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The purpose of this paper is to investigate the practical stability problem for impulsive discrete systems with time delays. By
using Lyapunov functions and the Razumikhin-type technique, some criteria which guarantee the practical stability and uniformly
asymptotically practical stability of the addressed systems are provided. Finally, two examples are presented to illustrate the criteria.

1. Introduction

As we all know, in many applications, we use discrete systems
rather than continuous ones as the mathematical modeling,
for example, numerical analysis, control theory, population
models, and computer science [1–3]. Therefore, more and
more attention has been paid to the theory of discrete
systems, and some results for the stability of discrete systems
have been obtained over the past few years [4–8].

The theory of practical stability has developed into a
branch of the theory of motion stability [9]. Its notion is very
useful, since it only needs to stabilize a system into a region
of phase space. Based on this method, the desired state of a
system can be unstable only if it oscillates sufficiently near
this state. Recently, there has been a significant development
in the theory of practical stability [10–15].Moreover, impulses
and time delays exist in many processes of dynamic sys-
tems, for example, physics, chemical technology, population
dynamics, and neural networks, and theymay impact systems
seriously [16–30]. Therefore, it is necessary and important to
analyze the practical stability of impulsive discrete systems
with time delays.

In [7, 8], authors have obtained some results for asymp-
totic stability and exponential stability of impulsive discrete
systems with time delays. Unfortunately, there is almost no
result concerning uniformly asymptotically practical stability
of impulsive discrete systems with time delays. The purpose

of this paper is to establish some criteria which guarantee uni-
formly asymptotically practical stability of the addressed sys-
tems by using Lyapunov functions and the Razumikhin-type
technique.This work is organized as follows. In Section 2, we
introduce some basic definitions and notations. In Section 3,
themain results are presented. In Section 4, two examples are
discussed to illustrate the results.

2. Preliminaries

Let R
+
denote the set of nonnegative real numbers, R𝑚 the

𝑚-dimensional real space equipped with the Euclidean norm
‖ ⋅ ‖, Z the set of integers, and Z

+
the set of positive integers.

For any 𝑟 > 0, 𝑟 ∈ Z
+
, 𝐽 ≜ {−𝑟, −𝑟 + 1, −𝑟 + 2, . . . , −1, 0},

and set 𝐶(R
+
,R
+
) ≜ {𝜙 : R

+
→ R
+
| 𝜙 is continuous}. Let

𝑆 ≜ {𝜑 : 𝐽 → R𝑚}. Let 𝑆
𝜌
≜ {𝜑 ∈ 𝑆 : ‖𝜑‖ < 𝜌}. The norm

of 𝜑 is defined by ‖𝜑‖
𝐽
= max

𝑠∈𝐽
|𝜑(𝑠)|. The impulse times

𝑛
𝑘
satisfy 0 < 𝑛

1
< 𝑛
2
< ⋅ ⋅ ⋅ < 𝑛

𝑘
< ⋅ ⋅ ⋅ , 𝑛

𝑘
, 𝑘 ∈ Z

+
, and

lim
𝑘→+∞

𝑛
𝑘
= +∞.

Consider the following impulsive discrete systems with
time delays:

𝑥 (𝑛 + 1) = 𝑓 (𝑛, 𝑥
𝑛
) , 𝑛 ≥ 𝑛

0
, 𝑛 ∈ Z

+
,

𝑥 (𝑛) = {

𝑥 (𝑛) , 𝑛 ̸= 𝑛
𝑘
, 𝑘 ∈ Z

+
,

𝑥 (𝑛
𝑘
) + 𝐼
𝑘
(𝑛
𝑘
, 𝑥 (𝑛
𝑘
)) , 𝑛 = 𝑛

𝑘
, 𝑘 ∈ Z

+
,

𝑥
𝑛0
(𝑠) = 𝜑 (𝑠) , 𝑠 ∈ 𝐽,

(1)
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where 0 ≤ 𝑛
0
< 𝑛
1
, 𝜑 ∈ 𝑆, 𝑓 ∈ Z

+
× 𝑆
𝜌
→ R𝑚, 𝑓(𝑛, 0) = 0.

For each 𝑛 ≥ 𝑛
0
, 𝑥
𝑛
∈ 𝑆
𝜌
is defined by 𝑥

𝑛
(𝑠) = 𝑥(𝑛 + 𝑠), 𝑠 ∈ 𝐽.

For each 𝑘 ∈ Z
+
, 𝐼
𝑘
∈ Z
+
× R𝑚 → R𝑚, 𝐼

𝑘
(𝑛, 0) = 0, and,

for any 𝜌 > 0, there exists a 𝜌
1
∈ (0, 𝜌) such that 𝑥 ∈ 𝑆(𝜌

1
)

implies that 𝑥 + 𝐼
𝑘
∈ 𝑆(𝜌).

In this paper, we assume that 𝑓 and 𝐼
𝑘
satisfy certain

conditions such that the solution of system (1) exists on [𝑛
0
−

𝑟, +∞)∩Z
+
and is unique [4].Wedenote by𝑥(𝑛) = 𝑥(𝑛, 𝑛

0
, 𝜑)

the solution of system (1) with initial value 𝜑.
For convenience, we define the following classes of

functions:
𝐾 = {𝑤 ∈ 𝐶(R

+
,R
+
) : 𝑤 is strictly increasing

and 𝑤(0) = 0};
𝐾
1
= {𝑤 ∈ 𝐶(R

+
,R
+
) : 𝑤(0) = 0 and 𝑤(𝑠) >

0 for 𝑠 > 0};
𝐾
2
= {𝜓 ∈ 𝐶(R

+
,R
+
) : 𝜓 is increasing and 𝜓(𝑠) <

𝑠 for 𝑠 > 0}.
In addition, we introduce some definitions as follows.

Definition 1 (see [9]). Given two constants 𝜆 and 𝐴, 0 < 𝜆 <

𝐴. Then, the impulsive discrete system (1) with respect to
(𝜆, 𝐴) is said to be

(𝑆
1
) practically stable, if ‖𝜑‖

𝐽
< 𝜆 implies ‖𝑥(𝑛)‖ < 𝐴, 𝑛 ≥

𝑛
0
, 𝑛 ∈ Z

+
,

(𝑆
2
) uniformly practically stable if (𝑆

1
) holds, for every

𝑛
0
∈ Z
+
,

(𝑆
3
) asymptotically practically stable, if (𝑆

1
) holds and, for

any 𝜖 > 0, there exists 𝑇 = 𝑇(𝑛
0
, 𝜖) > 0, 𝑇 ∈ Z

+
, such

that ‖𝜑‖
𝐽
< 𝜆 implies ‖𝑥(𝑛)‖ < 𝜖, 𝑛 ≥ 𝑛

0
+ 𝑇, 𝑛 ∈ Z

+
,

(𝑆
4
) uniformly asymptotically practically stable if (𝑆

2
)

holds and the latter part of (𝑆
3
) holds for a constant

𝑇 = 𝑇(𝜖) > 0, 𝑇 ∈ Z
+
, only dependent on 𝜖.

3. Main Results

Theorem 2. Assume that there exist functions 𝑎, 𝑏 ∈ 𝐾, 𝜔 ∈

𝐶(R
+
,R
+
), 𝜓 ∈ 𝐾

2
, 𝑉 : Z

+
×R𝑚 → R

+
, such that

(i) 0 < 𝜆 < 𝐴 are given,
(ii) 𝑎(‖𝑥‖) ≤ 𝑉(𝑛, 𝑥) ≤ 𝑏(‖𝑥‖) for (𝑛, 𝑥) ∈ Z

+
×R𝑚,

(iii) 𝑉(𝑛
𝑘
, 𝑥(𝑛
𝑘
)) = 𝑉(𝑛

𝑘
, 𝑥(𝑛
𝑘
) + 𝐼

𝑘
(𝑛
𝑘
, 𝑥(𝑛
𝑘
))) ≤

𝜓(𝑉(𝑛
𝑘
, 𝑥(𝑛
𝑘
)));

(iv) there is a function 𝑃(𝑠) continuous and nondecreasing
for 𝑠 ≥ 0 and satisfying 𝑃(𝑠) > 𝜓

−1
(𝑠), 𝑠 > 0, such that,

for any solution 𝑥(𝑛) of system (1), 𝑃(𝑉(𝑛, 𝑥(𝑛))) ≥

𝑉(𝑛 + 𝑠, 𝑥(𝑛 + 𝑠)), 𝑠 ∈ 𝐽, implies that

Δ𝑉 (𝑛, 𝑥 (𝑛)) = 𝑉 (𝑛 + 1, 𝑥 (𝑛 + 1)) − 𝑉 (𝑛, 𝑥 (𝑛))

≤ 𝜔 (𝑉 (𝑛, 𝑥 (𝑛))) ,

(2)

where 𝜏 ≜ max
𝑘∈Z+

{𝑛
𝑘+1

− 𝑛
𝑘
} and

𝜏 sup
𝑠>0

𝜔 (𝑠)

𝑠

< 1 − 2(inf
𝑠>0

𝜓
−1

(𝑠)

𝑠

)

−1

, (3)

(v) 𝑏(𝜆) < 𝜓(𝑎(𝐴)).

