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Our purpose in this paper is to present a better method of parametric estimation for a bivariate nonlinear regression model, which
takes the performance indicator of rubber aging as the dependent variable and time and temperature as the independent variables.
We point out that the commonly used two-step method (TSM), which splits the model and estimate parameters separately, has
limitation. Instead,we apply theMarquardt’smethod (MM) to implement parametric estimation directly for themodel and compare
these twomethods of parametric estimation by random simulation. Our results show thatMMhas better effect of data fitting, more
reasonable parametric estimates, and smaller prediction error compared with TSM.

1. Introduction

In the study of fatigue lifetime evaluation of rubbermaterials,
accelerated aging test is widely used as an effective procedure
for obtaining the data on performance indicators (𝑦), aging
time (𝑡), and aging temperature (𝑇). In order to investigate the
relationships among them, Dakin [1, 2] proposed the kinetic
equation for aging; that is,

𝑦 = 𝐵𝑒
−𝐾𝑡

𝛼

, (1)

where 𝑦 is the performance indicator of rubber, 𝑡 is the
aging time, 𝐾 is an aging rate constant depending on the
temperature 𝑇, 𝐵 is a constant, and 𝛼 is a constant in (0, 1).

Mott and Roland [3] and Wise et al. [4] interpreted that
the 𝐾 in (1) can be expressed in the Arrhenius form. In this
paper, we also assume the convention that the 𝐾 for rubber
can be described by the Arrhenius type

𝐾 = 𝐴𝑒
−𝐶/𝑇

, (2)

where 𝑇 is aging temperature and 𝐴 and 𝐶 are constants.
By (2) and (1), we obtain the model

𝑦 = 𝐵𝑒
−𝐴𝑒

−𝐶/𝑇

𝑡

𝛼

, (3)

which is called the 𝑦-𝑡-𝑇 bivariate nonlinear regression
model in this paper. Here, 𝐵, 𝐴, 𝐶, and 𝛼 are model

parameters. In the past, one (see, e.g., [5–7]) usually split (3)
into (1) and (2) to estimate the parameters in (3).

The constant 𝛼 is determined by successive approxima-
tion method, which is to minimize (4) to two decimal places:

𝐼 =

𝑙

∑
𝑖=1

𝑛

∑
𝑗

(𝑦
𝑖𝑗

− 𝑦
𝑖𝑗

)
2

, (4)

where 𝑦
𝑖𝑗

and 𝑦
𝑖𝑗

denote the experimental measurements
and predicted values of the performance indicators of rubber
when the aging temperature index is 𝑖 and the experiment
serial number is 𝑗, respectively. When 𝛼 is assigned a value,
(1) can be converted into the following linear form through
logarithm transformation:

𝑌 = 𝑎 + 𝑏𝑋, (5)

where 𝑌 = ln𝑦, 𝑎 = ln𝐵, 𝑏 = −𝐾, and𝑋 = 𝑡
𝛼.

The values of 𝑎 and 𝑏 are determined by the least squares
method:

𝑏
𝑖

=
∑𝑋𝑌 − (∑𝑋∑𝑌) /𝑛

∑𝑋2 − (∑𝑋)
2

/𝑛
, 𝑎

𝑖

=
∑𝑌

𝑛
− 𝑏
𝑖

∑𝑋

𝑛
. (6)

The 𝐵 is given by 𝐵 = ∑𝐵
𝑖

/𝑙, where 𝑙 is the maximum
index of aging temperature.
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The 𝐾 is given by 𝐾
𝑖

= −𝑏
𝑖

and used as the known value
in (2). Similarly, (2) can be converted into the following linear
form through logarithm transformation:

𝑊 = 𝐷 + 𝐸𝑍, (7)

where𝑊 = ln𝐾,𝐷 = ln𝐴, 𝐸 = −𝐶, and 𝑍 = 𝑇−1.
The values of 𝐷 and 𝐸 are also determined by the least

squares method:

𝐸 =
∑𝑊𝑍 − (∑𝑊∑𝑍) /𝑙

∑𝑊2 − (∑𝑊)
2

/𝑙
, 𝐷 =

∑𝑊

𝑙
− 𝐸

∑𝑍

𝑙
. (8)

The estimated values of 𝐴 and 𝐶 are given by 𝐴 = 𝑒
̂

𝐷 and
𝐶 = −𝐸.

At last, the final estimates of the parameters are substi-
tuted into (3) to form the regression forecast model.

However, the above-mentioned TSM has the following
limitation.

First, the estimates of the parameters in (1) and (2),
obtained by the logarithm regression method, are generally
not the least squares solution of the original variables [8].

