅ ⋅ ⋅

+ [𝑝

𝑚

1
𝜆

𝑛−1
+ ⋅ ⋅ ⋅ + 𝑝

𝑚

𝑛−1
𝜆 + 𝑝

𝑚

𝑛
] 𝑒

−𝜆𝜏
𝑚
,

(14)

where 𝜏

𝑖
≥ 0 (𝑖 = 1, 2, . . . , 𝑚), 𝑝

𝑖

𝑗
(𝑖 = 1, 2, . . . , 𝑚; 𝑗 =

1, 2, . . . , 𝑛) are constants. As (𝜏

1
, 𝜏

2
, . . . , 𝜏

𝑚
) vary, the sum of

the order of the zeros of 𝑃(𝜆, 𝑒

−𝜆𝜏
1
, . . . , 𝑒

−𝜆𝜏
𝑚
) on the open right

half-plane can change only if a zero appears on or crosses the
imaginary axis.

Let 𝜔𝑖 (𝜔 > 0) be the root of (13). Substituting it into (13)
and separating the real and imaginary parts, we have

−𝛼

2
𝛼

3
cos𝜔𝜏

2
= 𝜔

2
− 𝛼

1
𝛼

4
,

𝛼

2
𝛼

3
sin𝜔𝜏

2
= (𝛼

1
+ 𝛼

4
) 𝜔.

(15)

It follows that

𝜔

4
+ (𝛼

2

1
+ 𝛼

2

4
) 𝜔

2
+ (𝛼

1
𝛼

4
)

2

− (𝛼

2
𝛼

3
)

2

= 0. (16)

Equation (16) does not have positive root since𝛼2
1
+𝛼

2

4
> 0 and

(𝛼

1
𝛼

4
)

2
− (𝛼

2
𝛼

3
)

2
= (𝑟

1
𝑟

2
𝑥

∗
𝑦

∗
)

2
(1 + 𝑎𝑏)(1 − 𝑎𝑏) > 0. Thus,

Hopf bifurcation does not occur at the positive equilibrium
𝐸

∗ of system (7).

Case 1B. Consider 𝜏
2
= 0, 𝜏

3
̸= 0. Equation (12) is written in

the form

𝜆

2
− (𝛼

1
+ 𝛼

4
) 𝜆 + 𝛼

1
𝛼

4
− 𝛼

2
𝛼

3
𝑒

−𝜆𝜏
3
= 0.

(17)

Equation (17) is similar to (13). Thus, Hopf bifurcation also
does not occur at the positive equilibrium 𝐸

∗ of system (7).
We omit the corresponding proof.

Case 1C. Consider 𝜏
2
= 𝜏

3
= 𝜏. Equation (12) is written in the

form

𝜆

2
− (𝛼

1
+ 𝛼

4
) 𝜆 + 𝛼

1
𝛼

4
− 𝛼

2
𝛼

3
𝑒

−2𝜆𝜏
= 0.

(18)

Equation (18) is also similar to (16). Thus, Hopf bifurcation
does not occur at the positive equilibrium 𝐸

∗ of system (7).

Case 1D. Consider 𝜏

2
∈ (0, +∞) and 𝜏

3
̸= 0. Let 𝜔𝑖 (𝜔 > 0)

be a root of (12). We can obtain the following form by giving
the value 𝜏

2
= 𝜏

∗

2
∈ (0, +∞) and regarding 𝜏

3
as a parameter:

𝛼

2
𝛼

3
cos𝜔𝜏

∗

2
sin𝜔𝜏

3
+ 𝛼

2
𝛼

3
sin𝜔𝜏

∗

2
cos𝜔𝜏

3

= (𝛼

1
+ 𝛼

4
) 𝜔,

− 𝛼

2
𝛼

3
cos𝜔𝜏

∗

2
cos𝜔𝜏

3
+ 𝛼

2
𝛼

3
sin𝜔𝜏

∗

2
sin𝜔𝜏

3

= 𝜔

2
− 𝛼

1
𝛼

4
.

(19)

It follows that

𝜔

4
+ (𝛼

2

1
+ 𝛼

2

4
) 𝜔

2
+ (𝛼

1
𝛼

4
)

2

− (𝛼

2
𝛼

3
)

2

= 0. (20)

It is obvious that Hopf bifurcation does not occur at the
positive equilibrium 𝐸

∗ of system (7) according to (16).

2.2. Only Considering 𝜏

1
and 𝜏

4
. The characteristic equation

of system (10) with 𝜏

2
= 𝜏

3
= 0 is

𝜆

2
− 𝛼

2
𝛼

3
− 𝛼

1
𝜆𝑒

−𝜆𝜏
1
− 𝛼

4
𝜆𝑒

−𝜆𝜏
4
+ 𝛼

1
𝛼

4
𝑒

−𝜆(𝜏
1
+𝜏
4
)
= 0.

(21)

In the following, we will discuss the distribution of roots of
(21) while 𝜏

1
and 𝜏

4
are given different values.



4 Abstract and Applied Analysis

When 𝜏

1
= 0, 𝜏

4
= 0, (21) becomes (11) and the

equilibrium 𝐸

∗
(𝑥

∗
, 𝑦

∗
) is locally asymptotically stable when

(H1) holds.

Case 2A. Consider 𝜏
1

̸= 0, 𝜏
4
= 0. Equation (21) is written as

follows:

𝜆

2
− 𝛼

4
𝜆 − 𝛼

2
𝛼

3
+ (−𝛼

1
𝜆 + 𝛼

1
𝛼

4
) 𝑒

−𝜆𝜏
1
= 0.

(22)

Let 𝜔𝑖 (𝜔 > 0) be the root of (22), and we have that

− 𝛼

1
𝜔 cos𝜔𝜏

1
− 𝛼

1
𝛼

4
sin𝜔𝜏

1
= 𝛼

4
𝜔,

𝛼

1
𝜔 sin𝜔𝜏

1
− 𝛼

1
𝛼

4
cos𝜔𝜏

1
= −𝜔

2
− 𝛼

2
𝛼

3
.

(23)

It follows that

𝜔

4
+ (𝛼

2

4
− 𝛼

2

1
+ 2𝛼

2
𝛼

3
) 𝜔

2
+ (𝛼

2
𝛼

3
)

2

− (𝛼

1
𝛼

4
)

2

= 0. (24)

Since (𝛼

2
𝛼

3
)

2
− (𝛼

1
𝛼

4
)

2
= (𝑟

1
𝑟

2
𝑥

∗
𝑦

∗
)

2
(1 + 𝑎𝑏)(𝑎𝑏 − 1) < 0,

(24) has one positive root, defined by 𝜔

+.
From (23), if we denote

𝜏

𝑗
=

1

𝜔

+
{arccos(

𝛼

1
𝛼

2
𝛼

3
𝛼

4

𝛼

2

1
(𝜔

+
)

2
+ 𝛼

2

1
𝛼

2

4

) + 2𝑗𝜋} ,

𝑗 = 0, 1, 2, . . . ,

(25)

then ±𝜔

+
𝑖 are a pair of purely imaginary root of (22) with

𝜏

1
= 𝜏

𝑗.
Define 𝜏

10
= min{𝜏𝑗, 𝑗 = 0, 1, 2, . . .}. Let 𝜆(𝜏) = 𝜉(𝜏) +

𝜔(𝜏)𝑖 be the root of (22) near 𝜏 = 𝜏

10
satisfying 𝜉(𝜏

10
) =

0, 𝜔(𝜏

10
) = 𝜔

0
. We first check whether the transversality

condition is satisfied.

Lemma 2. the following transversality condition is satisfied:

𝑑Re (𝜆)
𝑑𝜏

|

𝜆=𝜔
0
𝑖
> 0.

(26)

Proof. This will show that there exists at least one eigenvalue
with positive real part for 𝜏 > 𝜏

10
. Moreover, the conditions

for the existence of a Hopf bifurcation [15, 22] are satisfied to
yield a periodic solution. Differentiating (22) with respect to
𝜏

1
, it follows that

2𝜆

d𝜆
d𝜏
1

− 𝛼

4

d𝜆
d𝜏
1

− 𝛼

1
𝑒

−𝜆𝜏
1
d𝜆
d𝜏
1

+ (−𝛼

1
𝜆 + 𝛼

1
𝛼

4
) 𝑒

−𝜆𝜏
1
(−𝜆 − 𝜏

1

d𝜆
d𝜏
1

) = 0,

(27)

which implies that

(

d𝜆
d𝜏
1

)

−1

=

2𝜆 − 𝛼

4
− 𝛼

1
𝑒

−𝜆𝜏
1

𝜆 (−𝛼

1
𝜆 + 𝛼

1
𝛼

4
) 𝑒

−𝜆𝜏
1

−

𝜏

1

𝜆

. (28)

For simplifying, define 𝜔

+ as 𝜔 and 𝜏

𝑗 as 𝜏
1
, and we can

obtain

sign{

d (Re 𝜆)
d𝜏

|

𝜏=𝜏
10

}

= sign{Re(d𝜆
d𝜏

)

−1

|

𝜏=𝜏
10

}

= sign{Re[ 2𝜆 − 𝛼

4
− 𝛼

1
𝑒

−𝜆𝜏

𝜆 (−𝛼

1
𝜆 + 𝛼

1
𝛼

4
) 𝑒

−𝜆𝜏
−

𝜏

1

𝜆

]

𝜏=𝜏
10

}

= sign
{

{

{

𝜔

4
+ 2𝛼

2

4
𝜔

2
+ (𝛼

2

4
− 𝛼

2
𝛼

3
)

2

[𝜔

3
+ (𝛼

2
𝛼

3
− 𝛼

2

4
) 𝜔]

2

+ (2𝛼

4
𝜔

2
+ 𝛼

2
𝛼

3
𝛼

4
)

2

}

}

}

.

(29)

Thus, the transversality condition holds andHopf bifurcation
occurs at 𝜏 = 𝜏

10
. We have the following theorem.

Theorem 3. For system (7), if (H1) holds, then there exists a
positive number 𝜏

10
such that the coexistence equilibrium 𝐸

∗ is
locally asymptotically stable for 0 < 𝜏

1
< 𝜏

10
and unstable for

𝜏

1
> 𝜏

10
. Further, system (7) undergoes a Hopf bifurcation at

the equilibrium 𝐸

∗ for 𝜏
1
= 𝜏

10
.

Case 2B.Consider 𝜏
1
= 0, 𝜏
4

̸= 0. Equation (21) can bewritten
in the form

𝜆

2
− 𝛼

1
𝜆 − 𝛼

2
𝛼

3
+ (−𝛼

4
𝜆 + 𝛼

1
𝛼

4
) 𝑒

−𝜆𝜏
4
= 0.

(30)

Since (30) has the similar form of (22), the corresponding
results are omitted.

Case 2C. Consider 𝜏
1
= 𝜏

4
= 𝜏. Equation (21) can be written

in the form

𝜆

2
− 𝛼

2
𝛼

3
− (𝛼

1
+ 𝛼

4
) 𝜆𝑒

−𝜆𝜏
+ 𝛼

1
𝛼

4
𝑒

−2𝜆𝜏
= 0.

(31)

Multiplying the 𝑒

𝜆𝜏 into the both sides of (31) and letting 𝜆 =

𝜔𝑖 (𝜔 > 0) to be the root of (31), we have that

(𝛼

1
𝛼

4
− 𝛼

2
𝛼

3
− 𝜔

2
) cos𝜔𝜏 = 0,

− (𝛼

1
𝛼

4
+ 𝛼

2
𝛼

3
+ 𝜔

2
) sin𝜔𝜏 = (𝛼

1
+ 𝛼

4
) 𝜔.