Then, the system (1) with respect to (𝜆, 𝐴) is uniformly
asymptotic practically stable.

Proof. Let

𝑞 ≜ sup
𝑠>0

𝜔 (𝑠)

𝑠

, 𝑝 ≜ (inf
𝑠>0

𝜓
−1

(𝑠)

𝑠

)

−1

< 1. (4)

For any 𝑛
0
≥ 0, let 𝑥(𝑛) ≐ 𝑥(𝑛, 𝑛

0
, 𝜑) be the solution of system

(1) through (𝑛
0
, 𝜑), where (𝑛

0
, 𝜑) ∈ Z

+
× 𝑆, and ‖𝜑‖

𝐽
< 𝜆. It

suffices to show that

‖𝑥‖ < 𝐴, 𝑛 ≥ 𝑛
0
, 𝑛 ∈ Z

+
. (5)

Now, we show that

𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝜓
−1

(𝑏 (𝜆)) , 𝑛 ∈ [𝑛
0
, 𝑛
1
] ∩ Z
+
. (6)

If it does not hold, then there exists a 𝑟 ∈ [𝑛
0
, 𝑛
1
] ∩ Z
+
, such

that 𝑉(𝑟, 𝑥(𝑟)) > 𝜓
−1
(𝑏(𝜆)). Let 𝑟

2
= min{𝑛 : 𝑉(𝑛, 𝑥(𝑛)) >

𝜓
−1
(𝑏(𝜆)), 𝑛 ∈ [𝑛

0
, 𝑛
1
] ∩ Z

+
}. Since 𝑉(𝑛

0
, 𝑥(𝑛
0
)) ≤ 𝑏(𝜆) ≤

𝜓
−1
(𝑏(𝜆)), it is clear that 𝑟

2
> 𝑛
0
. Let 𝑟

1
= max{𝑛 :

𝑉(𝑛, 𝑥(𝑛)) ≤ 𝑏(𝜆), 𝑛 ∈ [𝑛
0
, 𝑟
2
) ∩ Z
+
}. Thus,

𝑉 (𝑟
2
, 𝑥 (𝑟
2
)) > 𝜓

−1

(𝑏 (𝜆)) , 𝑉 (𝑟
1
, 𝑥 (𝑟
1
)) ≤ 𝑏 (𝜆) ,

𝑏 (𝜆) < 𝑉 (𝑡, 𝑥 (𝑡)) ≤ 𝜓
−1

(𝑏 (𝜆)) , 𝑛 ∈ (𝑟
1
, 𝑟
2
) ∩ Z
+
.

(7)

Hence, we obtain

𝑉 (𝑟
2
, 𝑥 (𝑟
2
)) − 𝑉 (𝑟

1
, 𝑥 (𝑟
1
)) > 𝜓

−1

(𝑏 (𝜆)) − 𝑏 (𝜆)

= 𝜓
−1

(𝑏 (𝜆)) (1 −

𝑏 (𝜆)

𝜓
−1
(𝑏 (𝜆))

)

≥ 𝜓
−1

(𝑏 (𝜆)) (1 − 𝑝) .

(8)

By (7), we obtain that, for any 𝑛 ∈ [𝑟
1
, 𝑟
2
] ∩ Z
+
,

𝑃 (𝑉 (𝑛, 𝑥 (𝑛))) > 𝜓
−1

(𝑉 (𝑛, 𝑥 (𝑛))) ≥ 𝜓
−1

(𝑏 (𝜆))

≥ 𝑉 (𝑛 + 𝑠, 𝑥 (𝑛 + 𝑠)) , 𝑠 ∈ 𝐽.

(9)



Abstract and Applied Analysis 3

Using condition (iv), the inequality Δ𝑉(𝑛, 𝑥(𝑛)) ≤

𝜔(𝑉(𝑛, 𝑥(𝑛))) = 𝜔(𝑉(𝑛, 𝑥(𝑛))) holds for all 𝑛 ∈ [𝑟
1
, 𝑟
2
] ∩ Z
+
.

Thus,

𝑉 (𝑟
2
, 𝑥 (𝑟
2
)) − 𝑉 (𝑟

1
, 𝑥 (𝑟
1
))

= 𝑉 (𝑟
2
, 𝑥 (𝑟
2
)) − 𝑉 (𝑟

2
− 1, 𝑥 (𝑟

2
− 1))

+ 𝑉 (𝑟
2
− 1, 𝑥 (𝑟

2
− 1)) − 𝑉 (𝑟

2
− 2, 𝑥 (𝑟

2
− 2))

+ ⋅ ⋅ ⋅ + 𝑉 (𝑟
1
+ 1, 𝑥 (𝑟

1
+ 1)) − 𝑉 (𝑟

1
, 𝑥 (𝑟
1
))

= Δ𝑉 (𝑟
2
− 1, 𝑥 (𝑟

2
− 1)) + Δ𝑉 (𝑟

2
− 2, 𝑥 (𝑟

2
− 2))

+ ⋅ ⋅ ⋅ + Δ𝑉 (𝑟
1
, 𝑥 (𝑟
1
))

≤ 𝜔 (𝑉 (𝑟
2
− 1, 𝑥 (𝑟

2
− 1))) + 𝜔 (𝑉 (𝑟

2
− 2, 𝑥 (𝑟

2
− 2)))

+ ⋅ ⋅ ⋅ + 𝜔 (𝑉 (𝑟
1
, 𝑥 (𝑟
1
)))

≤ 𝑉 (𝑟
2
− 1, 𝑥 (𝑟

2
− 1))

𝜔 (𝑉 (𝑟
2
− 1, 𝑥 (𝑟

2
− 1)))

𝑉 (𝑟
2
− 1, 𝑥 (𝑟

2
− 1))

+ ⋅ ⋅ ⋅ + 𝑉 (𝑟
1
, 𝑥 (𝑟
1
))

𝜔 (𝑉 (𝑟
1
, 𝑥 (𝑟
1
)))

𝑉 (𝑟
1
, 𝑥 (𝑟
1
))

≤ 𝜓
−1

(𝑏 (𝜆)) 𝑞𝜏.

(10)

From (8) and (10), it can be deduced that 1−𝑝 < 𝑞𝜏, which is
a contradiction with the condition (iv) and, thus, (6) holds.

Then, it follows from condition (iii) that

𝑉 (𝑛
1
, 𝑥 (𝑛
1
)) = 𝑉 (𝑛

1
, 𝑥 (𝑛
1
) + 𝐼
1
(𝑛
1
, 𝑥 (𝑛
1
)))

≤ 𝜓 (𝑉 (𝑛
1
, 𝑥 (𝑛
1
))) ≤ 𝑏 (𝜆) .

(11)

Next, we claim that

𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝜓
−1

(𝑏 (𝜆)) , 𝑛 ∈ [𝑛
1
, 𝑛
2
] ∩ Z
+
. (12)

If this assertion is not true, then there exists a 𝑟 ∈

[𝑛
1
, 𝑛
2
] ∩ Z

+
, such that 𝑉(𝑟, 𝑥(𝑟)) > 𝜓

−1
(𝑏(𝜆)). Let 𝑟

4
=

min{𝑛 : 𝑉(𝑛, 𝑥(𝑛)) > 𝜓
−1
(𝑏(𝜆)), 𝑛 ∈ [𝑛

1
, 𝑛
2
] ∩ Z

+
}. Since

𝑉(𝑛
1
, 𝑥(𝑛
1
)) ≤ 𝑏(𝜆) ≤ 𝜓

−1
(𝑏(𝜆)), we have

𝑟
4
> 𝑛
1
, 𝑉 (𝑟

4
, 𝑥 (𝑟
4
)) > 𝜓

−1

(𝑏 (𝜆)) . (13)

Let 𝑟
3
= max{𝑛 : 𝑉(𝑛, 𝑥(𝑛)) ≤ 𝑏(𝜆), 𝑛 ∈ [𝑛

1
, 𝑟
4
) ∩ Z
+
}. Thus,

𝑉 (𝑟
3
, 𝑥 (𝑟
3
)) ≤ 𝑏 (𝜆) , (14)

𝑏 (𝜆) < 𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝜓
−1

(𝑏 (𝜆)) , 𝑛 ∈ (𝑟
3
, 𝑟
4
) ∩ Z
+
.

(15)

Hence, we obtain

𝑉 (𝑟
4
, 𝑥 (𝑟
4
)) − 𝑉 (𝑟

3
, 𝑥 (𝑟
3
)) > 𝜓

−1

(𝑏 (𝜆)) − 𝑏 (𝜆)

= 𝜓
−1

(𝑏 (𝜆)) (1 −

𝑏 (𝜆)

𝜓
−1
(𝑏 (𝜆))

)

≥ 𝜓
−1

(𝑏 (𝜆)) (1 − 𝑝) .

(16)

Considering (15), we obtain, for any 𝑛 ∈ [𝑟
3
, 𝑟
4
] ∩ Z
+
,

𝑃 (𝑉 (𝑛, 𝑥 (𝑛))) > 𝜓
−1

(𝑉 (𝑛, 𝑥 (𝑛))) ≥ 𝜓
−1

(𝑏 (𝜆))

≥ 𝑉 (𝑛 + 𝑠, 𝑥 (𝑛 + 𝑠)) , 𝑠 ∈ 𝐽.