Second, substituting the estimates of the parameters 𝐾
𝑖

in (1) into (2) may lead to large errors. This is because the
estimates of the parameters 𝐴 and 𝐶 in (3) highly rely on
the precision of 𝐾

𝑖

, if 𝐾
𝑖

has a small change that will lead to
considerable change of the values of 𝐴 and 𝐶. Furthermore,
TSM is a tedious calculation method.

Finally, the parameter 𝐵 in (3) is the average of 𝐵
𝑖

, whose
goodness needs verifying.

Regarding the limitation above, the purpose of this paper
is to adopt MM to estimate the four parameters in (3).

2. Marquardt’s Method

The general form of the nonlinear regression model is

𝑌 = 𝜑 (𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑝

; 𝛽
1

, 𝛽
2

, . . . , 𝛽
𝑟

) + 𝜉, (9)

where 𝜑 is a known nonlinear function, 𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑝

are a
set of 𝑝 independent variables, 𝛽

1

, 𝛽
2

, . . . , 𝛽
𝑟

are a set of 𝑟
unknown parameters to be estimated, and 𝜉 is the random
error. If 𝑦 and 𝑥

1

, 𝑥
2

, . . . , 𝑥
𝑝

are observed for 𝑛 times, 𝑛 sets
of observations ((𝑥

𝑖1

, 𝑥
𝑖2

, . . . , 𝑥
𝑖𝑝

, 𝑦
𝑖

), 𝑖 = 1, 2, . . . , 𝑛) can be
obtained.

Substituting the 𝑖th set of observations of the independent
variables into the model (9), we see that

𝜑 (𝑥
𝑖1

, 𝑥
𝑖2

, . . . , 𝑥
𝑖𝑝

; 𝛽
1

, 𝛽
2

, . . . , 𝛽
𝑟

) = 𝜑 (𝑥
𝑖

, 𝛽) . (10)

Since 𝑥
𝑖1

, 𝑥
𝑖2

, . . . , 𝑥
𝑖𝑝

are known values, we deduce that
𝜑(𝑥
𝑖

, 𝛽) is a function of 𝛽
1

, 𝛽
2

, . . . , 𝛽
𝑟

. For a given initial value

𝛽
(0) = (𝛽

(0)

1

, 𝛽
(0)

2

, . . . , 𝛽(0)
𝑟

), we expand 𝜑(𝑥
𝑖

, 𝛽) using Taylor’s
formula at 𝛽(0) and omit the quadratic and above terms. The
expansion is as follows:

𝜑 (𝑥
𝑖

, 𝛽) ≈ 𝜑 (𝑥
𝑖

, 𝛽
(0)

)

+
𝜕𝜑

𝜕𝛽
1


𝛽=𝛽

(0)

(𝛽
1

− 𝛽
(0)

1

) +
𝜕𝜑

𝜕𝛽
2


𝛽=𝛽

(0)

(𝛽
2

− 𝛽
(0)

2

)

+ ⋅ ⋅ ⋅ +
𝜕𝜑

𝜕𝛽
𝑟


𝛽=𝛽

(0)

(𝛽
𝑟

− 𝛽
(0)

𝑟

) .

(11)

All the numbers in (11) except the parameters 𝛽
1

, 𝛽
2

, . . . , 𝛽
𝑟

are known. It is clear that the right-hand side of (11) is a linear
function of 𝛽

1

, 𝛽
2

, . . . , 𝛽
𝑟

. Thus, we apply the least squares
method to (11) and set

𝑄 =

𝑛

∑
𝑖=1

{

{

{

𝑦
𝑖

− [

[

𝜑 (𝑥
𝑖

, 𝛽
(0)

) +

𝑟

∑
𝑗=1

𝜕𝜑

𝜕𝛽
𝑗


𝛽=𝛽

(0)

(𝛽
𝑗

− 𝛽
(0)

𝑗

)]

]

}

}

}

2

+ 𝑑

𝑟

∑
𝑗=1

(𝛽
𝑗

− 𝛽
(0)

𝑗

)
2

,

(12)

where 𝑑 ≥ 0 is called the damping factor. When 𝑑 = 0, this
method of linearization becomes the Gauss-Newton method
[9] which is a special case of MM. Even worse, the selection
of initial values of iteration for the Gauss-Newton method is
harder than that for MM.