(32)

Suppose that 𝛼

1
𝛼

4
− 𝛼

2
𝛼

3
− 𝜔

2
= 0. We have

𝜔

+
= √𝑟

1
𝑟

2
𝑥

∗
𝑦

∗
(1 − 𝑎𝑏) when (H1) holds. From the

second equation of (32), we can get sin𝜔𝜏 = (𝑟

1
𝑥

∗
+

𝑟

2
𝑦

∗
)

√

1 − 𝑎𝑏/2√𝑟

1
𝑟

2
𝑥

∗
𝑦

∗
> 0. Thus, we can get 𝜏

(𝑗)
=

(1/𝜔

+
){arc sin((𝑟

1
𝑥

∗
+ 𝑟

2
𝑦

∗
)

√

1 − 𝑎𝑏/(2√𝑟

1
𝑟

2
𝑥

∗
𝑦

∗
)) + 2𝑗𝜋},

𝑗 = 0, 1, 2, . . .. Define 𝜏

01
= 𝜏

(0)

𝑗
0

= min{𝜏(𝑗), 𝑗 = 0, 1, 2, . . .},
𝜔

0
= 𝜔

𝑗
0

. Let 𝜆(𝜏) = 𝜉(𝜏) + 𝜔(𝜏)𝑖 be the root of (31) near
𝜏 = 𝜏

01
, satisfying 𝜉(𝜏

01
) = 0, 𝜔(𝜏

01
) = 𝜔

0
. Further, (31) has a

pair of purely imaginary roots ±𝜔+𝑖.
If 𝛼
1
𝛼

4
− 𝛼

2
𝛼

3
− 𝜔

2
̸= 0, then cos𝜔𝜏 = 0. If sin𝜔𝜏 = 1,

then the second equation of (32) becomes

𝜔

2
+ (𝛼

1
+ 𝛼

4
) 𝜔 + 𝛼

1
𝛼

4
+ 𝛼

2
𝛼

3
= 0. (33)
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If (𝑟
2
+ 𝑏𝑟

2
− 𝑟

1
− 𝑎𝑟

1
)

2
= 4𝑎𝑏𝑟

1
𝑟

2
(1 + 𝑎)(1 + 𝑏), (33) has

one positive root 𝜔

+
= (−1/2)(𝛼

1
+ 𝛼

4
). Thus, we can get

𝜏

(𝑗)
= (1/𝜔

+
)(𝜋/2 + 2𝜋𝑗), 𝑗 = 0, 1, 2, . . .. Define 𝜏

02
= 𝜏

(0)

𝑗
0

=

min{𝜏(𝑗), 𝑗 = 0, 1, 2, . . .}, 𝜔
0

= 𝜔

𝑗
0

. Let 𝜆(𝜏) = 𝜉(𝜏) + 𝜔(𝜏)𝑖

be the root of (31) near 𝜏 = 𝜏

02
, satisfying 𝜉(𝜏

02
) = 0,

𝜔(𝜏

02
) = 𝜔

0
. Further, (31) has a pair of purely imaginary

roots ±𝜔

+
𝑖. If (𝑟

2
+ 𝑏𝑟

2
− 𝑟

1
− 𝑎𝑟

1
)

2
> 4𝑎𝑏𝑟

1
𝑟

2
(1 + 𝑎)(1 + 𝑏),

and (33) has two positive roots 𝜔

±
= (1/2)[−(𝛼

1
+ 𝛼

4
) ±

√
(𝛼

1
+ 𝛼

4
)

2
− 4(𝛼

1
𝛼

4
+ 𝛼

2
𝛼

3
)]. It is obvious that 𝜔

+
> 𝜔

−.
From (32), we denote 𝜏±

𝑘
= (1/𝜔

±
)(𝜋/2 + 2𝜋𝑘), 𝑘 = 0, 1, 2, . . ..

When 𝜏 = 𝜏

+

𝑘
(resp., 𝜏 = 𝜏

−

𝑘
), then ±𝜔

+
𝑖 (resp., ±𝜔

−
𝑖) are a

pair of purely imaginary roots of (31). Further, we can check
that there exists a positive integral 𝑗 > 0 such that 𝜏+

𝑗+1
< 𝜏

−

𝑗

and 0 < 𝜏

+

0
< 𝜏

−

0
< 𝜏

+

1
< 𝜏

−

1
⋅ ⋅ ⋅ 𝜏

−

𝑗−1
< 𝜏

+

𝑗
< 𝜏

+

𝑗+1
< 𝜏

−

𝑗
. Let

𝜆(𝜏) = 𝜉(𝜏) + 𝜔(𝜏)𝑖 be the root of (31) near 𝜏 = 𝜏

±

𝑘
, satisfying

𝜉(𝜏

±

𝑘
) = 0, 𝜔(𝜏

±

𝑘
) = 𝜔

0
. If sin𝜔𝜏 = −1, then the second

equation of (32) becomes 𝜔2 − (𝛼

1
+ 𝛼

4
)𝜔 + 𝛼

1
𝛼

4
+ 𝛼

2
𝛼

3
= 0,

which does not have positive root.

Lemma 4. Suppose that (H1) holds.
(i) If 𝜏 ∈ [0, 𝜏

01
), then all roots of (31)have strictly negative

real parts; if 𝜏 = 𝜏

01
, then all roots of (31), except for

±𝜔

+
𝑖, have strictly negative real parts.

(ii) If (𝑟
2
+ 𝑏𝑟

2
− 𝑟

1
− 𝑎𝑟

1
)

2
= 4𝑎𝑏𝑟

1
𝑟

2
(1 + 𝑎)(1 + 𝑏) and

𝜏 ∈ [0, 𝜏

02
), then all roots of (31) have strictly negative

real parts; if 𝜏 = 𝜏

02
, then all roots of (31), except for

±𝜔

+
𝑖, have strictly negative real parts.

(iii) If (𝑟

2
+ 𝑏𝑟

2
− 𝑟

1
− 𝑎𝑟

1
)

2
> 4𝑎𝑏𝑟

1
𝑟

2
(1 + 𝑎)(1 + 𝑏),

there exist two sequences {𝜏

+

𝑘
}(𝑘 = 0, 1, 2, . . .) and

{𝜏

−

𝑘
} (𝑘 = 0, 1, 2, . . .). Further, there exists 𝑁 ∈ N,

when 𝜏 ∈ (0, 𝜏

+

0
) ∪ (𝜏

−

0
, 𝜏

+

1
) ∪ ⋅ ⋅ ⋅ (𝜏

−

𝑁−1
, 𝜏

+

𝑁
), and

all the roots of (31) have negative real part; when 𝜏 ∈

(𝜏

+

0
, 𝜏

−

0
)∪(𝜏

+

1
, 𝜏

−

1
)∪⋅ ⋅ ⋅∪(𝜏

+

𝑁
, 𝜏

−

𝑁
)∪(𝜏

+

𝑁+1
, +∞), (31) has

at least one root with positive real part. When 𝜏 = 𝜏

+

𝑘

and 𝜏 = 𝜏

−

𝑘
, (31) has a pair of pure imaginary roots.

Lemma 5. The following transversality condition is satisfied:

𝑑 (Re 𝜆)
𝑑𝜏

|

𝜏=𝜏
01

> 0 (resp.𝑑 (Re 𝜆)
𝑑𝜏

|

𝜏=𝜏
02

> 0) . (34)

Proof. Multiplying the 𝑒

𝜆𝜏 into the both sides of (31) and
differentiating (31) with respect to 𝜏, we can obtain that

(

d𝜆
d𝜏

)

−1

=

2𝜆𝑒

𝜆𝜏
− (𝛼

1
+ 𝛼

4
)

𝜆 [(−𝜆

2
+ 𝛼

2
𝛼

3
) 𝑒

𝜆𝜏
+ 𝛼

1
𝛼

4
𝑒

−𝜆𝜏
]

−

𝜏

𝜆

.
(35)

For simplifying, define𝜔+ as𝜔 and 𝜏

(𝑗) as 𝜏, andwe can obtain

sign{

dRe𝜆
d𝜏

|

𝜏=𝜏
01

}

= sign{Re(d𝜆
d𝜏

)

−1

|

𝜏=𝜏
01

}

= sign{Re[
2𝜆𝑒

𝜆𝜏
− (𝛼

1
+ 𝛼

4
)

𝜆 [(−𝜆

2
+ 𝛼

2
𝛼

3
) 𝑒

𝜆𝜏
+ 𝛼

1
𝛼

4
𝑒

−𝜆𝜏
]

−

𝜏

𝜆

]

𝜏=𝜏
01

}

=

1

𝜔

sign {Re [ (𝛼

1
𝛼

4
cos𝜔𝜏 − 2𝜔 sin𝜔𝜏

+ (−𝛼

1
𝛼

4
sin𝜔𝜏 + 2𝜔 cos𝜔𝜏) 𝑖)

× ((𝜔

2
+ 𝛼

2
𝛼

3
) cos𝜔𝜏 + 𝛼

1
𝛼

4
𝜔 sin𝜔𝜏

+ [ (𝜔

2
+ 𝛼

2
𝛼

3
) sin𝜔𝜏

+𝛼

1
𝛼

4
𝜔 cos𝜔𝜏] 𝑖)

−1

]}

= sign{

(𝛼

1
− 𝛼

4
)

2

(𝜔

2
+ 𝛼

2
𝛼

3
+ 𝛼

1
𝛼

4
)

2
} .

(36)

Thus, the transversality condition is satisfied. This ends the
proof.

Remark 6. When 𝜏 = 𝜏

±

𝑘
, the transversality condition is

satisfied as follows:
d (Re 𝜆)

d𝜏
|

𝜏=𝜏
+

𝑘

> 0,

d (Re 𝜆)
d𝜏

|

𝜏=𝜏
−

𝑘

< 0.
(37)

Theorem 7. For system (7), consider the following.
(i) If (H1) (resp., (H1) and (𝑟

2
+ 𝑏𝑟

2
− 𝑟

1
− 𝑎𝑟

1
)

2
=

4𝑎𝑏𝑟

1
𝑟

2
(1 + 𝑎)(1 + 𝑏)) holds, then there exists a

positive number 𝜏

01
(resp., 𝜏

02
) such that the positive

equilibrium 𝐸

∗ is locally asymptotically stable for 0 <

𝜏 < 𝜏

01
(resp., 0 < 𝜏 < 𝜏

02
) and unstable for

𝜏 > 𝜏

01
(resp., 𝜏 > 𝜏

02
). Further, system (7) undergoes

a Hopf bifurcation at the positive equilibrium 𝐸

∗ for
𝜏 = 𝜏

(𝑗)
(𝑗 = 0, 1, 2, . . .).

(ii) If (H1) and (𝑟

2
+ 𝑏𝑟

2
− 𝑟

1
− 𝑎𝑟

1
)

2
> 4𝑎𝑏𝑟

1
𝑟

2
(1 +

𝑎)(1 + 𝑏) hold, then there is a positive integer 𝑁, such
that the positive equilibrium 𝐸

∗ switches𝑁 times from
stability to instability to stability; that is, the positive
equilibrium 𝐸

∗ of system (7) is locally asymptotically
stable when 𝜏 ∈ (0, 𝜏

+

0
) ∪ (𝜏

−

0
, 𝜏

+

1
) ∪ ⋅ ⋅ ⋅ (𝜏

−

𝑁−1
, 𝜏

+

𝑁
)

and unstable when 𝜏 ∈ (𝜏

+

0
, 𝜏

−

0
) ∪ (𝜏

+

1
, 𝜏

−

1
) ∪ ⋅ ⋅ ⋅ ∪

(𝜏

+

𝑁
, 𝜏

−

𝑁
) ∪ (𝜏

+

𝑁+1
, +∞). Hopf bifurcation occurs at the

positive equilibrium 𝐸

∗ when 𝜏 = 𝜏

+

𝑘
and 𝜏 = 𝜏

−

𝑘
.

Case 2D. Consider 𝜏

1
∈ [0, 𝜏

10
) and 𝜏

4
̸= 0. Regarding 𝜏

4

as a parameter, we consider (21) with 𝜏

1
in its stable interval.

Without loss of generality, we consider system (7) under
Case 2A. Let𝜔𝑖 (𝜔 > 0) be a root of (21), and then we obtain,
by selecting delay 𝜏

0

1
∈ [0, 𝜏

10
),

𝛼

1
𝛼

4
cos𝜔𝜏

4
− (𝛼

4
𝜔 + 𝛼

1
𝛼

4
sin𝜔𝜏

0

1
) sin𝜔𝜏

4

= 𝜔

2
+ 𝛼

2
𝛼

3
− 𝛼

1
𝜔 sin𝜔𝜏

0

1
,

− 𝛼

1
𝛼

4
sin𝜔𝜏

4
− (𝛼

4
𝜔 + 𝛼

1
𝛼

4
sin𝜔𝜏

0

1
) cos𝜔𝜏

4

= 𝛼

1
𝜔 cos𝜔𝜏

0

1
.