(17)

Using condition (iv), the inequality Δ𝑉(𝑛, 𝑥(𝑛)) ≤ 𝜔(𝑉(𝑛,

𝑥(𝑛))) = 𝜔(𝑉(𝑛, 𝑥(𝑛))) holds for all 𝑛 ∈ [𝑟
3
, 𝑟
4
] ∩ Z
+
. Thus,

𝑉 (𝑟
4
, 𝑥 (𝑟
4
)) − 𝑉 (𝑟

3
, 𝑥 (𝑟
3
))

= 𝑉 (𝑟
4
, 𝑥 (𝑟
4
)) − 𝑉 (𝑟

4
− 1, 𝑥 (𝑟

4
− 1))

+ 𝑉 (𝑟
4
− 1, 𝑥 (𝑟

4
− 1)) − 𝑉 (𝑟

4
− 2, 𝑥 (𝑟

4
− 2))

+ ⋅ ⋅ ⋅ + 𝑉 (𝑟
3
+ 1, 𝑥 (𝑟

3
+ 1)) − 𝑉 (𝑟

3
, 𝑥 (𝑟
3
))

= Δ𝑉 (𝑟
4
− 1, 𝑥 (𝑟

4
− 1)) + Δ𝑉 (𝑟

4
− 2, 𝑥 (𝑟

4
− 2))

+ ⋅ ⋅ ⋅ + Δ𝑉 (𝑟
3
, 𝑥 (𝑟
3
))

≤ 𝜔 (𝑉 (𝑟
4
− 1, 𝑥 (𝑟

4
− 1))) + 𝜔 (𝑉 (𝑟

4
− 2, 𝑥 (𝑟

4
− 2)))

+ ⋅ ⋅ ⋅ + 𝜔 (𝑉 (𝑟
3
, 𝑥 (𝑟
3
)))

≤ 𝑉 (𝑟
4
− 1, 𝑥 (𝑟

4
− 1))

𝜔 (𝑉 (𝑟
4
− 1, 𝑥 (𝑟

4
− 1)))

𝑉 (𝑟
4
− 1, 𝑥 (𝑟

4
− 1))

+ ⋅ ⋅ ⋅ + 𝑉 (𝑟
3
, 𝑥 (𝑟
3
))

𝜔 (𝑉 (𝑟
3
, 𝑥 (𝑟
3
)))

𝑉 (𝑟
3
, 𝑥 (𝑟
3
))

≤ 𝜓
−1

(𝑏 (𝜆)) 𝑞𝜏.

(18)

From (16) and (18), it can be deduced that 1−𝑝 < 𝑞𝜏, which is
a contradiction with the condition (iv) and, thus, (12) holds.

Then, it follows from condition (iii) that

𝑉 (𝑛
2
, 𝑥 (𝑛
2
)) = 𝑉 (𝑛

2
, 𝑥 (𝑛
2
) + 𝐼
2
(𝑛
2
, 𝑥 (𝑛
2
)))

≤ 𝜓 (𝑉 (𝑛
2
, 𝑥 (𝑛
2
))) ≤ 𝑏 (𝜆) .

(19)

Similarly, it can be deduced that

𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝜓
−1

(𝑏 (𝜆)) , 𝑛 ∈ [𝑛
2
, 𝑛
3
] ∩ Z
+
. (20)

By simple induction, we can prove that

𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝜓
−1

(𝑏 (𝜆)) , 𝑛 ∈ [𝑛
𝑘
, 𝑛
𝑘+1

] ∩ Z
+
, 𝑘 ∈ Z

+
,

𝑉 (𝑛
𝑘+1

, 𝑥 (𝑛
𝑘+1

)) = 𝑉 (𝑛
𝑘+1

, 𝑥 (𝑛
𝑘+1

) + 𝐼
𝑘+1

(𝑛
𝑘+1

, 𝑥 (𝑛
𝑘+1

)))

≤ 𝜓 (𝑉 (𝑛
𝑘+1

, 𝑥 (𝑛
𝑘+1

)))

≤ 𝑏 (𝜆)

< 𝜓
−1

(𝑏 (𝜆)) .

(21)

It follows from conditions (ii) and (v) that

𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝜓
−1

(𝑏 (𝜆)) < 𝑎 (𝐴) ,

‖𝑥 (𝑛)‖ ≤ 𝑎
−1

(𝑉 (𝑛, 𝑥 (𝑛)))

< 𝑎
−1

(𝑎 (𝐴)) = 𝐴, 𝑛 ≥ 𝑛
0
, 𝑛 ∈ Z

+
.

(22)
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This inequality implies that the system (1) with respect to
(𝜆, 𝐴) is uniformly practically stable.

Next, we show that the system (1) with respect to (𝜆, 𝐴)
is uniformly asymptotically practically stable. For any 𝜖, 0 <

𝜖 < 𝐴, there exist numbers 𝑎 = 𝑎(𝜖) > 0, 0 < 𝑑 < 𝑎, such that

𝑃 (𝑠) > 𝜓
−1

(𝑠) + 𝑎,

𝜓
−1

(𝑠) + 𝑎 > 𝜓
−1

(𝑠 + 𝑑) ,

𝑠 ∈ [𝑎 (𝜖) , 𝜓
−1

(𝑏 (𝜆))] .

(23)

Let 𝑁 = 𝑁(𝜖) ∈ Z
+
satisfy 𝑎(𝜖) + (𝑁 − 1)𝑑 ≤ 𝜓

−1
(𝑏(𝜆)) ≤

𝑎(𝜖) + 𝑁𝑑, and 𝑇 = (𝑁 − 1)]𝑟, 𝑇 ∈ Z
+
, where ] ≥ 1. We will

prove that

𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝜓
−1

(𝑎 (𝜖)) , 𝑛 ≥ 𝑛
0
+ 𝑇, 𝑛 ∈ Z

+
. (24)

In order to do this, we first prove that there exists a 𝑇
1
≥ 𝑛
0
,

𝑇
1
∈ Z
+
, such that

𝑉 (𝑇
1
, 𝑥 (𝑇
1
)) ≤ 𝑎 (𝜖) + (𝑁 − 1) 𝑑. (25)

If (25) does not hold, then, for any 𝑛 ≥ 𝑛
0
, 𝑛 ∈ Z

+
,

𝑉(𝑛, 𝑥(𝑛)) > 𝑎(𝜖) + (𝑁 − 1)𝑑.
Note that, for 𝑠 ∈ 𝐽,

𝑃 (𝑉 (𝑛, 𝑥 (𝑛))) > 𝜓
−1

(𝑉 (𝑛, 𝑥 (𝑛))) + 𝑎

≥ 𝜓
−1

(𝑎 (𝜖) + (𝑁 − 1) 𝑑) + 𝑎

> 𝜓
−1

(𝑎 (𝜖) + 𝑁𝑑) ≥ 𝜓
−1

(𝑏 (𝜆))

≥ 𝑉 (𝑛 + 𝑠, 𝑥 (𝑛 + 𝑠)) .

(26)

Thus,

Δ𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝜔 (𝑉 (𝑛, 𝑥 (𝑛))) , 𝑛 ≥ 𝑛
0
. (27)

Hence, we obtain

𝑉 (𝑛
2
, 𝑥 (𝑛
2
)) − 𝑉 (𝑛

1
− 1, 𝑥 (𝑛

1
− 1))

= 𝑉 (𝑛
2
, 𝑥 (𝑛
2
)) − 𝑉 (𝑛

2
, 𝑥 (𝑛
2
)) + 𝑉 (𝑛

2
, 𝑥 (𝑛
2
))

− 𝑉 (𝑛
2
− 1, 𝑥 (𝑛

2
− 1)) + 𝑉 (𝑛

2
− 1, 𝑥 (𝑛

2
− 1))

− ⋅ ⋅ ⋅ + 𝑉 (𝑛
1
+ 1, 𝑥 (𝑛

1
+ 1)) − 𝑉 (𝑛

1
, 𝑥 (𝑛
1
))

+ 𝑉 (𝑛
1
, 𝑥 (𝑛
1
)) − 𝑉 (𝑛

1
, 𝑥 (𝑛
1
))

+ 𝑉 (𝑛
1
, 𝑥 (𝑛
1
)) − 𝑉 (𝑛

1
− 1, 𝑥 (𝑛

1
− 1))

≤ 𝜓 (𝑉 (𝑛
2
, 𝑥 (𝑛
2
))) − 𝑉 (𝑛

2
, 𝑥 (𝑛
2
))

+ 𝜓 (𝑉 (𝑛
1
, 𝑥 (𝑛
1
))) − 𝑉 (𝑛

1
, 𝑥 (𝑛
1
))

+ Δ𝑉 (𝑛
2
− 1, 𝑥 (𝑛

2
− 1)) + Δ𝑉 (𝑛

2
− 2, 𝑥 (𝑛

2
− 2))

+ ⋅ ⋅ ⋅ + Δ𝑉 (𝑛
1
− 1, 𝑥 (𝑛

1
− 1))