In order to minimize 𝑄, the first partial derivatives of 𝑄
with respect to 𝛽

1

, 𝛽
2

, . . . , 𝛽
𝑟

should be zero; that is,

0 =
𝜕𝑄

𝜕𝛽
𝑘

= 2

𝑛

∑
𝑖=1

[

[

𝑦
𝑖

− 𝜑 (𝑥
𝑖

, 𝛽
(0)

)

+

𝑟

∑
𝑗=1

𝜕𝜑 (𝑥
𝑖

, 𝛽)

𝜕𝛽
𝑗


𝛽=𝛽

(0)

(𝛽
𝑗

− 𝛽
(0)

𝑗

)]

]

×
𝜕𝜑 (𝑥
𝑖

, 𝛽)

𝜕𝛽
𝑘

𝛽=𝛽(0)

+ 2𝑑 (𝛽
𝑘

− 𝛽
(0)

𝑘

) , 𝑘 = 1, 2, . . . , 𝑟.

(13)
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The equality (13) can be turned into the following form:

(𝑎
11

+ 𝑑) (𝛽
1

− 𝛽
(0)

1

) + 𝑎
12

(𝛽
2

− 𝛽
(0)

2

)

+ ⋅ ⋅ ⋅ + 𝑎
1𝑟

(𝛽
𝑟

− 𝛽
(0)

𝑟

) = 𝑎
1𝑦

,

𝑎
21

(𝛽
1

− 𝛽
(0)

1

) + (𝑎
22

+ 𝑑) (𝛽
2

− 𝛽
(0)

2

)

+ ⋅ ⋅ ⋅ + 𝑎
2𝑟

(𝛽
𝑟

− 𝛽
(0)

𝑟

) = 𝑎
2𝑦

,

...

𝑎
𝑟1

(𝛽
1

− 𝛽
(0)

1

) + 𝑎
𝑟2

(𝛽
2

− 𝛽
(0)

2

)

+ ⋅ ⋅ ⋅ + (𝑎
𝑟𝑟

+ 𝑑) (𝛽
𝑟

− 𝛽
(0)

𝑟

) = 𝑎
𝑚𝑦

,

(14)

where

𝑎
𝑗𝑘

=

𝑛

∑
𝑖=1

𝜕𝜑

𝜕𝛽
𝑗


𝛽=𝛽

(0)

⋅
𝜕𝜑

𝜕𝛽
𝑘


𝛽=𝛽

(0)

= 𝑎
𝑘𝑗

,

𝑎
𝑗𝑦

=

𝑛

∑
𝑖=1

(𝑦
𝑖

− 𝜑 (𝑥
𝑖

− 𝛽
(0)

)) ⋅
𝜕𝜑

𝜕𝛽
𝑗


𝛽=𝛽

(0)

,

𝑗 = 1, 2, . . . , 𝑟; 𝑘 = 1, 2, . . . , 𝑟.

(15)

Thus

𝛽 =

[
[
[
[

[

𝛽
1

𝛽
2

...
𝛽
𝑟

]
]
]
]

]

=

[
[
[
[
[

[

𝛽
(0)

1

𝛽
(0)

2

...
𝛽
(0)

𝑟

]
]
]
]
]

]

+

[
[
[
[
[

[

𝑎
11

+ 𝑑(0) 𝑎
12

⋅ ⋅ ⋅ 𝑎
1𝑟

𝑎
21

𝑎
22

+ 𝑑(0) ⋅ ⋅ ⋅ 𝑎
2𝑟

...
...

...
...

𝑎
𝑟1

𝑎
𝑟2

⋅ ⋅ ⋅ 𝑎
𝑟𝑟

+ 𝑑(0)

]
]
]
]
]

]

−1

[
[
[
[

[

𝑎
1𝑦

𝑎
2𝑦

...
𝑎
𝑟𝑦

]
]
]
]

]

.

(16)

Obviously, this solution depends on the initial values
𝛽
(0)

1

, 𝛽
(0)

2

, . . . , 𝛽
(0)

𝑟

, and 𝑑(0). If all the absolute values |𝛽
𝑗

−𝛽
(0)

𝑗

|

for 𝑖 = 1, 2, . . . , 𝑟 are quite small, the estimation will be
considered successful. On the contrary, if each |𝛽

𝑗

− 𝛽
(0)

𝑗

| is
rather large, we will insert 𝛽

𝑗

calculated in the previous step
into (14) as a new 𝛽

(0)

𝑗

. Then we compute the updated values
of 𝛽
𝑗

from (14) and insert them back to (14) as the new 𝛽
(0)

𝑗

.
Iterate this process until all the absolute values |𝛽

𝑗

− 𝛽
(0)

𝑗

|

can be ignored. Since 𝑎
1𝑦

, 𝑎
2𝑦

, . . . , 𝑎
𝑟𝑦

are fixed in (14), the
larger the value of 𝑑 is, the smaller the absolute values of

𝛽
1

− 𝛽
(0)

1

, 𝛽
2

− 𝛽
(0)

2

, . . . , 𝛽
𝑟

− 𝛽(0)
𝑟

are. Therefore, the value of
𝑑 should not be too large; otherwise the times of iteration
will be increased. The boundary for selecting the value of 𝑑
depends onwhether the residual sumof squares is decreasing.