(38)

Eliminating the parameter 𝜏
4
, (38) leads to

𝑐

20
(𝜔) + 𝑐

21
(𝜔) sin𝜔𝜏

0

1
= 0, (39)

where 𝑐

20
(𝜔) = 𝜔

4
+ (𝛼

2

1
+ 2𝛼

2
𝛼

3
− 𝛼

2

4
)𝜔

2
+ (𝛼

2
𝛼

3
)

2
− (𝛼

1
𝛼

4
)

2

and 𝑐

21
(𝜔) = 2𝛼

1
𝜔

3
+ 2𝛼

1
(𝛼

2
𝛼

3
− 𝛼

2

4
)𝜔 .
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Denote 𝑔(𝜔) = 𝑐

20
(𝜔) + 𝑐

21
(𝜔) sin𝜔𝜏

0

1
. It is obvious

that lim
𝜔→∞

𝑔(𝜔) = ∞ and 𝑔(0) = (𝛼

2
𝛼

3
)

2
− (𝛼

1
𝛼

4
)

2
<

0 when (H1) holds. Without loss of generality, we assume
that (39) has at least finite positive roots, which are defined
by 𝜔

4
1

, 𝜔

4
2

, . . . , 𝜔

4
𝑘

. From (38), for every fixed 𝜔

4
𝑖

(𝑖 =

1, 2, . . . , 𝑘), we have

𝜏

(𝑗)

4
𝑖

=

1

𝜔

4
𝑖

{arccos( (𝛼

1
𝛼

2
𝛼

3
𝛼

4
cos𝜔
4
𝑖

𝜏

0

1
)

× (𝛼

2

4
𝜔

2

4
𝑖

+ (𝛼

1
𝛼

4
)

2

+ 2𝛼

1
𝛼

2

4
𝜔

4
𝑖

sin𝜔

4
𝑖

𝜏

0

1
)

−1

)

+ 2𝑗𝜋} , 𝑖 = 1, 2, . . . , 𝑘, 𝑗 = 0, 1, 2, . . . .

(40)

Define 𝜏

4∗
= 𝜏

(0)

4
𝑖

= min{𝜏(𝑗)
4
𝑖

| 𝑖 = 0, 1, 2, . . . , 𝑘, 𝑗 =

1, 2, . . .} , 𝜔

0
= 𝜔

4
𝑖

. Equation (39) has a pair of purely
imaginary roots ±𝜔

4∗
𝑖 for 𝜏0

1
∈ [0, 𝜏

10
).

In the following, differentiating Equation (21) with
respect to 𝜏

4
and substituting 𝜏

4
= 𝜏

4∗
, we can get

sign{Re[
d𝜆 (𝜏

4
)

d𝜏
4

]

−1

𝜏
4
=𝜏
4∗

} = − sign{

𝑃

1𝑅
𝑄

1𝑅
+ 𝑃

1𝐼
𝑄

1𝐼

𝑄

2

1𝑅
+ 𝑄

2

1𝐼

} ,

(41)

where

𝑃

1𝑅
= 𝛼

1
𝜏

0

1
sin𝜔

4∗
𝜏

0

1
− 𝛼

1
cos𝜔
4∗
𝜏

0

1
− 𝛼

4
cos𝜔
4∗
𝜏

4∗

− 𝛼

1
𝛼

4
𝜏

0

1
cos𝜔
4∗

(𝜏

0

1
+ 𝜏

4∗
) ,

𝑃

1𝐼
= 2𝜔

4∗
+ 𝛼

1
sin𝜔

4∗
𝜏

0

1
+ 𝛼

1
𝜏

0

1
𝜔

4∗
cos𝜔
4∗
𝜏

0

1

+ 𝛼

4
sin𝜔

4∗
𝜏

4∗
+ 𝛼

1
𝛼

4
𝜏

0

1
sin𝜔

4∗
(𝜏

0

1
+ 𝜏

4∗
) ,

𝑄

1𝑅
= −𝛼

1
(𝜔

4∗
)

2 cos𝜔
4∗
𝜏

0

1
,

𝑄

1𝐼
= (𝜔

4∗
)

3

+ 𝛼

2
𝛼

3
𝜔

4∗
+ 𝛼

1
(𝜔

4∗
)

2 sin𝜔

4∗
𝜏

0

1
.

(42)

If the following assumption

(H2) 𝑃

1𝑅
𝑄

1𝑅
+ 𝑃

1𝐼
𝑄

1𝐼
< 0

holds, then the following results on stability and bifurcation
of system (7) are obtained by the general Hopf bifurcation
theorem for FDEs in Hale [14].

Theorem 8. For system (7), suppose that (H1) and (H2)
hold and 𝜏

0

1
∈ [0, 𝜏

10
). Then, system (7) undergoes a Hopf

bifurcation at the positive equilibrium 𝐸

∗ when 𝜏

4
= 𝜏

4∗
. That

is, system (7) has a branch of periodic solution bifurcation from
the zero solution near 𝜏

4
= 𝜏

4∗
.

2.3. Only Considering 𝜏

1
and 𝜏

3
. The characteristic equation

of system (7) with 𝜏

2
= 𝜏

4
= 0 is

𝜆

2
− 𝛼

4
𝜆 + (−𝛼

1
𝜆 + 𝛼

1
𝛼

4
) 𝑒

−𝜆𝜏
1
− 𝛼

2
𝛼

3
𝑒

−𝜆𝜏
3
= 0.

(43)

In the following, we will discuss the distribution of roots of
(43) while 𝜏

1
and 𝜏

3
are given different values.

When 𝜏

1
= 0, 𝜏

3
= 0, (43) becomes (11) and the

equilibrium 𝐸

∗
(𝑥

∗
, 𝑦

∗
) is locally asymptotically stable when

(H1) holds.

Case 3A. Consider 𝜏

1
̸= 0, 𝜏

3
= 0. Equation (43) can be

written in the form

𝜆

2
− 𝛼

4
𝜆 − 𝛼

2
𝛼

3
+ (−𝛼

1
𝜆 + 𝛼

1
𝛼

4
) 𝑒

−𝜆𝜏
1
= 0.

(44)

Equation (44) is the same as (22), so we do not prove it.

Case 3B. Consider 𝜏

1
= 0, 𝜏

3
̸= 0. Equation (43) can be

written in the form

𝜆

2
− (𝛼

1
+ 𝛼

4
) 𝜆 + 𝛼

1
𝛼

4
− 𝛼

2
𝛼

3
𝑒

−𝜆𝜏
3
= 0.

(45)

Equation (45) is the same as (17), so we also do not prove it.

Case 3C. Consider 𝜏

1
= 𝜏

3
= 𝜏. Equation (43) is written in

the form

𝜆

2
− 𝛼

4
𝜆 + (−𝛼

1
𝜆 + 𝛼

1
𝛼

4
− 𝛼

2
𝛼

3
) 𝑒

−𝜆𝜏
= 0.

(46)

Suppose that 𝜆 = 𝜔𝑖 (𝜔 > 0) is the root of (46) and we have
that

(𝛼

1
𝛼

4
− 𝛼

2
𝛼

3
) cos𝜔𝜏 − 𝛼

1
𝜔 sin𝜔𝜏 = 𝜔

2
,

(𝛼

1
𝛼

4
− 𝛼

2
𝛼

3
) sin𝜔𝜏 + 𝛼

1
𝜔 cos𝜔𝜏 = −𝛼

4
𝜔.

(47)

It obtains that

𝜔

4
+ (𝛼

2

4
− 𝛼

2

1
) 𝜔

2
− (𝛼

1
𝛼

4
− 𝛼

2
𝛼

3
)

2

= 0. (48)

It is obvious that (48) has only one positive root 𝜔

+
=

[(1/2)(𝛼

2

1
− 𝛼

2

4
+

√
(𝛼

2

4
− 𝛼

2

1
)

2
+ 4(𝛼

1
𝛼

4
− 𝛼

2
𝛼

3
)

2
)]

1/2. From
(47), we obtain that

𝜏

(𝑗)
=

1

𝜔

+

{𝑎𝑟𝑐 cos
−𝛼

2
𝛼

3
𝜔

2

+

𝛼

2

1
𝜔

2

+
+ (𝛼

1
𝛼

4
− 𝛼

2
𝛼

3
)

2
+ 2𝑗𝜋} ,

𝑗 = 0, 1, 2, . . . .

(49)

Equation (46) has a pair of purely imaginary roots ±𝜔

+
𝑖.

Define 𝜏

03
= 𝜏

(0)

+
= min{𝜏(𝑗), 𝑗 = 0, 1, 2, . . .}, 𝜔

0
= 𝜔

+
. Let

𝜆(𝜏) = 𝜉(𝜏) +𝜔(𝜏)𝑖 be the root of (46) near 𝜏 = 𝜏

(𝑗) satisfying
𝜉(𝜏

(𝑗)
) = 0, 𝜔(𝜏

(𝑗)
) = 𝜔

0
.

Lemma 9. If the condition (H1) holds, then the following
transversality condition is satisfied:

𝑑 (Re 𝜆)
𝑑𝜏

|

𝜏=𝜏
03

> 0.
(50)

Proof. Differentiating (46) with respect to 𝜏 and noticing that
𝜆 is a function of 𝜏, we can obtain that

(

d (Re 𝜆)
d𝜏

)

−1

=

2𝜆 − 𝛼

4
− 𝛼

1
𝑒

−𝜆𝜏

𝜆 (−𝛼

1
𝜆 + 𝛼

1
𝛼

4
− 𝛼

2
𝛼

3
) 𝑒

−𝜆𝜏
−

𝜏

𝜆

. (51)
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For simplifying, define𝜔+ as𝜔 and 𝜏

(𝑗) as 𝜏, andwe can obtain

sign{

d (Re 𝜆)
d𝜏

|

𝜏=𝜏
03

}

= sign{Re(d𝜆
d𝜏

)

−1

|

𝜏=𝜏
03

}

= sign{Re[ 2𝜆 − 𝛼

4
− 𝛼

1
𝑒

−𝜆𝜏

𝜆 (−𝛼

1
𝜆 + 𝛼

1
𝛼

4
− 𝛼

2
𝛼

3
) 𝑒

−𝜆𝜏
−

𝜏

𝜆

]

𝜏=𝜏
03

}

= sign {(

1

𝜔

2
) (𝛼

2

1
𝜔

4
+ 2 (𝛼

1
𝛼

4
− 𝛼

2
𝛼

3
) 𝜔

2

+𝛼

2

4
(𝛼

1
𝛼

4
− 𝛼

2
𝛼

3
)

2

)

× ([𝛼

1
𝜔

2
− 𝛼

4
(𝛼

2
𝛼

3
− 𝛼

1
𝛼

4
)]

2

+ (2𝛼

1
𝛼

4
− 𝛼

2
𝛼

3
)

2

𝜔

2
)

−1

} .

(52)

Thus, if the condition (H1) holds, the transversality condition
is satisfied. This ends the proof.

Theorem 10. For system (7), if (H1) holds, then there exists
a positive number 𝜏

03
such that the interior equilibrium 𝐸

∗ is
locally asymptotically stable for 0 < 𝜏 < 𝜏

03
and unstable for

𝜏 > 𝜏

03
. Further, system (7) undergoes a Hopf bifurcation at the

equilibrium 𝐸

∗ for 𝜏 = 𝜏

03
.

Case 3D. Consider 𝜏∗
1

∈ [0, 𝜏

10
) and 𝜏

3
̸= 0. Regarding 𝜏

3
as

a parameter, we consider (43) with 𝜏

1
in its stable interval.

Without loss of generality, we consider system (7) under
Case 3A. Let 𝜔𝑖 (𝜔 > 0) be a root of (43). We can obtain the
following results by selecting the value of delay 𝜏

∗

1
∈ [0, 𝜏

10
):

𝛼

2
𝛼

3
cos𝜔𝜏

3
= 𝜔

2
− 𝛼

1
𝛼

4
cos𝜔𝜏

∗

1
+ 𝛼

1
𝜔 sin𝜔𝜏

∗

1
,

𝛼

2
𝛼

3
sin𝜔𝜏

3
= 𝛼

4
𝜔 + 𝛼

1
𝛼

4
sin𝜔𝜏

∗

1
+ 𝛼

1
𝜔 cos𝜔𝜏

∗

1
.