≤ 𝜓 (𝑉 (𝑛
2
, 𝑥 (𝑛
2
))) − 𝑉 (𝑛

2
, 𝑥 (𝑛
2
))

+ 𝜓 (𝑉 (𝑛
1
, 𝑥 (𝑛
1
))) − 𝑉 (𝑛

1
, 𝑥 (𝑛
1
))

+ 𝜔 (𝑉 (𝑛
2
− 1, 𝑥 (𝑛

2
− 1)))

+ 𝜔 (𝑉 (𝑛
2
− 2, 𝑥 (𝑛

2
− 2)))

+ ⋅ ⋅ ⋅ + 𝜔 (𝑉 (𝑛
1
− 1, 𝑥 (𝑛

1
− 1)))

≤ 𝑉 (𝑛
2
, 𝑥 (𝑛
2
)) (

𝜓 (𝑉 (𝑛
2
, 𝑥 (𝑛
2
)))

𝑉 (𝑛
2
, 𝑥 (𝑛
2
))

− 1)

+ 𝑉 (𝑛
1
, 𝑥 (𝑛
1
)) (

𝜓 (𝑉 (𝑛
1
, 𝑥 (𝑛
1
)))

𝑉 (𝑛
1
, 𝑥 (𝑛
1
))

− 1)

+ 𝑉 (𝑛
2
− 1, 𝑥 (𝑛

2
− 1))

𝜔 (𝑉 (𝑛
2
− 1, 𝑥 (𝑛

2
− 1)))

𝑉 (𝑛
2
− 1, 𝑥 (𝑛

2
− 1))

+ 𝑉 (𝑛
2
− 2, 𝑥 (𝑛

2
− 2))

𝜔 (𝑉 (𝑛
2
− 2, 𝑥 (𝑛

2
− 2)))

𝑉 (𝑛
2
− 2, 𝑥 (𝑛

2
− 2))

+⋅ ⋅ ⋅+𝑉 (𝑛
1
− 1, 𝑥 (𝑛

1
− 1))

𝜔 (𝑉 (𝑛
1
− 1, 𝑥 (𝑛

1
− 1)))

𝑉 (𝑛
1
− 1, 𝑥 (𝑛

1
− 1))

≤ 𝜓
−1

(𝑏 (𝜆)) (𝑝 − 1) + 𝜓
−1

(𝑏 (𝜆)) 𝑞𝜏

+ 𝜓
−1

(𝑏 (𝜆)) (𝑝 − 1)

≤ 𝜓
−1

(𝑏 (𝜆)) (2𝑝 − 2 + 𝑞𝜏) .

(28)

Thus,

𝑉 (𝑛
2
, 𝑥 (𝑛
2
)) ≤ 𝜓

−1

(𝑏 (𝜆)) (2𝑝 − 1 + 𝑞𝜏) < 0, (29)

which is a contradiction.Thus, there exists a𝑇
1
≥ 𝑛
0
,𝑇
1
∈ Z
+
,

such that (25) holds.
Next, we prove that

𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝜓
−1

(𝑎 (𝜖) + (𝑁 − 1) 𝑑) , 𝑛 ≥ 𝑇
1
, 𝑛 ∈ Z

+
.

(30)

Let𝑚 = min{𝑚 ∈ Z
+
: 𝑛
𝑚
≥ 𝑇
1
}, and we show that

𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝜓
−1

(𝑎 (𝜖) + (𝑁 − 1) 𝑑) , 𝑛 ∈ [𝑇
1
, 𝑛
𝑚
] ∩ Z
+
.

(31)

If (31) does not hold, then there is a 𝑟 ∈ [𝑇
1
, 𝑛
𝑚
] ∩ Z
+
such

that

𝑉 (𝑟, 𝑥 (𝑟)) > 𝜓
−1

(𝑎 (𝜖) + (𝑁 − 1) 𝑑) . (32)
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Let 𝑟⋆ = min{𝑛 : 𝑉(𝑛, 𝑥(𝑛)) > 𝜓
−1
(𝑎(𝜖) + (𝑁 − 1)𝑑), 𝑛 ∈

[𝑇
1
, 𝑡
𝑚
]}. Since

𝑉 (𝑇
1
, 𝑥 (𝑇
1
)) ≤ 𝑎 (𝜖) + (𝑁 − 1) 𝑑 ≤ 𝜓

−1

(𝑎 (𝜖) + (𝑁 − 1) 𝑑) ,

(33)

we have

𝑟
⋆

> 𝑇
1
, 𝑉 (𝑟

⋆

, 𝑥 (𝑟
⋆

)) > 𝜓
−1

(𝑎 (𝜖) + (𝑁 − 1) 𝑑) . (34)

Let 𝑟 = max{𝑛 : 𝑉(𝑛, 𝑥(𝑛)) ≤ 𝑎(𝜖) + (𝑁 − 1)𝑑, 𝑛 ∈ [𝑇
1
, 𝑟
⋆
)}.

Note

𝑉 (𝑟
⋆

, 𝑥 (𝑟
⋆

)) > 𝜓
−1

(𝑎 (𝜖) + (𝑁 − 1) 𝑑) > 𝑎 (𝜖) + (𝑁 − 1) 𝑑.

(35)

Thus,

𝑟 < 𝑟
⋆

, 𝑉 (𝑟, 𝑥 (𝑟)) ≤ 𝑎 (𝜖) + (𝑁 − 1) 𝑑,

𝑎 (𝜖) + (𝑁 − 1) 𝑑 < 𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝜓
−1

(𝑎 (𝜖) + (𝑁 − 1) 𝑑) ,

𝑛 ∈ (𝑟, 𝑟
⋆

) ∩ Z
+
.

(36)

Hence, we obtain

𝑉 (𝑟
⋆

, 𝑥 (𝑟
⋆

)) − 𝑉 (𝑟, 𝑥 (𝑟))

> 𝜓
−1

(𝑎 (𝜖) + (𝑁 − 1) 𝑑) − (𝑎 (𝜖) + (𝑁 − 1) 𝑑)

= 𝜓
−1

(𝑎 (𝜖) + (𝑁 − 1) 𝑑) (1 −

𝑎 (𝜖) + (𝑁 − 1) 𝑑

𝜓
−1
(𝑎 (𝜖) + (𝑁 − 1) 𝑑)

)

≥ 𝜓
−1

(𝑎 (𝜖) + (𝑁 − 1) 𝑑) (1 − 𝑝) .

(37)

On the other hand, note that, for any 𝑛 ∈ [𝑟, 𝑟⋆] ∩ Z
+
,

𝑃 (𝑉 (𝑛, 𝑥 (𝑛))) > 𝜓
−1

(𝑉 (𝑛, 𝑥 (𝑛)))

+ 𝑎 ≥ 𝜓
−1

(𝑎 (𝜖) + (𝑁 − 1) 𝑑) + 𝑎

> 𝜓
−1

(𝑎 (𝜖) + 𝑁𝑑) ≥ 𝜓
−1

(𝑏 (𝜆))

≥ 𝑉 (𝑛 + 𝑠, 𝑥 (𝑛 + 𝑠)) , 𝑠 ∈ 𝐽.

(38)

Using condition (iv), the inequality Δ𝑉(𝑛, 𝑥(𝑛)) ≤ 𝜔(𝑉(𝑛,

𝑥(𝑛))) = 𝜔(𝑉(𝑛, 𝑥(𝑛))) holds for all 𝑛 ∈ [𝑟, 𝑟⋆] ∩ Z
+
. Thus,

𝑉 (𝑟
⋆

, 𝑥 (𝑟
⋆

)) − 𝑉 (𝑟, 𝑥 (𝑟))

= 𝑉 (𝑟
⋆

, 𝑥 (𝑟
⋆

)) − 𝑉 (𝑟
⋆

− 1, 𝑥 (𝑟
⋆

− 1))

+ 𝑉 (𝑟
⋆

− 1, 𝑥 (𝑟
⋆

− 1)) − 𝑉 (𝑟
⋆

− 2, 𝑥 (𝑟
⋆

− 2))

+ ⋅ ⋅ ⋅ + 𝑉 (𝑟 + 1, 𝑥 (𝑟 + 1)) − 𝑉 (𝑟, 𝑥 (𝑟))

= Δ𝑉 (𝑟
⋆

− 1, 𝑥 (𝑟
⋆

− 1)) + Δ𝑉 (𝑟
⋆

− 2, 𝑥 (𝑟
⋆

− 2))

+ ⋅ ⋅ ⋅ + Δ𝑉 (𝑟, 𝑥 (𝑟))

≤ 𝜔 (𝑉 (𝑟
⋆

− 1, 𝑥 (𝑟
⋆

− 1))) + 𝜔 (𝑉 (𝑟
⋆

− 2, 𝑥 (𝑟
⋆

− 2)))

+ ⋅ ⋅ ⋅ + 𝜔 (𝑉 (𝑟, 𝑥 (𝑟)))

≤ 𝑉 (𝑟
⋆

− 1, 𝑥 (𝑟
⋆

− 1))

𝜔 (𝑉 (𝑟
⋆
− 1, 𝑥 (𝑟

⋆
− 1)))

𝑉 (𝑟
⋆
− 1, 𝑥 (𝑟

⋆
− 1))

+ ⋅ ⋅ ⋅ + 𝑉 (𝑟, 𝑥 (𝑟))

𝜔 (𝑉 (𝑟, 𝑥 (𝑟)))

𝑉 (𝑟, 𝑥 (𝑟))

≤ 𝜓
−1

(𝑎 (𝜖) + (𝑁 − 1) 𝑑) 𝑞𝜏.