2.1. Steps for Calculating the Parameters in (3). There are two
independent variables (aging time 𝑡 and aging temperature
𝑇) and four unknown parameters (𝐵, 𝐴, 𝐶, and 𝛼) in (3).
The steps for solving the nonlinear equations for the four
parameters are as follows.

(a) Calculate the partial derivatives of 𝑦 in (3) with
respect to 𝐵, 𝐴, 𝐶, and 𝛼, respectively; and we obtain

𝜕𝑦

𝜕𝐵
= 𝑒
−𝐴𝑒

−𝐶/𝑇

𝑡

𝛼

,

𝜕𝑦

𝜕𝐴
= −𝐵𝑒

−𝐴𝑒

−𝐶/𝑇

𝑡

𝛼

+𝑒

−𝐶/𝑇

𝑡

𝛼

,

𝜕𝑦

𝜕𝐶
=
𝐵𝐴
2𝑡𝛼

𝑇
𝑒
−𝐴𝑒

−𝐶/𝑇

𝑡

𝛼

−𝐶/𝑇

,

𝜕𝑦

𝜕𝛼
= −𝐵𝐴𝑡

𝛼 ln 𝑡𝑒−𝐴𝑒
−𝐶/𝑇

𝑡

𝛼

−𝐶/𝑇

.

(17)

(b) Select the initial iteration values of the parameters;
that is, 𝛽(0) = (𝐵(0), 𝐴(0), 𝐶(0), 𝛼(0)). Whether the
selection of initial values is appropriate will determine
the amount of calculation and the convergence of
iteration process.This paper uses TSM to estimate the
initial values of the parameters according to the aging
data in the related paper [6]. These values are also
considered the initial values of the parameters in the
process of random simulation in Section 3.

(c) Insert the 𝑛 sets of observations ((𝑦
𝑖

, 𝑡
𝑖

, 𝑇
𝑖

), 𝑖 =

1, 2, . . . , 𝑛) and the partial derivatives in (17) and 𝛽(0)
into (15), and obtain each of the coefficient values in
(14). For the first iteration, set the initial value; that
is, 𝑑 = 𝑑

(0) = 0.01𝑎
11

, calculate from (14) the 𝛽
in (16), and then insert the estimate of 𝛽 into the
original expression (12) to calculate the residual sum
of squares: 𝑄(0) = ∑

𝑛

𝑖=1

[𝑦
𝑖

− 𝑦(𝑇
𝑖

, 𝑡
𝑖

; 𝐵, 𝐴, 𝐶, 𝛼)]
2.

Obviously, the smaller the value of 𝑄(0) is, the better
it is.

(d) For the second iteration, set 𝛽(0) = 𝛽, and 𝑑 = 10
𝑚

𝑑
(0)

for𝑚 = −1, 0, 1, 2, . . ..

(i) First, set 𝑚 = −1; that is, 𝑑 = 0.1𝑑(0), and then
obtain the new values 𝛽 = (𝐵(1), 𝐴(1), 𝐶(1), 𝛼(1)).
Next, calculate the new residual sum of squares:
𝑄(1) = ∑

𝑛

𝑖=1

[𝑦
𝑖

− 𝑦(𝑇
𝑖

, 𝑡
𝑖

; 𝐵(1), 𝐴(1), 𝐶(1), 𝛼(1))]
2.

(ii) If 𝑄(1) < 𝑄
(0), the second iteration is done. But

if 𝑄(1) ≥ 𝑄
(0), set 𝑚 = 0; that is, 𝑑 = 𝑑

(0),
recalculate 𝛽, and recalculate the residual sum
of squares 𝑄(1).

(iii) If 𝑄(1) < 𝑄(0), the second iteration is done. But
if 𝑄(1) ≥ 𝑄(0), set𝑚 = 1; that is, 𝑑 = 10𝑑(0), and
recalculate 𝛽 and 𝑄(1).
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Table 1: Data for y-t-T by random simulation.