(53)

Eliminating the parameter 𝜏
3
, (53) leads to

𝑐

30
(𝜔) + 𝑐

31
(𝜔) sin𝜔𝜏

∗

1
= 0, (54)

where 𝑐

30
(𝜔) = 𝜔

4
+ (𝛼

2

1
+ 𝛼

2

4
)𝜔

2
+ (𝛼

1
𝛼

4
)

2
− (𝛼

2
𝛼

3
)

2, and
𝑐

31
(𝜔) = 2𝛼

1
𝜔

3
+ 2𝛼

1
𝛼

2

4
𝜔.

Suppose that
(H3) Equation (53) has at least finite positive roots.
If (H3) holds, the roots of (53) are defined by

𝜔

3
1

, 𝜔

3
2

, . . . , 𝜔

3
𝑘

. From (53), for every fixed 𝜔

3
𝑖

(𝑖 =

1, 2, . . . , 𝑘), there exists a sequence {𝜏

(𝑗)

3
𝑖

| 𝑗 = 1, 2, . . .}, where

𝜏

(𝑗)

3
𝑖

=

1

𝜔

3
𝑖

{arccos
𝜔

2

3
𝑖

− 𝛼

1
𝛼

4
cos𝜔
3
𝑖

𝜏

∗

1
+ 𝛼

1
𝜔

3
𝑖

sin𝜔

3
𝑖

𝜏

∗

1

𝛼

2
𝛼

3

+ 2𝑗𝜋} , 𝑖 = 1, 2, . . . , 𝑘, 𝑗 = 0, 1, 2, . . . ,

(55)

and then±𝜔

3
𝑖

𝑖 are a pair of purely imaginary roots of (43). Let
𝜏

3∗
= 𝜏

(0)

3
𝑖

= min{𝜏(𝑗)
3
𝑖

| 𝑖 = 1, 2, . . . , 𝑘, 𝑗 = 1, 2, . . .}, 𝜔∗
3

= 𝜔

3
𝑖

.
When 𝜏

3
= 𝜏

3∗
, (43) has a pair of purely imaginary roots ±𝜔∗

3
𝑖

for 𝜏

∗

1
∈ [0, 𝜏

10
). Let 𝜆(𝜏) = 𝜉(𝜏) + 𝜔(𝜏)𝑖 be the root of (43)

near 𝜏 = 𝜏

3∗
satisfying 𝜉(𝜏

3∗
) = 0, 𝜔(𝜏

3∗
) = 𝜔

∗

3
.

In the following, differentiating Equation (43) with
respect to 𝜏

3
and substituting 𝜏

3
= 𝜏

3∗
, we get

sign{Re [d𝜆 (𝜏)

d𝜏
3

]

−1

𝜆=𝜔
∗

3
𝑖

} = − sign{

𝑃

2𝑅
𝑄

2𝑅
+ 𝑃

2𝐼
𝑄

2𝐼

𝑄

2

2𝑅
+ 𝑄

2

2𝐼

} ,

(56)

where
𝑃

2𝑅
= 𝛼

4
+ 𝛼

1
𝜏

∗

1
𝜔

∗

3
sin𝜔

∗

3
𝜏

∗

1
− (𝛼

1
+ 𝛼

1
𝛼

4
𝜏

∗

1
) cos𝜔∗

3
𝜏

∗

1
,

𝑃

2𝐼
= 2𝜔

∗

3
+ 𝛼

1
𝜏

∗

1
𝜔

∗

3
cos𝜔∗
3
𝜏

∗

1
+ (𝛼

1
+ 𝛼

1
𝛼

4
𝜏

∗

1
) sin𝜔

∗

3
𝜏

∗

1
,

𝑄

2𝑅
= − 𝛼

4
(𝜔

∗

3
)

2

+ 𝛼

1
(𝜔

∗

3
)

2 cos𝜔∗
3
𝜏

∗

1
+ 𝛼

1
𝛼

4
𝜔

∗

3
sin𝜔

∗

3
𝜏

∗

1
,

𝑄

2𝐼
= − (𝜔

∗

3
)

3

+ 𝛼

1
𝛼

4
𝜔

∗ cos𝜔∗
3
𝜏

∗

1
− 𝛼

1
(𝜔

∗

3
)

2 sin𝜔

∗

3
𝜏

∗

1
.

(57)

Assume that
(H4) 𝑃

2𝑅
𝑄

2𝑅
+ 𝑃

2𝐼
𝑄

2𝐼
< 0.

Therefore, by the general Hopf bifurcation theorem for
FDEs in Hale [14], we have the following results on stability
and bifurcation of system (7).

Theorem 11. For system (7), suppose that (H1), (H3), and (H4)
hold and 𝜏

∗

1
∈ [0, 𝜏

10
). Then, system (7) undergoes a Hopf

bifurcation at the positive equilibrium 𝐸

∗ when 𝜏

3
= 𝜏

3∗
. That

is, system (7) has a branch of periodic solutions bifurcating from
the zero solution near 𝜏

3
= 𝜏

3∗
.

Remark 12. If we only consider system (7) with delays 𝜏

1
=

𝜏

3
= 0, we have the characteristic equation

𝜆

2
− 𝛼

2
𝜆 + (−𝛼

4
𝜆 + 𝛼

2
𝛼

4
) 𝑒

−𝜆𝜏
4
− 𝛼

2
𝛼

3
𝑒

−𝜆𝜏
2
= 0,

(58)

which is similar to (43). Thus, we do not discuss the roots
of (58). Similarly, if we only consider system (7) with delays
𝜏

1
= 𝜏

2
= 0 or 𝜏

3
= 𝜏

4
= 0, we can obtain the corresponding

characteristic equation which is also similar to (43). The
detailed discussions are also omitted.

2.4. Considering 𝜏

1
= 𝜏

2
= 𝜏

4
= 𝜏 and 𝜏

3
. We can obtain that

the characteristic equation of system (7) with 𝜏

1
= 𝜏

2
= 𝜏

4
= 𝜏

and 𝜏

3
= 0 is

𝜆

2
− [(𝛼

1
+ 𝛼

4
) 𝜆 + 𝛼

2
𝛼

3
] 𝑒

−𝜆𝜏
+ 𝛼

1
𝛼

4
𝑒

−2𝜆𝜏
= 0.

(59)

When 𝜏

1
= 𝜏

2
= 𝜏

4
= 0, (59) becomes (11) and the

equilibrium 𝐸

∗
(𝑥

∗
, 𝑦

∗
) is locally asymptotically stable when

(H1) holds.
Multiplying 𝑒

𝜆𝜏 into the both sides of (59) and letting
𝜔𝑖 (𝜔 > 0) be the root of (59), we have

(𝛼

1
𝛼

4
− 𝜔

2
) cos𝜔𝜏 = 𝛼

2
𝛼

3
,

(𝛼

1
𝛼

4
+ 𝜔

2
) sin𝜔𝜏 = − (𝛼

1
+ 𝛼

4
) 𝜔.

(60)
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Since sin2𝜔𝜏 + cos2𝜔𝜏 = 1, we obtain that

𝜔

12
+ 𝑑

5
𝜔

10
+ 𝑑

4
𝜔

8
+ 𝑑

3
𝜔

6
+ 𝑑

2
𝜔

4
+ 𝑑

1
𝜔

2
+ 𝑑

0
= 0, (61)

where 𝑑

5
= −𝛼

2

1
𝛼

2

4
, 𝑑
4
= 𝛼

2

1
𝛼

2

4
+ 2𝛼

1
𝛼

4
(𝛼

1
+ 𝛼

4
) − 𝛼

2

2
𝛼

2

3
, 𝑑
3
=

2𝛼

1
𝛼

4
[𝛼

3

1
𝛼

3

4
−2𝛼

1
𝛼

4
(𝛼

1
+𝛼

4
)

2
−𝛼

2

2
𝛼

2

3
],𝑑
2
= −𝛼

4

1
𝛼

4

4
+2𝛼

3

1
𝛼

3

4
(𝛼

1
+

𝛼

4
)

2
−2𝛼

2

1
+𝛼

2

4
𝛼

2

2
𝛼

2

3
, 𝑑
1
= −𝛼

6

1
𝛼

6

4
−2𝛼

2

2
𝛼

2

3
𝛼

3

1
𝛼

3

4
, and 𝑑

0
= 𝛼

6

1
𝛼

6

4
−

𝛼

4

1
𝛼

4

4
𝛼

2

2
𝛼

2

3
. Without losses of generality, suppose that (61) has

six different positive roots, defined by 𝜔

+

𝑘
(𝑘 = 1, 2, 3, 4, 5, 6).

From (60), if we denote

𝜏

(𝑗)

𝑘
=

1

𝜔

+

𝑘

{arccos(
𝛼

2
𝛼

3

𝛼

1
𝛼

4
− (𝜔

+

𝑘
)

2
) + 2𝑗𝜋} ,

𝑘 = 1, 2, 3, 4, 5, 6, 𝑗 = 0, 1, 2, . . . ,

(62)

then ±𝜔

+

𝑘
𝑖 are a pair of purely imaginary roots of (59) with

𝜏 = 𝜏

(𝑗)

𝑘
.

Define 𝜏

04
= 𝜏

(0)

𝑘
0

= min
𝑘∈{1,2,3,4,5,6}

{𝜏

(𝑗)

𝑘
, 𝑗 = 0, 1, 2, . . .},

𝜔

0
= 𝜔

𝑘
0

. Let 𝜆(𝜏) = 𝜉(𝜏) + 𝜔(𝜏)𝑖 be the root of (59) near 𝜏 =

𝜏

04
satisfying 𝜉(𝜏

04
) = 0, 𝜔(𝜏

04
) = 𝜔

0
. Next, differentiating

(59) with respect to 𝜏, it follows that

(

d𝜆
d𝜏

)

−1

=

2𝜆𝑒

𝜆𝜏
− 𝛼

1
− 𝛼

4

−𝜆 (𝜆

2
𝑒

𝜆𝜏
− 𝛼

1
𝛼

4
𝑒

−𝜆𝜏
)

−

𝜏

𝜆

. (63)

For simplifying, define𝜔+
𝑘
as𝜔 and 𝜏

(𝑗)

𝑘
as 𝜏, andwe can obtain

sign{

d (Re 𝜆)
d𝜏

|

𝜏=𝜏
04

}

= sign{Re(d𝜆
d𝜏

)

−1

|

𝜆=𝜔
+

𝑘
𝑖
}

= sign
{

{

{

Re[ 2𝜆𝑒

𝜆𝜏
− 𝛼

1
− 𝛼

4

−𝜆 (𝜆

2
𝑒

𝜆𝜏
− 𝛼

1
𝛼

4
𝑒

−𝜆𝜏
)

−

𝜏

𝜆

]

𝜆=𝜔
+

𝑘
𝑖

}

}

}

= sign {Re [ (− (𝛼

1
+ 𝛼

4
+ 2𝜔 sin𝜔𝜏) (2𝜔 cos𝜔𝜏) 𝑖)

× (𝜔𝑖 [(𝜔

2
+ 𝛼

1
𝛼

4
) cos𝜔𝜏

+ (𝜔

2
− 𝛼

1
𝛼

4
) sin𝜔𝜏𝑖])

−1

]}

=

1

𝜔(𝛼

2

1
𝛼

2

4
− 𝜔

4
)

2

(𝑃

2

𝑅
+ 𝑃

2

𝐼
)

sign {𝑄

𝑅
} ,

(64)

where 𝑃

𝑅
= (𝜔

2
+ 𝛼

1
𝛼

4
) cos𝜔𝜏, 𝑃

𝐼
= (𝜔

2
− 𝛼

1
𝛼

4
) sin𝜔𝜏, and

𝑄

𝑅
= 2𝜔

3
(𝛼

2

1
𝛼

2

4
−𝜔

4
)

2
+2𝜔𝛼

1
𝛼

4
𝛼

2

2
𝛼

2

4
(𝛼

1
𝛼

4
+𝜔

2
)

2
+𝛼

1
𝛼

4
(𝛼

1
+

𝛼

4
)(𝛼

1
𝛼

4
− 𝜔

2
)

2
[𝜔

4
− 2(𝛼

1
+ 𝛼

4
)𝜔

2
− 𝛼

2

1
𝛼

2

4
].