(39)

From (37) and (39), it can be deduced that 1 − 𝑝 < 𝑞𝜏, which
is a contradiction. Thus (31) holds.

Then, from condition (iv), we get

𝑉 (𝑛
𝑚
, 𝑥 (𝑛
𝑚
)) = 𝑉 (𝑛

𝑚
, 𝑥 (𝑛
𝑚
) + 𝐼
𝑚
(𝑛
𝑚
, 𝑥 (𝑛
𝑚
)))

≤ 𝜓 (𝑉 (𝑛
𝑚
, 𝑥 (𝑛
𝑚
))) ≤ 𝑎 (𝜖) + (𝑁 − 1) 𝑑.

(40)

Similarly, it can be deduced that

𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝜓
−1

(𝑎 (𝜖) + (𝑁 − 1) 𝑑) ,

𝑛 ∈ [𝑛
𝑚
, 𝑛
𝑚+1

] ∩ Z
+
.

(41)

By simple induction, one may derive that

𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝜓
−1

(𝑎 (𝜖) + (𝑁 − 1) 𝑑) ,

𝑛 ∈ [𝑛
𝑘
, 𝑛
𝑘+1

] ∩ Z
+
, 𝑘 ≥ 𝑚,

𝑉 (𝑛
𝑘+1

, 𝑥 (𝑛
𝑘+1

))

= 𝑉 (𝑛
𝑘+1

, 𝑥 (𝑛
𝑘+1

) + 𝐼
𝑘+1

(𝑛
𝑘+1

, 𝑥 (𝑛
𝑘+1

)))

≤ 𝜓 (𝑉 (𝑛
𝑘+1

, 𝑥 (𝑛
𝑘+1

)))

≤ 𝑎 (𝜖) + (𝑁 − 1) 𝑑.

(42)

Thus, (30) holds.
Similarly, we can prove that there exists a 𝑇

2
≥ 𝑇
1
+ ]𝑟,

] ≥ 1 such that

𝑉 (𝑇
2
, 𝑥 (𝑇
2
)) ≤ 𝑎 (𝜖) + (𝑁 − 2) 𝑑. (43)



6 Abstract and Applied Analysis

By simple induction, we can prove, in general, that

𝑉(𝑇
𝑗
, 𝑥 (𝑇
𝑗
)) ≤ 𝑎 (𝜖) + (𝑁 − 𝑗) 𝑑,

𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝜓
−1

(𝑎 (𝜖) + (𝑁 − 𝑗) 𝑑) ,

𝑛 ≥ 𝑇
𝑗
, 𝑗 = 1, 2, . . . , 𝑁.

(44)

Therefore, when choosing 𝑗 = 𝑁, we obtain

𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝜓
−1

(𝑎 (𝜖)) , 𝑛 ≥ 𝑇
𝑁
, (45)

where 𝑇
𝑁
≥ 𝑛
0
+ (𝑁 − 1)]𝜏. Therefore,

‖𝑥‖ ≤ 𝑎
−1

(𝜓
−1

(𝑎 (𝜖))) , 𝑛 ≥ 𝑛
0
+ 𝑇, (46)

where 𝑇 = (𝑁 − 1)]𝑟. The proof is complete.

Remark 3. It can be found from Theorem 2 that it requires
that the distance between two adjacent impulse times cannot
be too long, andmeanwhile the function𝑉 should decrease at
impulse times. We can see that impulses do contribute to the
system’s practical stability behavior. In the following, another
result will be presented from the impulsive perturbation point
of view, which is different fromTheorem 2.

Theorem 4. Assume that there exist functions 𝑎, 𝑏 ∈ 𝐾, 𝑉 :

Z
+
×R𝑚 → R

+
such that

(i) 0 < 𝜆 < 𝐴 are given,
(ii) 𝑎(‖𝑥‖) ≤ 𝑉(𝑛, 𝑥) ≤ 𝑏(‖𝑥‖) for (𝑛, 𝑥) ∈ Z

+
×R𝑚,

(iii) 𝑉(𝑛
𝑘
, 𝑥(𝑛
𝑘
)) = 𝑉(𝑛

𝑘
, 𝑥(𝑛
𝑘
) + 𝐼
𝑘
(𝑛
𝑘
, 𝑥(𝑛
𝑘
))) ≤ (1 +

𝛽
𝑘
)𝑉(𝑛
𝑘
, 𝑥(𝑛
𝑘
)), where 𝛽

𝑘
≥ 0, ∑∞

𝑘=1
𝛽
𝑘
< ∞,

(iv) 𝑉(𝑛, 𝑥(𝑛)) ≥ 𝑉(𝑛 + 𝑠, 𝑥(𝑛 + 𝑠)), 𝑠 ∈ 𝐽, implies that

Δ𝑉 (𝑛, 𝑥 (𝑛)) = 𝑉 (𝑛, 𝑥 (𝑛)) − 𝑉 (𝑛 − 1, 𝑥 (𝑛 − 1)) ≤ 0,

(47)

where 𝑥(𝑛) is a solution of system (1),
(v) 𝑀𝑏(𝜆) < 𝑎(𝐴),𝑀 = ∏

∞

𝑘=1
(1 + 𝛽

𝑘
) < ∞.

Then, the system (1) with respect to (𝜆, 𝐴) is uniformly
practically stable.

Proof. For any 𝑛
0
≥ 0, let 𝑥(𝑛) ≐ 𝑥(𝑛, 𝑛

0
, 𝜑) be the solution of

system (1) through (𝑛
0
, 𝜑), where (𝑛

0
, 𝜑) ∈ Z

+
× 𝑆 and ‖𝜑‖

𝐽
<

𝜆. It suffices to show that

‖𝑥‖ < 𝐴, 𝑛 ≥ 𝑛
0
, 𝑛 ∈ Z

+
. (48)

Next, we prove that

𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝑀𝑏 (𝜆) , 𝑛 ∈ [𝑛
0
, +∞) ∩ Z

+
. (49)

First, we show that

𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝑏 (𝜆) , 𝑛 ∈ [𝑛
0
, 𝑛
1
] ∩ Z
+
. (50)

If it does not hold, then there exists a 𝑟 ∈ [𝑛
0
, 𝑛
1
] ∩ Z
+
such

that

𝑉 (𝑟, 𝑥 (𝑟)) > 𝑏 (𝜆) . (51)

Let 𝑟
1
= min{𝑛 : 𝑉(𝑛, 𝑥(𝑛)) > 𝑏(𝜆), 𝑛 ∈ [𝑛

0
, 𝑛
1
] ∩ Z
+
}. Since

𝑉(𝑛
0
, 𝑥(𝑛
0
)) ≤ 𝑏(𝜆), it is clear that

𝑉 (𝑟
1
, 𝑥 (𝑟
1
)) > 𝑏 (𝜆) ,

𝑉 (𝑟
1
− 1, 𝑥 (𝑟

1
− 1)) ≤ 𝑏 (𝜆) ,

Δ𝑉 (𝑟
1
, 𝑥 (𝑟
1
)) = 𝑉 (𝑟

1
, 𝑥 (𝑟
1
)) − 𝑉 (𝑟

1
− 1, 𝑥 (𝑟

1
− 1)) > 0,

𝑟
1
> 𝑛
0
.

(52)

Thus, for 𝑠 ∈ 𝐽,

𝑉 (𝑟
1
, 𝑥 (𝑟
1
)) > 𝑏 (𝜆) ≥ 𝑉 (𝑟

1
+ 𝑠, 𝑥 (𝑟

1
+ 𝑠)) . (53)

By condition (iv), we have that

Δ𝑉 (𝑟
1
, 𝑥 (𝑟
1
)) ≤ 0, (54)

which is a contradiction. Thus, (50) holds.
From (50) and condition (iii), we obtain

𝑉 (𝑛
1
, 𝑥 (𝑛
1
)) ≤ (1 + 𝛽

1
) 𝑉 (𝑛

1
, 𝑥 (𝑛
1
)) ≤ (1 + 𝛽

1
) 𝑏 (𝜆) .

(55)

Next, we show that

𝑉 (𝑛, 𝑥 (𝑛)) ≤ (1 + 𝛽
1
) 𝑏 (𝜆) , 𝑛 ∈ [𝑛

1
, 𝑛
2
] ∩ Z
+
. (56)

If this assertion is not true, then there exists a 𝑟 ∈ [𝑛
1
, 𝑛
2
] ∩Z
+

such that

𝑉 (𝑟, 𝑥 (𝑟)) > (1 + 𝛽
1
) 𝑏 (𝜆) . (57)

Let 𝑟
2
= min{𝑛 : 𝑉(𝑛, 𝑥(𝑛)) > (1+𝛽

1
)𝑏(𝜆), 𝑛 ∈ [𝑛

1
, 𝑛
2
] ∩Z
+
}.