Since 𝛼

1
+ 𝛼

4
< 0, we suppose that

(H5) 𝜔

4
− 2(𝛼

1
+ 𝛼

4
)𝜔

2
− 𝛼

2

1
𝛼

2

4
< 0.

If (H5) holds, then the transversality condition

d (Re 𝜆)
d𝜏

| 𝜏 = 𝜏

04
> 0

(65)

holds and a Hopf bifurcation occurs at 𝜏 = 𝜏

04
. We have the

following theorem.

Theorem 13. For system (7), if (H1) and (H5) hold, then there
exists a positive number 𝜏

04
such that the positive equilibrium

𝐸

∗ is locally asymptotically stable for 0 < 𝜏 < 𝜏

04
and unstable

for 𝜏 > 𝜏

04
. Further, system (7) undergoes a Hopf bifurcation

at the equilibrium 𝐸

∗ for 𝜏 = 𝜏

04
.

Further, the corresponding characteristic equation with
𝜏

1
= 𝜏

2
= 𝜏

4
= 𝜏 and 𝜏

3
̸= 0 is

𝜆

2
− (𝛼

1
+ 𝛼

4
) 𝜆𝑒

−𝜆𝜏
− 𝛼

2
𝛼

3
𝑒

−𝜆𝜏
𝑒

−𝜆𝜏
3
+ 𝛼

1
𝛼

4
𝑒

−2𝜆𝜏
= 0.

(66)

When 𝜏

1
= 𝜏

2
= 𝜏

3
= 𝜏

4
= 0, (66) becomes (11).

The positive equilibrium 𝐸

∗
(𝑥

∗
, 𝑦

∗
) is locally asymptotically

stable when (H1) holds.
Regarding 𝜏

3
as a parameter, we consider (66) with 𝜏 in its

stable interval. Without loss of generality, we consider system
(7) under the above case. Multiplying 𝑒

𝜆𝜏 into the both sides
of (66) and letting 𝜆 = 𝜔𝑖 (𝜔 > 0) be the root of (66), we
have that by selecting the value of delay 𝜏

∗∗
∈ (0, 𝜏

04
)

𝛼

2
𝛼

3
cos𝜔𝜏

3
= (𝛼

1
𝛼

4
− 𝜔

2
) cos𝜔𝜏

∗∗
,

𝛼

2
𝛼

3
sin𝜔𝜏

3
= (𝛼

1
+ 𝛼

4
) 𝜔 + (𝛼

1
𝛼

4
+ 𝜔

2
) sin𝜔𝜏

∗∗
.

(67)

since sin2𝜔𝜏 + cos2𝜔𝜏 = 1, we obtain that

𝜔

4
+

̃

𝑑

4
𝜔

2
+

̃

𝑑

3
+

̃

𝑑

2
cos𝜔𝜏

∗∗
+

̃

𝑑

1
sin𝜔𝜏

∗∗
= 0,

(68)

where ̃

𝑑

4
= (𝛼

1
+𝛼

4
)

2, ̃𝑑
3
= 𝛼

2

1
𝛼

2

4
−𝛼

2

2
𝛼

2

3
, ̃𝑑
2
= −2𝛼

1
𝛼

4
𝜔

2, and
̃

𝑑

1
= 2(𝛼

1
+ 𝛼

4
)(𝜔

3
+ 𝛼

1
𝛼

4
𝜔).

Suppose that

(H6) Equation (68) has at least finite positive roots.

If (H6) holds, then (68) has finite positive roots, given
by 𝜔

1
3

, 𝜔

2
3

, . . . , 𝜔

𝑚
3

. From (67), for every fixed 𝜔

𝑘
3

(𝑘 =

1, 2, . . . , 𝑚), if there exists a sequence {𝜏

(𝑗)

𝑘
3

| 𝑗 = 0, 1, 2, . . .}

such that (68) holds, where

𝜏

(𝑗)

𝑘
3

=

1

𝜔

𝑘
3

{

{

{

arccos(
(𝛼

1
𝛼

4
− 𝜔

2

𝑘
3

) cos𝜔
𝑘
3

𝜏

∗∗

𝛼

2
𝛼

3

) + 2𝑗𝜋

}

}

}

,

𝑘 = 1, 2, . . . , 𝑚, 𝑗 = 0, 1, 2, . . . ,

(69)

then ±𝜔

𝑘
3

𝑖 are a pair of purely imaginary root of (66).
Define 𝜏

3∗∗
= 𝜏

(0)

𝑘∗
= min

𝑘∈{1,2,...,𝑚}
{𝜏

(0)

𝑘
}, 𝜔
∗

= 𝜔

𝑘∗
. Let

𝜆(𝜏) = 𝜉(𝜏) + 𝜔(𝜏)𝑖 be the root of (66) near 𝜏 = 𝜏

3∗∗
satisfying

𝜉(𝜏

3∗∗
) = 0, 𝜔(𝜏

3∗∗
) = 𝜔

∗
. Next, we will check whether the

following transversality condition

dRe (𝜆)
d𝜏

| 𝜏 = 𝜏

3∗∗
̸= 0

(70)

is true.
Differentiating (66) with respect to 𝜏

3
, it follows that

(

d𝜆
d𝜏

)

−1

=

(2𝜆 + 𝜆

2
𝜏) 𝑒

𝜆𝜏
− 𝛼

1
𝛼

4
𝜏𝑒

−𝜆𝜏
− 𝛼

1
− 𝛼

4

−𝛼

2
𝛼

3
𝜆𝑒

−𝜆𝜏
−

𝜏

3

𝜆

.

(71)
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For simplifying, define 𝜔

𝑘
3

as 𝜔 and 𝜏

(𝑗)

𝑘
3

as 𝜏

3
, and we can

obtain

sign {[

d (Re 𝜆)
d𝜏

]

−1

𝜏
3
=𝜏
3∗∗

}

= sign{Re[
(2𝜆 + 𝜆

2
𝜏) 𝑒

𝜆𝜏
− 𝛼

1
𝛼

4
𝜏𝑒

−𝜆𝜏
− 𝛼

1
− 𝛼

4

−𝛼

2
𝛼

3
𝜆𝑒

−𝜆𝜏

−

𝜏

3

𝜆

]

𝜆=𝜔
∗
𝑖

}

}

}

= sign {

𝑃



𝑅
𝑄



𝑅
+ 𝑃



𝐼
𝑄



𝐼

(𝑃



𝑅
)

2

+ (𝑃



𝐼
)

2
} ,

(72)

where 𝑃
𝑅
= 𝛼

2
𝛼

3
𝜔 cos𝜔𝜏

3
, 𝑃
𝐼
= 𝛼

2
𝛼

3
𝜔 sin𝜔𝜏

3
,𝑄
𝑅
= (𝛼

1
𝛼

4
+

𝜔

2
)𝜏 cos𝜔𝜏 + 2𝜔 sin𝜔𝜏 + 𝛼

1
+ 𝛼

4
, and 𝑄



𝐼
= −2𝜔 cos𝜔𝜏 +

𝜏(𝜔

2
− 𝛼

1
𝛼

4
) sin𝜔𝜏.

Suppose that

(H7) 𝑃



𝑅
𝑄



𝑅
+ 𝑃



𝐼
𝑄



𝐼
> 0.

If (H7) holds, then the transversality condition holds and a
Hopf bifurcation occurs at 𝜔 = 𝜔

∗
, 𝜏 = 𝜏

3∗∗
. We have the

following theorem.

Theorem 14. For system (7), if (H1), (H6), and (H7) hold,
then there exists a positive number 𝜏

3∗∗
such that the positive

equilibrium 𝐸

∗ is locally asymptotically stable for 0 < 𝜏 < 𝜏

3∗∗

and unstable for 𝜏 > 𝜏

3∗∗
. Further, system (7) undergoes aHopf

bifurcation at the equilibrium 𝐸

∗ for 𝜏
3
= 𝜏

3∗∗
.

Remark 15. In addition, if we consider system (7) with 𝜏

1
=

𝜏

3
= 𝜏

4
= 𝜏 and 𝜏

3
̸= 0, we can obtain the same characteristic

equation as (66) and the same result for the time delay 𝜏

2
. So,

we omit it.

3. Direction and Stability of
the Hopf Bifurcation

In this section, we will study the direction of the Hopf
bifurcation and the stability of bifurcating periodic solution
of system (7).The approach employed here is the normal form
method and center manifold theorem introduced by Hassard
et al. [20].More precisely, wewill compute the reduced system
on the center manifold with the pair of conjugate complex,
purely imaginary solution of the characteristic equation of
system (10). By this reduction, we can determine the Hopf
bifurcation direction, that is, to answer the question of
whether the bifurcation branch of periodic solution exists
locally for supercritical bifurcation or subcritical bifurcation.

Without loss of generality, we only consider the case with
𝜏

1
= 𝜏

4
= 𝜏 and 𝜏

2
= 𝜏

3
= 0. For convince, we denote

any one of these critical values 𝜏 = 𝜏

𝑘
(𝑘 = 0, 1, 2, . . .) by

𝜏

0
, at which the characteristic equation has a pair of purely

imaginary roots ±𝜔

0
𝑖. Let 𝜏 = 𝜏

0
+ 𝜇, 𝜇 ∈ 𝑅; then, 𝜇 = 0 is

the Hopf bifurcation value of system (7). We first let 𝑢
1
(𝑡) =

𝑥(𝑡) − 𝑥

∗, 𝑢
2
(𝑡) = 𝑦(𝑡) − 𝑦

∗ and normalize the delay with the

scaling 𝑡 → (𝑡/𝜏), and then (7) is transformed into an FDE
in 𝐶 = 𝐶([−1, 0], 𝑅

2
) as

�̇� (𝑡) = 𝐿

𝜇
𝑢

𝑡
+ 𝐹 (𝜇, 𝑢

𝑡
) , (73)

where 𝑢(𝑡) = (𝑢

1
(𝑡), 𝑢

2
(𝑡))

𝑇
∈ 𝑅

2 and 𝐿

𝜇
: 𝐶 → 𝑅

2
, 𝐹 :

𝑅 × 𝐶 → 𝑅

2 are given, respectively, by

𝐿

𝜇
𝑢

𝑡
= 𝜏

0
[𝐵 (𝜏) 𝑢

𝑡
+ 𝐶 (𝜏) 𝑢 (𝑡 − 1)] ,

𝐹 (𝜇, 𝑢

𝑡
) = (𝜏

0
+ 𝜇) (𝐹

1
, 𝐹

2
)

𝑇

,

(74)

where

𝐵 (𝜏) = (

0 𝛼

2

𝛼

3
0

) , 𝐶 (𝜏) = (

𝛼

1
0

0 𝛼

4

) ,

𝐹

1
= 𝑏

11
𝜙

1
(0) 𝜙

1
(−1) + 𝑏

12
𝜙

1
(0) 𝜙

2
(0) ,

𝐹

2
= 𝑏

21
𝜙

1
(0) 𝜙

2
(0) + 𝑏

22
𝜙

2
(0) 𝜙

2
(−1) ,

(75)

here 𝑏

11
= −𝑟

1
, 𝑏
12

= 𝑎/𝑟

1
, 𝑏
21

= 𝑏/𝑟

2
, 𝑏
22

= −𝑟

2
.

Turning to the linear problem

�̇� (𝑡) = 𝐿

𝜇
𝑢

𝑡
, (76)

by the Reisz representation theorem, there exists 2×2matrix-
valued function

𝜂 (⋅, 𝜇) : [−1, 0] → 𝑅

2×2
, (77)

such that

𝐿

𝜇
(𝜙) = ∫

0

−1

d𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜙 ∈ 𝐶.
(78)

In fact, we can choose

𝜂 (𝜃, 𝜇) = (𝜏

0
+ 𝜇) (𝐵 (𝜏) 𝛿 (𝜃) + 𝐶 (𝜏) 𝛿 (𝜃 + 1)) , (79)

where 𝛿 denotes the Dirac delta function. Then, (78) is
satisfied.

Next, for 𝜙 ∈ 𝐶([−1, 0], 𝑅

2
), we define the operator 𝐴(𝜇)

as

𝐴 (𝜇) 𝜙 (𝜃) =

{

{

{

{

{

{

{

{

{

{

{

d𝜙
d𝜃

, 𝜃 ∈ [−1, 0) ,

∫

0

−1

d𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 (𝜃) = {

0, 𝜃 ∈ [−1, 0) ,

𝐹 (𝜇, 𝜙) , 𝜃 = 0.

(80)

Since d𝑢
𝑡
/d𝜃 = d𝑢

𝑡
/d𝑡, then system (73) is equivalent to the

following operator equation:

�̇� (𝑡) = 𝐴 (𝜇) 𝑢

𝑡
+ 𝑅 (𝜇) 𝑢

𝑡
, (81)

where 𝑢

𝑡
= 𝑡(𝑡 + 𝜃), for 𝜃 ∈ [−1, 0], which is an equation of

the form we desired.
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For 𝜓 ∈ 𝐶


([−1, 0], (𝑅

2
)

∗
), we further define the adjoint

𝐴

∗ of 𝐴 as

𝐴

∗
(𝜇) 𝜓 (𝑠) =

{

{

{

{

{

−

d𝜓 (𝑠)

d𝑠
, 𝑠 ∈ (0, 1] ,

∫

0

−1

𝜓 (−𝑠) d𝜂 (𝑠, 𝜇) , 𝑠 = 0,

(82)

and a bilinear form

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩ = 𝜓

𝑇
(0) 𝜙 (0)

− ∫

0

𝜃=−1

∫

𝜃

𝜉=0

𝜓

𝑇
(𝜉 − 𝑠) d𝜂 (𝜃) 𝜙 (𝜉) d𝜉,

(83)

where 𝜂(𝜃) = 𝜂(𝜃, 0). Then, 𝐴(0) and 𝐴

∗
(0) are adjoint

operators. From the above analysis, we obtain that ±𝑖𝜔

0
𝜏

0

are the eigenvalues of 𝐴(0) and therefore they are also
the eigenvalues of 𝐴

∗
(0). Let 𝑞(𝜃) be eigenvector of 𝐴(0)

corresponding to 𝑖𝜔

0
𝜏

0
and let 𝑞∗(𝜃) be eigenvector of 𝐴∗(0)

corresponding to −𝑖𝜔

0
𝜏

0
, and then we have

𝐴 (0) 𝑞 (𝜃) = 𝑖𝜔

0
𝜏

0
𝑞 (𝜃) ,

𝐴

∗
(0) 𝑞

∗
(𝜃) = −𝑖𝜔

0
𝜏

0
𝑞

∗
(𝜃) .

(84)

By some simple computation, we can obtain

𝑞 (𝜃) = 𝑉𝑒

𝑖𝜔
0
𝜏
0
𝜃
, 𝑞

∗
(𝑠) = 𝐷𝑉

∗
𝑒

−𝑖𝜔
0
𝜏
0
𝑠
,

(85)

where

𝑉 = (1, 𝜌

1
)

𝑇

, 𝑉

∗
= (1, 𝜌

∗

1
)

𝑇

,

𝜌

1
= −

−𝑏

11
𝑥

∗
𝑒

−𝑖𝜔
0
𝜏
0
+ 𝑖𝜔

0

𝑏

12
𝑥

∗
,

𝜌

∗

1
= −

−𝑏

11
𝑥

∗
𝑒

−𝑖𝜔
0
𝜏
0
+ 𝑖𝜔

0

𝑏

21
𝑦

∗
,

𝐷 = (−𝑏

22
𝑦

∗
𝑒

−𝑖𝜔
0
𝜏
0
+ 𝑖𝜔

0
)

× (− (𝑏

11
𝑥

∗
+ 𝑏

22
𝑦

∗
) (1 − 𝑖𝜔

0
𝜏

0
) 𝑒

−𝑖𝜔
0
𝜏
0

+ 2 (𝜔

0
𝑖 − 𝑏

11
𝑏

22
𝑥

∗
𝑦

∗
𝑒

−2𝑖𝜔
0
𝜏
0
))

−1

.

(86)

Then, ⟨𝑞∗, 𝑞⟩ = 1, ⟨𝑞∗, 𝑞⟩ = 0.
In the remainder of this section, by using the same

notations as in Hassard et al. [20] and a computation process
similar to that in [11], we obtain the coefficients determining
the important quantities of the periodic solution:

𝑔

20
= 2𝐷 (𝐾

11
+ 𝜌

∗

1
𝐾

21
) ,

𝑔

11
= 𝐷 (𝐾

12
+ 𝜌

∗

1
𝐾

22
) ,

𝑔

02
= 2𝐷 (𝐾

13
+ 𝜌

∗

1
𝐾

23
) ,

𝑔

21
= 2𝐷 (𝐾

14
+ 𝜌

∗

1
𝐾

24
) ,

(87)

where

𝐾

11
= −𝑏

11
𝑒

−𝑖𝜔
0
𝜏
0
+ 𝑎

12
𝜌

1
,

𝐾

12
= 𝑏

11
(𝑒

𝑖𝜔
0
𝜏
0
+ 𝑒

−𝑖𝜔
0
𝜏
0
) + 𝑏

12
(𝜌

1
+ 𝜌

1
) ,

𝐾

13
= 𝑏

11
𝑒

𝑖𝜔
0
𝜏
0
+ 𝑏

12
𝜌

1
,

𝐾

14
= 𝑏

11
[2𝑊

(1)

11
(−1) +

𝑊

(1)

20
(−1)

2

+

𝑊

(1)

20
(0)

2

𝑒

𝑖𝜔
0
𝜏
0
+ 𝑊

(1)

11
(0) 𝑒

−𝑖𝜔
0
𝜏
0
]

+ 𝑏

12
[𝑊

(2)

11
(0) +

𝑊

(2)

20
(0)

2

+

𝑊

(1)

20
(0)

2

𝜌

1
+ 𝑊

(1)

11
(0) 𝜌

1
] ,

𝐾

21
= 𝑏

21
𝜌

1
+ 𝑏

22
𝑒

−𝑖𝜔
0
𝜏
0
,

𝐾

22
= 𝑏

21
(𝜌

1
+ 𝜌

1
) − 𝑏

22
(𝑒

𝑖𝜔
0
𝜏
0
+ 𝑒

−𝑖𝜔
0
𝜏
0
) ,

𝐾

23
= 𝑏

21
𝜌

1
+ 𝑏

21
(𝜌

1
)

2

𝑒

−𝑖𝜔
0
𝜏
0
,

𝐾

24
= 𝑏

21
[𝑊

(2)

11
(0) +

𝑊

(2)

20
(0)

2

+

𝑊

(1)

20
(0)

2

𝜌

1
+ 𝑊

(1)

11
(0) 𝜌

1
]

− 𝑏

22
[𝑊

(2)

11
(−1) +

𝑊

(2)

20
(−1)

2

𝜌

1

+

𝑊

(1)

20
(0)

2

𝜌

1
𝑒

𝑖𝜔
0
𝜏
10
+ 𝑊

(2)

11
(0) 𝜌

1
𝑒

−𝑖𝜔
0
𝜏
0
] .

(88)

However,

𝑊

20
(𝜃) =

𝑖𝑔

20
𝑞 (0)

𝜔

0
𝜏

0

𝑒

𝑖𝜔
0
𝜏
0
𝜃
+

𝑖𝑔

02
𝑞 (0)

3𝜔

0
𝜏

0

𝑒

−𝑖𝜔
0
𝜏
0
𝜃
+ 𝐸

1
𝑒

2𝑖𝜔
0
𝜏
0
𝜃
,

𝑊

11
(𝜃) = −

𝑖𝑔

11
𝑞 (0)

𝜔

0
𝜏

0

𝑒

𝑖𝜔
0
𝜏
0
𝜃
+

𝑖𝑔

11
𝑞 (0)

𝜔

0
𝜏

0

𝑒

−𝑖𝜔
0
𝜏
0
𝜃
+ 𝐸

2
,

(89)

where 𝐸

1
= (𝐸

(1)

1
, 𝐸

(2)

1
)

𝑇 and 𝐸

2
= (𝐸

(1)

2
, 𝐸

(2)

2
)

𝑇 are both two-
dimensional vectors and can be determined by

𝐸

1
= 2(

2𝑖𝜔

0
𝜏

0
− 𝑏

11
𝑥

∗
𝑒

−2𝑖𝜔
0
𝜏
0

𝑏

12
𝑥

∗

−𝑏

21
𝑦

∗
2𝑖𝜔

0
𝜏

0
+ 𝑏

22
𝑦

∗
𝑒

−2𝑖𝜔
0
𝜏
0
)

−1

× (

𝐾

11

𝐾

21

) ,

𝐸

2
= −(

𝑏

11
𝑥

∗
𝑏

12
𝑦

∗

𝑏

21
𝑥

∗
𝑏

22
𝑦

∗)

−1

(

𝐾

12

𝐾

22

) .

(90)

Furthermore, we can see that each 𝑔

𝑖𝑗
in (87) is deter-

mined by parameters and delays in system (7). Thus, we can
compute the following quantities:

𝐶

1
(0) =

𝑖

2𝜔

0
𝜏

0

(𝑔

20
𝑔

11
− 2









𝑔

11









2

−









𝑔

02









2

3

) +

𝑔

21

2

,
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𝜇

2
= −

Re {𝐶
1
(0)}

Re {𝜆 (𝜏
0
)}

,

𝛽

2
= 2Re {𝐶

1
(0)} ,

𝑇

2
= −

Im {𝐶

1
(0)} + 𝜇

2
Im {𝜆


(𝜏

0
)}

𝜔

0
𝜏

0

,

(91)

which determine the properties of bifurcation periodic solu-
tions in the center manifold at the critical value 𝜏

0
. By the

results of Hassard et al. [20], we have the following results.

Theorem 16. In (91), the following results hold.

(i) The sign of 𝜇

2
determines the direction of the Hopf

bifurcation: if 𝜇
2

> 0 (𝜇
2

< 0), then the Hopf bifur-
cation is supercritical (subcritical) and the bifurcation
periodic solutions exist for 𝜏 > 𝜏

0
(𝜏 < 𝜏

0
).

(ii) The sign of 𝛽
2
determines the stability of the bifurcating

periodic solutions: the bifurcation periodic solutions are
stable (unstable) if 𝛽

2
< 0 (𝛽

2
> 0).

(iii) The sign of 𝑇
2
determines the period of the bifurcating

periodic solutions: the period increases (decreases) if
𝑇

2
> 0 (𝑇

2
< 0).

4. Global Continuation of
Local Hopf Bifurcation

In this part, we will study the global continuation of peri-
odic solutions bifurcating from the positive equilibrium
(𝐸

∗
, 𝜏

(𝑗)
) 𝑗 = 0, 1, 2, . . ., by applying a global Hopf bifurcation

result due to Wu [21].
Let 𝑅

2

+
= {(𝑥, 𝑦) ∈ 𝑅

2, 𝑥 > 0, 𝑦 > 0}, 𝑋 =

𝐶([−𝜏, 0], 𝑅

2

+
), and 𝑧

𝑡
= (𝑥(𝑡), 𝑦(𝑡))𝑇 ∈ 𝑋 be defined as

𝑧

𝑡
(𝜃) = (𝑧

1𝑡
(𝜃), 𝑧

2𝑡
(𝜃)) = (𝑧

1
(𝑡 + 𝜃), 𝑧

2
(𝑡 + 𝜃)) = 𝑧(𝑡 + 𝜃) for

𝑡 ≥ 0 and 𝜃 ∈ [−𝜏, 0]. Since 𝑥(𝑡) and 𝑦(𝑡) denote the density
of one species and the other species, respectively.The positive
solution of system (7) is interior and its periodic solutions
only arise in the first quadrant.Thus, throughout this section,
we consider system (7) only in the domain 𝑅

2

+
.