Since 𝑉(𝑛
1
, 𝑥(𝑛
1
)) ≤ (1 + 𝛽

1
)𝑏(𝜆), we get

𝑉 (𝑟
2
, 𝑥 (𝑟
2
)) > (1 + 𝛽

1
) 𝑏 (𝜆) ,

𝑉 (𝑟
2
− 1, 𝑥 (𝑟

2
− 1)) ≤ (1 + 𝛽

1
) 𝑏 (𝜆) ,

Δ𝑉 (𝑟
2
, 𝑥 (𝑟
2
)) = 𝑉 (𝑟

2
, 𝑥 (𝑟
2
)) − 𝑉 (𝑟

2
− 1, 𝑥 (𝑟

2
− 1)) > 0,

𝑟
2
> 𝑛
1
.

(58)

Thus, for 𝑠 ∈ 𝐽,

𝑉 (𝑟
2
, 𝑥 (𝑟
2
)) > (1 + 𝛽

2
) 𝑏 (𝜆) ≥ 𝑉 (𝑟

2
+ 𝑠, 𝑥 (𝑟

2
+ 𝑠)) .

(59)

By condition (iv), we have

Δ𝑉 (𝑟
2
, 𝑥 (𝑟
2
)) ≤ 0, (60)

which is a contradiction. Thus, (56) holds.
Considering (30) and condition (iii), it can be deduced

that

𝑉 (𝑛
2
, 𝑥 (𝑛
2
)) ≤ (1 + 𝛽

2
) 𝑉 (𝑛

2
, 𝑥 (𝑛
2
))

≤ (1 + 𝛽
1
) (1 + 𝛽

2
) 𝑏 (𝜆) .

(61)
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By simple induction, we have

𝑉 (𝑛, 𝑥 (𝑛)) ≤ (1 + 𝛽
1
) (1 + 𝛽

2
) ⋅ ⋅ ⋅ (1 + 𝛽

𝑘
) 𝑏 (𝜆) ,

𝑛 ∈ [𝑛
𝑘
, 𝑛
𝑘+1

] ∩ Z
+
, 𝑘 ∈ Z

+
,

(62)

which, together with (50) and condition (v), yields that

𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝑀𝑏 (𝜆) < 𝑎 (𝐴) , 𝑛 ≥ 𝑛
0
, 𝑛 ∈ Z

+
. (63)

Therefore, from condition (ii), we have

‖𝑥‖ ≤ 𝐴, 𝑛 ≥ 𝑛
0
, 𝑛 ∈ Z

+
. (64)

Thus, system (1) with respect to (𝜆, 𝐴) is uniformly practically
stable.

The proof is complete.

Theorem 5. Assume that there exist functions 𝑎, 𝑏 ∈ 𝐾, 𝑃, 𝜔 ∈

𝐾
1
, 𝑉 : Z

+
×R𝑚 → R

+
, such that

(i) 0 < 𝜆 < 𝐴 are given,
(ii) 𝑎(‖𝑥‖) ≤ 𝑉(𝑛, 𝑥) ≤ 𝑏(‖𝑥‖) for (𝑛, 𝑥) ∈ Z

+
×R𝑚,

(iii) 𝑉(𝑛
𝑘
, 𝑥(𝑛
𝑘
)) = 𝑉(𝑛

𝑘
, 𝑥(𝑛
𝑘
) + 𝐼
𝑘
(𝑛
𝑘
, 𝑥(𝑛
𝑘
))) ≤ (1 +

𝛽
𝑘
)𝑉(𝑛
𝑘
, 𝑥(𝑛
𝑘
)), where 𝛽

𝑘
≥ 0,∑

∞

𝑘=1
𝛽
𝑘
< ∞,

(iv) 𝑃(𝑉(𝑛, 𝑥(𝑛))) ≥ 𝑉(𝑛 + 𝑠, 𝑥(𝑛 + 𝑠)), 𝑠 ∈ 𝐽, implies that

Δ𝑉 (𝑛, 𝑥 (𝑛)) = 𝑉 (𝑛, 𝑥 (𝑛)) − 𝑉 (𝑛 − 1, 𝑥 (𝑛 − 1))

≤ −𝜔 (𝑉 (𝑛, 𝑥 (𝑛))) ,

(65)

with 𝑃(𝑠) > 𝑀𝑠, 𝑠 > 0,𝑀 = ∏
∞

𝑘=1
(1+𝛽
𝑘
) < ∞, where

𝑥(𝑛) is a solution of system (1);
(v) 𝑀𝑏(𝜆) < 𝑎(𝐴).

Then, the system (1) with respect to (𝜆, 𝐴) is uniformly
asymptotically practically stable.

Proof. For any 𝑛
0
≥ 0, let 𝑥(𝑛) ≐ 𝑥(𝑛, 𝑛

0
, 𝜑) be the solution

of system (1) through (𝑛
0
, 𝜑), where (𝑛

0
, 𝜑) ∈ Z

+
× 𝑆, and

‖𝜑‖
𝐽
< 𝜆. FromTheorem 4, it is easy to see that the system (1)

with respect to (𝜆, 𝐴) is uniformly practically stable. Now, we
show that the system (1) with respect to (𝜆, 𝐴) is uniformly
asymptotically practically stable.

For any 𝜖 ∈ (0, 𝐴), there exists number 𝑑 = 𝑑(𝜖) > 0 such
that

𝑃 (𝑠) > 𝑀𝑠 + 𝑑, 𝑠 ∈ [

𝑎 (𝜖)

𝑀

,𝑀𝑏 (𝜆)] . (66)

Let𝑁 = 𝑁(𝜖) be the smallest positive integer such that

𝑎 (𝜖) + 𝑁𝑑

𝑀

≥ 𝑀𝑏 (𝜆) ,

𝛾 = inf
𝑎(𝜖)/𝑀≤𝑠≤𝑀𝑏(𝜆)

𝜔 (𝑠) > (1 +𝑀𝑀)𝑏 (𝜆) , 𝑀 =

∞

∑

𝑘=1

𝛽
𝑘
.

(67)

We will prove that there exists 𝑇 ∈ Z
+
such that

𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝑎 (𝜖) , 𝑛 ≥ 𝑛
0
+ 𝑇, 𝑛 ∈ Z

+
. (68)

To this end,we first prove that there exists𝑇
1
∈ (𝑛
𝑘
, 𝑛
𝑘+1

)∩Z
+
,

𝑘 ∈ Z
+
, such that

𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝑎 (𝜖) + (𝑁 − 1) 𝑑, 𝑛 ≥ 𝑇
1
, 𝑛 ∈ Z

+
. (69)

In fact, when 𝑛 ∈ [𝑛
0
, 𝑇
1
], there exists a 𝑁

1
∈ [𝑛
𝑚
, 𝑛
𝑚+1

) ∩

Z
+
⊆ [𝑛
0
, 𝑇
1
] ∩ Z
+
,𝑚 ∈ Z

+
, such that

𝑉 (𝑁
1
, 𝑥 (𝑁

1
)) ≤

𝑎 (𝜖) + (𝑁 − 1) 𝑑

𝑀

. (70)

If (70) does not hold, it is clear that, for any 𝑛 ∈ [𝑛
0
, 𝑇
1
] ∩Z
+
,

𝑉 (𝑛, 𝑥 (𝑛)) >

𝑎 (𝜖) + (𝑁 − 1) 𝑑

𝑀

,

𝑎 (𝜖)

𝑀

≤ 𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝑀𝑏 (𝜆) .

(71)

Thus, for 𝑠 ∈ 𝐽,

𝑃 (𝑉 (𝑛, 𝑥 (𝑛))) ≥ 𝑀𝑉 (𝑛, 𝑥 (𝑛)) + 𝑑 ≥ 𝑎 (𝜖)

+ (𝑁 − 1) 𝑑 + 𝑑 = 𝑎 (𝜖) + 𝑁𝑑

≥ 𝑀𝑏 (𝜆) ≥ 𝑉 (𝑛 + 𝑠, 𝑥 (𝑛 + 𝑠)) .

(72)

It follows from condition (iv) that

Δ𝑉 (𝑛, 𝑥 (𝑛)) ≤ −𝜔 (𝑉 (𝑛, 𝑥 (𝑛))) ≤ −𝛾. (73)

On the other hand, since there at least exists one point 𝑇
1

which is not an impulsive point, we obtain

𝑉 (𝑇
1
, 𝑥 (𝑇
1
)) − 𝑉 (𝑛

0
, 𝑥 (𝑛
0
))

= 𝑉 (𝑇
1
, 𝑥 (𝑇
1
)) − 𝑉 (𝑇

1
− 1, 𝑥 (𝑇

1
− 1))

+ 𝑉 (𝑇
1
− 1, 𝑥 (𝑇

1
− 1)) − 𝑉 (𝑇

1
− 2, 𝑥 (𝑇

1
− 2))

+ ⋅ ⋅ ⋅ + 𝑉 (𝑛
0
+ 1, 𝑥 (𝑛

0
+ 1)) − 𝑉 (𝑛

0
, 𝑥 (𝑛
0
))

= Δ𝑉 (𝑇
1
, 𝑥 (𝑇
1
)) + Δ𝑉 (𝑇

1
− 1, 𝑥 (𝑇

1
− 1))

+ ⋅ ⋅ ⋅ + Δ𝑉 (𝑛
0
+ 1, 𝑥 (𝑛

0
+ 1))

≤ −𝜔 (𝑉 (𝑇
1
, 𝑥 (𝑇
1
))) +

𝑘

∑

𝑗=1

𝑉(𝑛
𝑗−1

, 𝑥 (𝑛
𝑗−1

)) 𝛽
𝑗

≤ −𝛾 +𝑀𝑀𝑏 (𝜆) .