It is easy to see that system (7) can be rewritten as the
following functional differential equation:

�̇� (𝑡) = 𝐹 (𝑧

𝑡
, 𝜏, 𝑝) , (92)

parameterized by two nonnegative real parameters (𝜏, 𝑝) ∈

𝑅

+
× 𝑅

+
, where 𝑅

+
= [0, +∞). It is obvious that (92) has

only an equilibria 𝑧

∗
= 𝐸

∗ in 𝑅

2

+
under the assumption (H1),

and it is easy to see that the mapping 𝐹 : 𝑋 × 𝑅

+
× 𝑅

+
is

completely continuous. If we restrict 𝐹 to the subspace of
constant function𝑍, then 𝐹 is identified with 𝑅

2

+
and thus we

obtain a mapping ̂

𝐹 = 𝐹|

𝑅
2

+
×𝑅
+
×𝑅
+

: 𝑅

2

+
× 𝑅

+
× 𝑅

+
→ 𝑅

2

+
.

Let 𝑧
0
∈ 𝑋 be the constant mapping with value 𝑧

0
∈ 𝑅

2

+
.

The point (𝑧
0
, 𝜏

0
, 𝑝

0
) is called a stationary solution of (92) if

̂

𝐹(𝑧

0
, 𝜏

0
, 𝑝

0
) = 0. From system (7), we know easily that the

following condition regarding the mapping ̂

𝐹 holds:

(A1) ̂

𝐹 ∈ 𝐶

2
(𝑅

2

+
× 𝑅

+
× 𝑅

+
, 𝑅

2

+
).

It follows from system (7) that

D
𝑧
̂

𝐹 (𝑧, 𝜏, 𝑝) = (

𝑟

1
− 2𝑟

1
𝑥 + 𝑟

1
𝑎𝑦 𝑟

1
𝑎𝑥

𝑟

2
𝑏𝑦 𝑟

2
+ 𝑟

2
𝑏𝑥 − 2𝑟

2
𝑦

) . (93)

Then, under the assumption (H1), we have

det (D
𝑧
̂

𝐹 (𝑧, 𝜏, 𝑝)) = det(−𝑟

1
𝑥

∗
𝑟

1
𝑎𝑥

∗

𝑟

2
𝑏𝑦

∗
−𝑟

2
𝑦

∗)

= 𝑟

1
𝑟

2
𝑥

∗
𝑦

∗
(1 − 𝑎𝑏) > 0.

(94)

Therefore, we have the following condition on the linear
operator𝐷

𝑧
̂

𝐹(𝑧, 𝜏, 𝑝):

(A2) 𝐷

𝑧
̂

𝐹(𝑧, 𝜏, 𝑝) is an isomorphism at the equilibrium 𝑧

∗;
here, (𝜏, 𝑝) ∈ 𝑅

+
× 𝑅

+
.

In addition, we can easily observe that the following result
is true:

(A3) 𝐹(𝜙, 𝜏, 𝑝) is differential with respect to 𝜙.

The characteristic matrix of (92) at a stationary solution
(𝑧, 𝜏

0
, 𝑝

0
), where 𝑧 = (𝑧

(1)
, 𝑧

(2)
)

𝑇
∈ 𝑅

2, takes the following
form:

Δ (𝑧, 𝜏, 𝑝) (𝜆) = 𝜆𝐼 − 𝐷

𝜙
𝐹 (𝑧

0
, 𝜏

0
, 𝑝

0
) (𝑒

𝜆
𝐼) . (95)

That is,

Δ (𝑧, 𝜏, 𝑝) (𝜆)

= (

𝜆 − 𝑟

1
𝑎𝑧

(2)
+ 𝑟

1
𝑧

(1)
𝑒

−𝜆𝜏
−𝑟

1
𝑎𝑧

(2)

−𝑟

2
𝑏𝑧

(1)
𝜆 − 𝑟

2
𝑏𝑧

(1)
+ 𝑟

2
𝑧

(2)
𝑒

−𝜆𝜏
) .

(96)

The zeros of det(Δ(𝑧, 𝜏, 𝑝)(𝜆)) = 0 are called the characteris-
tic roots. Note that (A2) is equivalent to 𝜆 = 0 which is not
a characteristic root of any equilibrium of (92). Clearly, the
characteristic matrix Δ(𝑧, 𝜏, 𝑝)(𝜆) is continuous in (𝜏, 𝑝, 𝜆) ∈

𝐵

𝜀
0

(𝜏

𝑗
, 2𝜋/𝜔

𝑘
) × C.

A stationary solution (𝑧

0
, 𝜏

0
, 𝑝

0
) of (92) is called a center

if det(Δ(𝑧

0
, 𝜏

0
, 𝑝

0
)((2𝑚𝜋/𝑝

0
)𝑖)) = 0 for some positive in-

teger 𝑚 or det(Δ(𝑧, 𝜏

0
, 𝑝

0
)(𝜆)) = 0 has purely imaginary

characteristic roots of the form (2𝑚𝜋/𝑝

0
)𝑖 for some positive

integer𝑚. A center (𝑧
0
, 𝜏

0
, 𝑝

0
) is said to be isolated if it is the

only center in some neighborhood of (𝑧
0
, 𝜏

0
, 𝑝

0
).

From (96), we can see

det (Δ (𝑧

∗
, 𝜏, 𝑝) (𝜆)) = 𝜆

2
−

𝑎

12
𝑎

21

𝑎

11
𝑎

22

𝑏

1
𝑏

2
𝑥

∗
𝑦

∗

+ (𝑏

1
𝑥

∗
+ 𝑏

2
𝑦

∗
) 𝜆𝑒

−𝜆𝜏

+ 𝑏

1
𝑏

2
𝑥

∗
𝑦

∗
𝑒

−2𝜆𝜏
= 0.

(97)

Note that the above equation is the same as (31);
therefore, it is easy to verify from the discussion
regarding the local Hopf bifurcation in Section 2 that
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(𝑧

∗
, 𝜏

𝑗
, 2𝜋/𝜔

0
), 𝑗 = 0, 1, 2, . . ., is an isolated center and there

exists a smooth curve 𝜆: (𝜏
𝑗
− 𝛿, 𝜏

𝑗
+ 𝛿) → C such that

det(Δ(𝑧

∗
, 𝜏, 2𝜋/𝜔

0
)(𝜆(𝜏))) = 0, |𝜆(𝜏) − 𝑖𝜔

𝑗
| < 𝜀, for all

𝜏 ∈ [𝜏

𝑗
− 𝛿, 𝜏

𝑗
+ 𝛿] and

𝜆 (𝜏

𝑗
) = 𝑖𝜔

0
, Re d𝜆

d𝜏
|

𝜏=𝜏
𝑗

> 0.
(98)

For the above 𝜀 > 0, we define the set

Ω

𝜀,2𝜋/𝜔
0

= {(V, 𝑝) : 0 < V < 𝜀,

















𝑝 −

2𝜋

𝜔

0

















< 𝜀} . (99)

It is easy to verify on [𝜏

𝑗
− 𝛿, 𝜏

𝑗
+ 𝛿] × 𝜕Ω

𝜀,2𝜋/𝜔
0

that the
following condition holds:

(A4) det(Δ(𝑧

∗
, 𝜏, 𝑝)(V + (2𝜋/𝑝)𝑖)) = 0 if and only if V = 0,

𝜏 = 𝜏

𝑗
, and 𝑝 = 2𝜋/𝜔

0
, 𝑗 = 0, 1, 2, . . ..

Thus, the conditions (A1)–(A4) in [21] are satisfied.
Moreover, if we define

𝐻

±
(𝑧

∗
, 𝜏

𝑗
,

2𝜋

𝜔

0

) (V, 𝑝)

= det(Δ(𝑧

∗
, 𝜏

𝑗
± 𝛿,

2𝜋

𝜔

0

)(V +

2𝜋

𝑝

𝑖)) ,

(100)

then we know 𝐻

+
(𝑧

∗
, 𝜏

𝑗
, 2𝜋/𝜔

0
) ̸= 0 on 𝜕Ω

𝜀,2𝜋/𝜔
0

. Thus,
the first crossing number 𝛾(𝑧

∗
, 𝜏

𝑗
, 2𝜋/𝜔

0
) of isolated center

(𝑧

∗
, 𝜏

𝑗
, 2𝜋/𝜔

0
) can be defined as follows:

𝛾(𝑧

∗
, 𝜏

𝑗
,

2𝜋

𝜔

0

) = deg
𝐵
(𝐻

−
(𝑧

∗
, 𝜏

𝑗
,

2𝜋

𝜔

0

) ,Ω

𝜀,2𝜋/𝜔
0

)

− deg
𝐵
(𝐻

+
(𝑧

∗
, 𝜏

𝑗
,

2𝜋

𝜔

0

) ,Ω

𝜀,2𝜋/𝜔
0

)

= −1.

(101)

In what follows, we define

Σ = 𝐶𝑙 {(𝑧, 𝜏, 𝑝) ∈ 𝑋 × 𝑅

+
× 𝑅

+
:

𝑧 is a𝑝-periodic solution of (92)} ,

𝑁 = {(𝑧, 𝜏, 𝑝) : 𝐹 (𝑧, 𝜏, 𝑝) = 0} .

(102)

And let ℓ(𝑧∗, 𝜏
𝑗
, 2𝜋/𝜔

0
) denote the connected component of

(𝑧

∗
, 𝜏

𝑗
, 2𝜋/𝜔

0
) in Σ.

From the above discussion, we have

Σ

((𝑧,𝜏,𝑝)∈ℓ(𝑧
∗
,𝜏
𝑗
,2𝜋/𝜔

0
)∩𝑁)

𝛾 (𝑧, 𝜏, 𝑝) < 0, (103)

where (𝑧, 𝜏, 𝑝), in fact, takes the form (𝑧

∗
, 𝜏

(𝑗)

𝑘
, 2𝜋/𝜔

𝑘
), 𝑗 =

0, 1, 2, . . .. Thus, the connected component ℓ(𝑧

∗
, 𝜏

𝑗
, 2𝜋/𝜔

0
)

through (𝑧

∗
, 𝜏

𝑗
, 2𝜋/𝜔

0
) in Σ is nonempty. Since the first

crossing number of each center is always −1, by Theorem 3.3
[21], we conclude that ℓ(𝑧∗, 𝜏

𝑗
, 2𝜋/𝜔

0
) is unbounded. Thus,

we have proved the following lemma.
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Figure 1: The positive equilibrium of system (115) is locally asymp-
totically stable for 𝜏

1
= 𝜏

2
= 𝜏

3
= 𝜏

4
= 0 with initial value “0.7,

0.5.”

Lemma 17. ℓ(𝑧

∗
, 𝜏

𝑗
, 2𝜋/𝜔

0
) is unbounded for each center

(𝑧

∗
, 𝜏

𝑗
, 2𝜋/𝜔

0
), 𝑗 = 0, 1, 2, . . ..

Lemma 18. All nonconstant periodic solutions of system (7)
with initial data 𝑥(𝑡) = 𝜑(𝑡) ≥ 0, 𝑥(0) = 𝜑(0) > 0, 𝑦(𝑡) =

𝜓(𝑡) ≥ 0, and 𝑦(0) = 𝜓(0) > 0, 𝑡 ∈ [−𝜏, 0], are uniformly
bounded when 𝜏 is bounded.

Proof. Suppose that 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡) are nonconstant
periodic solutions of system (7) and define

𝑥 (𝜉

1
) = min {𝑥 (𝑡)} , 𝑥 (𝜂

1
) = max {𝑥 (𝑡)} ,

𝑦 (𝜉

2
) = min {𝑦 (𝑡)} , 𝑦 (𝜂

2
) = max {𝑦 (𝑡)} .

(104)

Then, it follows from system (7) that

𝑥 (𝑡) = 𝑥 (0) exp{∫

𝑡

0

(𝑟

1
− 𝑟

1
𝑥 (𝑠 − 𝜏) + 𝑟

1
𝑎𝑦 (𝑠)) d𝑠} ,

𝑦 (𝑡) = 𝑦 (0) exp{∫

𝑡

0

(𝑟

2
+ 𝑟

2
𝑏𝑥 (𝑠) − 𝑟

2
𝑦 (𝑠 − 𝜏)) d𝑠} ,

(105)

which implies that the solutions of system (7) cannot cross the
𝑥-axis and 𝑦-axis.Thus, the nonconstant periodic orbitsmust
be located in the interior of each quadrant. The following
results are deduced according toTheorem 4.9.1 in Kuang [15]
and the standard comparison principle [14].

If (𝑥(𝑡), 𝑦(𝑡)) is a solution of system (7) with 𝑥(𝑡) > 0,
𝑦(𝑡) > 0, then it is easy to say that there exists a 𝑇 > 0 such
that, for all 𝑡 > 𝑇, 𝑥(𝑡) < 1 + 𝑎. In addition, from the second
equation of (7), we can get

0 = 1 + 𝑏𝑥 (𝜂

2
) − 𝑦 (𝜂

2
− 𝜏) < 1 + 𝑏 (1 + 𝑎) − 𝑦 (𝜂

2
− 𝜏) ,

(106)
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Figure 2: MATLAB simulation shows that the positive equilibrium of system (115) is always locally asymptotically stable with any values of
𝜏

2
and 𝜏

3
with initial value “1.2, 0.5.”

which leads to

𝑦 (𝜂

2
− 𝜏) ≤ 1 + 𝑏 (1 + 𝑎) . (107)

From the second equation of system (7), we also have

̇𝑦 (𝑡) ≤ 𝑟

2
(1 + 𝑏 + 𝑎𝑏) 𝑦 (𝑡) , (108)

which implies

𝑦 (𝑡) ≤ 𝑦 (𝑡 − 𝜏) exp {𝑟

2
(1 + 𝑏 + 𝑎𝑏) 𝜏} . (109)

It follows from (104) and (107) that

𝑦 (𝜂

2
) ≤ (1 + 𝑏 (1 + 𝑎)) exp {𝑟

2
(1 + 𝑏 + 𝑎𝑏) 𝜏} . (110)

On the other hand, we get, from the first equation of (7),

0 = 1 − 𝑥 (𝜂

1
) + 𝑎𝑦 (𝜂

1
) ≤ 1 − 𝑥 (𝜂

1
)

+ 𝑎 (1 + 𝑏 (1 + 𝑎)) exp {𝑟

2
(1 + 𝑏 + 𝑎𝑏) 𝜏} .

(111)

It follows that

𝑥 (𝜂

1
) ≤ 1 + 𝑎 (1 + 𝑏 (1 + 𝑎)) exp {𝑟

2
(1 + 𝑏 + 𝑎𝑏) 𝜏} ,

for 𝑡 > 𝑇 + 𝜏.

(112)

This shows that the nonconstant periodic solution of
system (7) is uniformly bounded when 𝜏 is bounded. This
completes the proof.
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= 0 and
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Lemma 19. System (7) has no nonconstant periodic solutions
with period 𝜏 when the condition (H1) is satisfied.

Proof. Let’s suppose that there exist a contradiction in system
(7); that is, system (7) has nonconstant periodic solution
with period. Then, the following system (113) of ordinary
differential equations has nonconstant periodic solution:

�̇�

1
(𝑡) = 𝑟

1
𝑢

1
(𝑡) [1 − 𝑢

1
(𝑡 − 𝜏) + 𝑎𝑢

2
(𝑡)] ,

�̇�

2
(𝑡) = 𝑟

2
𝑢

2
(𝑡) [1 + 𝑏𝑢

1
(𝑡) − 𝑢

2
(𝑡 − 𝜏)] ,

(113)

which has the same equilibria as system (7), that is, a unique
positive equilibrium 𝑢

∗
(𝑢

∗

1
, 𝑢

∗

2
). Note that 𝑢

1
-axis, and 𝑢

2
-

axis are the invariable manifold of system (113) and the orbits
of system (113) do not intersect with each other.Thus, there is
no solution crosses the coordinate axes. On the other hand,
note the fact that if system (113) has a periodic solution, then
there must be equilibrium in its interior. Thus, we conclude
that the periodic orbit of system (113) must lie in the first
quadrant. It is well known that the positive equilibrium 𝐸

∗

is global asymptotically stable to the first quadrant (see, e.g.,
[23, 24]).Thus, there is not periodic orbit in the first quadrant,
too. This ends the proof.

In the following, we state and prove ourmain result in this
section.

Theorem 20. Suppose that the condition (H1) holds. Then, for
each 𝜏 > 𝜏

𝑗
, 𝑗 = 1, 2, . . ., system (7) has at least 𝑗 − 1 periodic

solutions.

Proof. It is sufficient to prove that the connected component
ℓ(𝑧

∗
, 𝜏

𝑗
, 2𝜋/𝑤

0
) onto 𝜏-space is [𝜏, +∞) for each 𝑗 ≥ 1, where

𝜏 ≤ 𝜏

𝑗
.

From the discussion in Section 2, we have

𝜏

𝑗
=

1

𝜔

+

arcsin
(𝑟

1
𝑥

∗
+ 𝑟

2
𝑦

∗
)

√

1 − 𝑎𝑏

2√𝑟

1
𝑟

2
𝑥

∗
𝑦

∗
+

1

𝜔

+

2𝑗𝜋,

= 0, 1, 2, . . . .

(114)

Thus, one can get 2𝜋/𝑤
0
< 𝜏

𝑗
, for 𝑗 > 0. From Lemma 19, we

know that system (7) with 𝜏 = 0 has no nontrivial periodic
solution. Consequently, the projection of ℓ(𝑧

∗
, 𝜏

𝑗
, 2𝜋/𝑤

0
)

onto 𝜏-space is away from zero.
Suppose that the projection of ℓ(𝑧

∗
, 𝜏

𝑗
, 2𝜋/𝑤

0
) onto

𝜏-space is bounded, and then there exits 𝜏

∗
> 0 such that

the projection of ℓ(𝑧

∗
, 𝜏

𝑗
, 2𝜋/𝑤

0
) onto 𝜏-space in interval

(0, 𝜏

0
). Since 2𝜋/𝑤

0
< 𝜏

𝑗
and applying Lemma 18, one can

obtain 0 < 𝑝 < 𝜏

∗ for (𝑧(𝑡), 𝜏, 𝑝) ∈ ℓ(𝑧

∗
, 𝜏

𝑗
, 2𝜋/𝑤

0
).

Therefore, the projection of ℓ(𝑧∗, 𝜏
𝑗
, 2𝜋/𝑤

0
) onto 𝜏-space is

also bounded. Thus, we get, together with Lemma 18, that
the connected component ℓ(𝑧∗, 𝜏

𝑗
, 2𝜋/𝑤

0
) is bounded. This

contradicts Lemma 17. The proof is completed.

5. Numerical Example

We will give some numerical results of system (7) to support
the analytic results in this section. We consider the following
system:

�̇� (𝑡) = 𝑥 (𝑡) [0.8 − 0.4𝑥 (𝑡 − 𝜏

1
) + 0.2𝑦 (𝑡 − 𝜏

2
)] ,

̇𝑦 (𝑡) = 𝑦 (𝑡) [0.75 + 0.4𝑥 (𝑡 − 𝜏

3
) − 0.25𝑦 (𝑡 − 𝜏

4
)] ,

(115)

and get the positive equilibrium 𝐸

∗
= (17.50, 31.00). System

(115) without any time delay is locally asymptotically stable
(see Figure 1). Firstly, when only consider delays 𝜏

2
and 𝜏

3
,

and we find that Hopf bifurcation do not occur at the positive
equilibrium 𝐸

∗ of system (115) with any value of them (see
Figure 2).
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Figure 4: MATLAB simulation shows that system (115) undergoes a Hopf bifurcation at 𝐸∗ once 𝜏
4
> 𝜏

40
= 0.293 and 𝜏

1
= 𝜏

4
> 𝜏

01
= 0.1795,

respectively, with initial value “0.4, 0.5.”

Secondly, we have that the critical value of delay is 𝜏
10

=

0.332 when we only consider system (115) with delays 𝜏
1
and

𝜏

4
. FromTheorem 3, we obtain the corresponding waveform

shown in Figure 3. Similarly, we have that 𝜏

40
= 0.293 in

Case 2B and 𝜏

01
= 0.1795 in Case 2C, respectively. The

corresponding waveforms are shown in Figure 4. Regarding
𝜏

4
as a parameter with 𝜏

1
= 0.20 ∈ (0, 0.333), we can obtain

𝜏

4∗
= 0.1602. From Theorem 8, the positive equilibrium 𝐸

∗

is locally asymptotically stable for 𝜏

4
∈ (0, 𝜏

4∗
) and unstable

for 𝜏
4
> 𝜏

4∗
(see Figure 5).

Thirdly, we can obtain 𝜏

03
= 1.218 when only consider

𝜏

1
= 𝜏

3
= 𝜏 ̸= 0. That is, when 𝜏 increases from

zero to the critical value 𝜏

03
, the positive equilibrium 𝐸

∗

is locally asymptotically stable and then it loses its stability
and a Hopf bifurcation occurs once 𝜏 > 𝜏

03
= 1.218 (see

Figure 6). Similarly, when we regard 𝜏

3
as a parameter and

let 𝜏

1
= 0.20 ∈ (0, 0.333), we have that 𝜏

3∗
= 0.6226.

FromTheorem 11, system (115) is locally asymptotically stable
for 𝜏

3
∈ (0, 𝜏

3∗
) and unstable for 𝜏

3
> 𝜏

3∗
(see Figure 7).

Though, we only give the associated characteristic equation
(58) when only we consider delays 𝜏

2
and 𝜏

4
of system (115)

with 𝜏

1
= 𝜏

3
= 0, we give the phase plots when the delay

𝜏

4
increases from zero to its critical value and the value of 𝜏

2

belongs to its stable interval (see Figure 8).
Finally, by algorithm (91) derived in Section 3, we

have 𝐶

1
(0) = −9.9831 + 3.294𝑖, 𝜇

2
= 1591.2 > 0,

and 𝛽

2
= −17.691 < 0. Thus, the Hopf bifurcation

is supercritical, and the bifurcating periodic solutions
are asymptotically stable, which is illustrated in
Figure 9.
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6. Discussion

He and Gopalsamy [17] considered a Lotka-Volterra mutual-
istic system (4) with delay, in which all delays take the same
value; Meng and Wei only considered a mutualistic system
(5) with the same value of feedback delay for each population
in [18] while we not only introduce feedback delays of two
populations to grow of the species in system (6) but also take
time delay of each species benefit into account. By theory
analysis and simulations, we find that time delays of the
benefit 𝜏

2
and 𝜏

3
can not affect the stability of the system (6)

when we only choose different values of 𝜏
2
, 𝜏

3
with 𝜏

1
= 𝜏

4
=

0. That is, two mutualistic species could coexist with delay.

However, we find that the feedback delays for two species play
almost the same role. The critical value of feedback delay 𝜏

1

is 0.332 in the system (115) when we only consider it with
𝜏

4
= 0 while the critical value of feedback delay 𝜏

4
is 0.293

when we only consider it. We also find that feedback delay
could destroy the stability of solutions of system (115).That is,
the solutions of system (115) turn to oscillate as 𝜏

4
increasing

monotonously from zero. In addition, the solutions of system
(115) are stable at first, then oscillate, at last turn to be periodic
when time delay of benefit 𝜏

3
is greater than its critical value

𝜏

3∗
and feedback delay 𝜏

1
belongs to its stable interval (see the

right figure of Figure 7), which is different from the result of
the case of considering feedback time delay 𝜏

4
greater than
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its critical value 𝜏

4∗
and feedback delay 𝜏

1
belonging to its

stable interval (see the right figure of Figure 5).This is maybe
because time delay of benefit could make the two species
stable. This is very valuable in the view of ecology.

It is definitely an interesting future work to consider the
following mutual system with different harvesting:

�̇� (𝑡) = 𝑥 (𝑡) [𝑏

1
− 𝑎

11
𝑥 (𝑡 − 𝜏

1
) + 𝑎

12
𝑦 (𝑡 − 𝜏

2
)] − 𝑞

1
𝐸

1
𝑥 (𝑡) ,

̇𝑦 (𝑡) = 𝑦 (𝑡) [𝑏

2
+ 𝑎

21
𝑥 (𝑡 − 𝜏

3
) − 𝑎

22
𝑦 (𝑡 − 𝜏

4
)] − 𝑞

2
𝐸

2
𝑦 (𝑡) ,

(116)

where 𝑞
1
, 𝑞

2
(>0) are the catchability coefficient of two species.

The catch rate functions 𝑞

1
𝐸

1
𝑥 and 𝑞

2
𝐸

2
𝑦 are based on

CPUE (catch per unit effort) hypothesis [25]. Analyzing the
complicated bifurcations, we leave this work in the future.
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