(74)

Thus,

𝑉 (𝑇
1
, 𝑥 (𝑇
1
)) ≤ 𝑀𝑏 (𝜆) (1 +𝑀) − 𝛾 < 0, (75)

which is a contradiction. Hence, when 𝑛 ∈ [𝑛
0
, 𝑇
1
] ∩ Z

+
,

there exists a𝑁
1
∈ [𝑛
𝑚
, 𝑛
𝑚+1

) ∩ Z
+
⊆ [𝑛
0
, 𝑇
1
] ∩ Z
+
,𝑚 ∈ Z

+
,

such that

𝑉 (𝑁
1
, 𝑥 (𝑁

1
)) ≤

𝑎 (𝜖) + (𝑁 − 1) 𝑑

𝑀

. (76)

Then, we claim that

𝑉 (𝑛, 𝑥 (𝑛)) ≤

𝑎 (𝜖) + (𝑁 − 1) 𝑑

𝑀

, 𝑛 ∈ [𝑁
1
, 𝑛
𝑚+1

] ∩ Z
+
.

(77)
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If (77) does not hold, there exists a �̂� ∈ [𝑁
1
, 𝑛
𝑚+1

] ∩Z
+
such

that

𝑉(�̂�, 𝑥 (�̂�)) >

𝑎 (𝜖) + (𝑁 − 1) 𝑑

𝑀

. (78)

Let �̃� = min{𝑛 : 𝑉(𝑛, 𝑥(𝑛)) > (𝑎(𝜖) + (𝑁 − 1)𝑑)/𝑀, 𝑛 ∈

[𝑁
1
, 𝑛
𝑚+1

] ∩ Z
+
}. Since

𝑉 (𝑁
1
, 𝑥 (𝑁

1
)) ≤

𝑎 (𝜖) + (𝑁 − 1) 𝑑

𝑀

, (79)

we have that

𝑉(�̃�, 𝑥 (�̃�)) >

𝑎 (𝜖) + (𝑁 − 1) 𝑑

𝑀

,

Δ𝑉 (�̃�, 𝑥 (�̃�)) > 0,

�̃� > 𝑁
1
.

(80)

Note that 𝑎(𝜖)/𝑀 ≤ 𝑉(�̃�, 𝑥(�̃�)) ≤ 𝑀𝑏(𝜆); thus for 𝑠 ∈ 𝐽,

𝑃 (𝑉 (�̃�, 𝑥 (�̃�))) ≥ 𝑀𝑉(�̃�, 𝑥 (�̃�)) + 𝑑 ≥ 𝑎 (𝜖)

+ (𝑁 − 1) 𝑑 + 𝑑 = 𝑎 (𝜖) + 𝑁𝑑

≥ 𝑀𝑏 (𝜆) ≥ 𝑉 (�̃� + 𝑠, 𝑥 (�̃� + 𝑠)) .

(81)

It follows from condition (iv) that

Δ𝑉(�̃�, 𝑥 (�̃�)) ≤ −𝜔 (𝑉 (�̃�, 𝑥 (�̃�))) < 0, (82)

which is a contradiction. Thus, (77) holds.
Considering (77) and condition (iii), it can be deduced

that
𝑉 (𝑛
𝑚+1

, 𝑥 (𝑛
𝑚+1

)) ≤ (1 + 𝛽
𝑚+1

) 𝑉 (𝑛
𝑚+1

, 𝑥 (𝑛
𝑚+1

))

≤ (1 + 𝛽
𝑚+1

)

𝑎 (𝜖) + (𝑁 − 1) 𝑑

𝑀

.

(83)

Similarly, we may show

𝑉 (𝑛, 𝑥 (𝑛))

≤ (1 + 𝛽
𝑚+1

)

𝑎 (𝜖) + (𝑁 − 1) 𝑑

𝑀

,

𝑛 ∈ [𝑛
𝑚+1

, 𝑛
𝑚+2

] ,

𝑉 (𝑛
𝑚+2

, 𝑥 (𝑛
𝑚+2

)) ≤ (1 + 𝛽
𝑚+2

) 𝑉 (𝑛
𝑚+2

, 𝑥 (𝑛
𝑚+2

))

≤ (1 + 𝛽
𝑚+2

) (1 + 𝛽
𝑚+1

)

×

𝑎 (𝜖) + (𝑁 − 1) 𝑑

𝑀

.

(84)

By simple induction, we can prove in general that

𝑉 (𝑛, 𝑥 (𝑛))

≤

𝑖

∏

𝑗=1

(1 + 𝛽
𝑚+𝑗

)

𝑎 (𝜖) + (𝑁 − 1) 𝑑

𝑀

≤ 𝑎 (𝜖) + (𝑁 − 1) 𝑑, 𝑛 ∈ [𝑛
𝑚+𝑖

, 𝑛
𝑚+𝑖+1

] , 𝑖 ∈ Z
+
.

(85)

Thus, (69) holds.

Next, we prove that there exists𝑇
2
∈ (𝑛
𝑙
, 𝑛
𝑙+1
)∩Z
+
, 𝑙 ∈ Z

+
,

𝑇
2
> 𝑇
1
+ 𝑞𝑟, 𝑞 > 1, 𝑞 ∈ Z

+
, such that

𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝑎 (𝜖) + (𝑁 − 2) 𝑑, 𝑛 ≥ 𝑇
2
, 𝑛 ∈ Z

+
. (86)

In fact, when 𝑛 ∈ [𝑇
1
+ 𝑟, 𝑇
2
], there exists a𝑁

2
∈ [𝑛
𝑚
, 𝑛
𝑚+1

] ∩

Z
+
⊆ [𝑇
1
+ 𝑟, 𝑇
2
] ∩ Z
+
,𝑚 ∈ Z

+
, such that

𝑉 (𝑁
2
, 𝑥 (𝑁

2
)) ≤

𝑎 (𝜖) + (𝑁 − 1) 𝑑

𝑀

. (87)

If (87) does not hold, it is clear that, for any 𝑛 ∈ [𝑇
1
+ 𝑟, 𝑇
2
] ∩

Z
+
,

𝑉 (𝑛, 𝑥 (𝑛)) >

𝑎 (𝜖) + (𝑁 − 2) 𝑑

𝑀

,

𝑎 (𝜖)

𝑀

≤ 𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝑀𝑏 (𝜆) .

(88)

Thus, for 𝑠 ∈ 𝐽,

𝑃 (𝑉 (𝑛, 𝑥 (𝑛))) ≥ 𝑀𝑉 (𝑛, 𝑥 (𝑛)) + 𝑑 ≥ 𝑎 (𝜖)

+ (𝑁 − 2) 𝑑 + 𝑑 = 𝑎 (𝜖) + (𝑁 − 1) 𝑑

≥ 𝑀𝑏 (𝜆) ≥ 𝑉 (𝑛 + 𝑠, 𝑥 (𝑛 + 𝑠)) .

(89)

It follows from condition (iv) that

Δ𝑉 (𝑛, 𝑥 (𝑛)) ≤ −𝜔 (𝑉 (𝑛, 𝑥 (𝑛))) ≤ −𝛾. (90)

On the other hand, since there at least exists one point 𝑇
2

which is not an impulsive point, we obtain

𝑉 (𝑇
2
, 𝑥 (𝑇
2
)) − 𝑉 (𝑇

1
+ 𝑟, 𝑥 (𝑇

1
+ 𝑟))

= 𝑉 (𝑇
2
, 𝑥 (𝑇
2
)) − 𝑉 (𝑇

2
− 1, 𝑥 (𝑇

2
− 1))

+ 𝑉 (𝑇
2
− 1, 𝑥 (𝑇

2
− 1)) − 𝑉 (𝑇

2
− 2, 𝑥 (𝑇

2
− 2))

+ ⋅ ⋅ ⋅ + 𝑉 (𝑇
1
+ 𝑟 + 1, 𝑥 (𝑇

1
+ 𝑟 + 1))

− 𝑉 (𝑇
1
+ 𝑟, 𝑥 (𝑇

1
+ 𝑟))

= Δ𝑉 (𝑇
2
, 𝑥 (𝑇
2
)) + Δ𝑉 (𝑇

2
− 1, 𝑥 (𝑇

2
− 1))

+ ⋅ ⋅ ⋅ + Δ𝑉 (𝑇
1
+ 𝑟 + 1, 𝑥 (𝑇

1
+ 𝑟 + 1))

≤ −𝜔 (𝑉 (𝑇
2
, 𝑥 (𝑇
2
))) +

𝑛𝑚

∑

𝑗=𝑇1+𝑟

𝑉(𝑛
𝑗−1

, 𝑥 (𝑛
𝑗−1

)) 𝛽
𝑗

≤ −𝛾 +𝑀𝑀𝑏 (𝜆) .

(91)

Thus,

𝑉 (𝑇
2
, 𝑥 (𝑇
2
)) ≤ 𝑀𝑏 (𝜆) (1 +𝑀) − 𝛾 ≤ 0, (92)

which is a contradiction. Hence, when 𝑛 ∈ [𝑇
1
+ 𝑟, 𝑇
2
] ∩ Z
+
,

there exists a 𝑁
2
∈ [𝑛
𝑚
, 𝑛
𝑚+1

) ⊆ [𝑇
1
+ 𝑟, 𝑇
2
] ∩ Z
+
, 𝑚 ∈ Z

+
,

such that

𝑉 (𝑁
2
, 𝑥 (𝑁

2
)) ≤

𝑎 (𝜖) + (𝑁 − 2) 𝑑

𝑀

. (93)

Similarly, we can prove that (86) holds.
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By simple induction, we have that

𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝑎 (𝜖) + (𝑁 − 𝑖) 𝑑,

𝑛 ≥ 𝑛
0
+ 𝑇
𝑖
, 𝑖 = 1, 2, . . . , 𝑁, 𝑛 ∈ Z

+
.

(94)

Therefore, when choosing 𝑖 = 𝑁, we obtain

𝑉 (𝑛, 𝑥 (𝑛)) ≤ 𝑎 (𝜖) , 𝑛 ≥ 𝑛
0
+ 𝑇
𝑁
, 𝑛 ∈ Z

+
. (95)

From condition (ii), we have that

‖𝑥 (𝑛)‖ ≤ 𝜖, 𝑛 ≥ 𝑛
0
+ 𝑇
𝑁
, 𝑛 ∈ Z

+
. (96)

The proof is complete.

4. Applications

The following illustrative examples will demonstrate the
effectiveness of our results.

Example 6. Consider the following impulsive discrete sys-
tem:

𝑥 (𝑛 + 1) = 𝑐𝑥 (𝑛) + 𝑑𝑥 (𝑛 − 1) , 𝑛 ≥ 𝑛
0
, 𝑛 ∈ Z

+
,

𝑥 (𝑛) = {

𝑥 (𝑛) , 𝑛 ̸= 𝑛
𝑘
, 𝑘 ∈ Z

+
,

𝜂𝑥 (𝑛
𝑘
) , 𝑛 = 𝑛

𝑘
, 𝑘 ∈ Z

+
,

𝑥
𝑛0
(𝑠) = 𝜑 (𝑠) , 𝑠 ∈ 𝐽,

(97)

where 𝑐, 𝑑, 𝜂 are any three constants and 0 < 𝜂 < 1.

Property 1. Given constants 𝜆, 𝐴 satisfy 𝜆 < 𝜂𝐴, and there is
a constant 𝜁 > 1/𝜂.

Then, the system (97) with respect to (𝜆, 𝐴) is uniformly
asymptotically practically stable if

𝜏 (|𝑐 − 1| + 𝜁 |𝑑|) < 1 − 2𝜂, (98)

where 𝜏 ≜ max
𝑘∈Z+

{𝑛
𝑘+1

− 𝑛
𝑘
}.

Proof. Choose𝑉(𝑛, 𝑥(𝑛)) = |𝑥(𝑛)|, where 𝑥(𝑛) is a solution of
system (97). Let 𝑏(𝑠) = 𝑎(𝑠) = 𝑠, 𝑃(𝑠) = 𝜁𝑠, 𝜔(𝑠) = (|𝑐 − 1| +

𝜁|𝑑|)𝑠, 𝜓(𝑠) = 𝜂𝑠, 𝑠 > 0, and then

Δ𝑉 (𝑛, 𝑥 (𝑛))

= 𝑉 (𝑛 + 1, 𝑥 (𝑛 + 1)) − 𝑉 (𝑛, 𝑥 (𝑛))

= |𝑥 (𝑛 + 1)| − |𝑥 (𝑛)|

= |𝑐𝑥 (𝑛) + 𝑑𝑥 (𝑛 − 1)| − |𝑥 (𝑛)|

≤ |(𝑐 − 1) 𝑥 (𝑛) + 𝑑𝑥 (𝑛 − 1)|

≤ |𝑐 − 1| ⋅ |𝑥 (𝑛)| + |𝑑| ⋅ |𝑥 (𝑛 − 1)|

= |𝑐 − 1| 𝑉 (𝑛, 𝑥 (𝑛)) + |𝑑| 𝑉 (𝑛 − 1, 𝑥 (𝑛 − 1))

≤ |𝑐 − 1| 𝑉 (𝑛, 𝑥 (𝑛)) + |𝑑| 𝜁𝑉 (𝑛, 𝑥 (𝑛))

= (|𝑐 − 1| + 𝜁 |𝑑|) 𝑉 (𝑛, 𝑥 (𝑛)) .

(99)

ByTheorem 2, the above property can be easily derived.

Example 7. Consider the following impulsive discrete system:

𝑥 (𝑛 + 1) =

𝑥 (𝑛) [(1 + 𝑑) 𝑥 (𝑛 − 1) + 𝑐𝑑]

𝑥 (𝑛 − 1) + 𝑐

, 𝑛 ≥ 𝑛
0
, 𝑛 ∈ Z

+
,

𝑥 (𝑛) = {

𝑥 (𝑛) , 𝑛 ̸= 𝑛
𝑘
, 𝑘 ∈ Z

+
,

𝜂𝑥 (𝑛
𝑘
) , 𝑛 = 𝑛

𝑘
, 𝑘 ∈ Z

+
,

𝑥
𝑛0
(𝑠) = 𝜑 (𝑠) , 𝑠 ∈ 𝐽,

(100)

where 𝑐, 𝑑, 𝜂 are three constants and 𝑐 > 0, 0 < 𝜂 < 1.

Property 2. Given constants 𝜆, 𝐴 satisfy 𝜆 < 𝜂𝐴, and there is
a constant 𝜁 > 1/𝜂.

Then, the system (100) with respect to (𝜆, 𝐴) is uniformly
asymptotically practically stable if

𝜏 |𝑑| < 1 − 2𝜂, (101)

where 𝜏 ≜ max
𝑘∈Z+

{𝑛
𝑘+1

− 𝑛
𝑘
}.

Proof. Choose𝑉(𝑛, 𝑥(𝑛)) = |𝑥(𝑛)|, where 𝑥(𝑛) is a solution of
system (100). Let 𝑏(𝑠) = 𝑎(𝑠) = 𝑠, 𝑃(𝑠) = 𝜁𝑠, 𝜔(𝑠) = 𝑠 ⋅ (|𝑑| +

1/(1 + 𝑐/𝜁𝑠) − 1), 𝜓(𝑠) = 𝜂𝑠, 𝑠 > 0, and then

Δ𝑉 (𝑛, 𝑥 (𝑛))

= 𝑉 (𝑛 + 1, 𝑥 (𝑛 + 1)) − 𝑉 (𝑛, 𝑥 (𝑛))

= |𝑥 (𝑛 + 1)| − |𝑥 (𝑛)|

=










𝑥 (𝑛) [(1 + 𝑑) 𝑥 (𝑛 − 1) + 𝑐𝑑]

𝑥 (𝑛 − 1) + 𝑐










− |𝑥 (𝑛)|

= |𝑥 (𝑛)| ⋅ (










𝑑𝑥 (𝑛 − 1) + 𝑐𝑑 + 𝑥 (𝑛 − 1)

𝑥 (𝑛 − 1) + 𝑐










− 1)

= |𝑥 (𝑛)| ⋅ (










𝑑 +

1

1 + 𝑐/𝑥 (𝑛 − 1)










− 1)

≤ |𝑥 (𝑛)| ⋅ (|𝑑| +

1

1 + 𝑐/𝑉 (𝑛 − 1, 𝑥 (𝑛 − 1))

− 1)

≤ 𝑉 (𝑛, 𝑥 (𝑛)) ⋅ (|𝑑| +

1

1 + 𝑐/𝜁𝑉 (𝑛, 𝑥 (𝑛))

− 1)

= 𝜔 (𝑉 (𝑛)) .

(102)

ByTheorem 2, the above property can be easily derived.

Remark 8. According to Theorem 2, we obtained the suf-
ficient conditions guaranteeing uniformly asymptotically
practical stability of the two impulsive discrete systems,
respectively. In other words, the results we presented are
effective for both linear and nonlinear impulsive discrete
systems.

5. Conclusion

In this paper, we considered the impulsive discrete systems
with time delays. Based on Lyapunov functions and the
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Razumikhin-type technique, the practical stability and uni-
formly asymptotically practical stability have been presented,
which is dependent on both the impulses and the time delays.
To our knowledge, there is almost no result concerning the
problem of practical stability for impulsive discrete systems
with delays. According to the analysis, we can see that
impulses do contribute to the system’s practical stability
behavior. Two examples have been illustrated to demonstrate
the usefulness of the proposed method.
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