𝑇
1

= 380 𝑇
2

= 390 𝑇
3

= 400 𝑇
4

= 410 𝑇
5

= 420

𝑡
1

𝑦
1

𝑡
2

𝑦
2

𝑡
3

𝑦
3

𝑡
4

𝑦
4

𝑡
5

𝑦
5

2 0.90164 2 1.06520 2 0.97163 14 0.74929 6 0.95249
5 0.96176 7 0.86762 6 0.90061 15 0.77756 12 0.70445
7 0.87269 14 0.88055 11 0.94456 21 0.85007 14 0.81271
9 0.84975 19 0.86093 16 0.89346 25 0.74324 15 0.8594
15 0.83473 28 0.90947 23 0.81057 27 0.65854 27 0.59827
21 0.84506 31 0.84498 23 0.81645 28 0.81902 38 0.61045
22 0.90798 35 0.84552 30 0.87126 29 0.68834 43 0.52327
38 0.90154 41 0.85828 32 0.81683 37 0.66011 46 0.62483
46 0.85955 47 0.76119 41 0.68749 43 0.62437 49 0.53331
49 0.87239 51 0.89269 49 0.67741 52 0.66685 52 0.47344
58 0.80548 60 0.72179 60 0.63145 52 0.66147 55 0.48434
61 0.87837 65 0.76753 64 0.70384 56 0.70915 56 0.48452
65 0.75141 66 0.75146 65 0.76225 59 0.57080 63 0.55642
73 0.82056 67 0.76682 73 0.62422 63 0.57548 65 0.49338
74 0.91427 77 0.65527 75 0.57640 66 0.62424 78 0.39203
79 0.77127 87 0.82239 76 0.59947 72 0.67121 79 0.51148
80 0.80846 92 0.63481 80 0.65660 76 0.58539 80 0.54383
93 0.85508 93 0.72213 84 0.72900 78 0.60945 82 0.38676
98 0.74497 94 0.75969 87 0.72015 79 0.60864 85 0.43803
99 0.82579 95 0.74208 88 0.74480 89 0.64069 98 0.40408

(iv) If 𝑄(1) < 𝑄(0), the second iteration is done. But
if 𝑄(1) ≥ 𝑄(0), set 𝑚 = 2; that is, 𝑑 = 100𝑑(0),
and recalculate 𝛽 and 𝑄(1). If 𝑄(1) < 𝑄(0), the
second iteration is done. Keep on increasing the
values of 𝛽 until𝑄(1) < 𝑄(0), and the fourth step
is finished.

(e) For the third iteration, take the terminal values at the
second iteration of 𝑑, 𝛽, and𝑄(1) as the new 𝑑(0), 𝛽(0),
and𝑄(0), respectively. Repeat the whole process of the
second iteration until a new 𝑄(1) < 𝑄(0).

(f) Iterate the procedure as in processes (d) and (e) until
max
1≤𝑗≤𝑟

|𝛽
𝑗

− 𝛽
(0)

𝑗

| ≤ eps (tolerance) is satisfied. But
we have to notice that the value of 𝑑 should not be too
large at this time; otherwise max

1≤𝑗≤𝑟

|𝛽
𝑗

− 𝛽
(0)

𝑗

| ≤ eps
would hold even though the actual iteration failed.

3. Random Simulation and Result Analysis

3.1. Random Simulation and Data Processing. Random sim-
ulation is a method which uses random numbers to conduct
computer simulation. The sample observations obtained by
random sampling were utilized to estimate the parameters of
the models (see, e.g., [10, 11]).

This paper uses MatLab programming to simulate the
data. Follow the steps below.

(1) Determine the model and initial values of the param-
eters.

(2) Select a constant 𝑇 randomly to compute 𝑇
𝑖

= 𝑇 +

10𝑖 (𝑖 = 1, 2, . . . , 𝑛).

(3) Assume that 𝑡 follows the uniform distribution on the
interval (1, 100) and generates the random numbers
from (1, 100) as 𝑡.The number of times of simulations
is𝑁.

(4) After obtaining all the simulated values, insert them
into the model and add to 𝑦 by a random number
following the uniform distribution on (−0.1, 0.1). We
can simulate 𝑛 sets of subsamples eventually.

In this paper, 𝑇 = 370, 𝑛 = 5, and 𝑁 = 20. The initial
values of the parameters are 𝐵 = 1, 𝐴 = 8000, 𝐶 = 5000, and
𝛼 = 0.6. Then we can simulate 5 sets of data (each with 20
numbers) in Table 1.

According to the simulated data, we first use MatLab
programming to figure out that the approximate value of 𝛼
is 0.80 and then calculate the values of 𝐵,𝐴,𝐶, and 𝛼 by TSM
using SPSS software. The results are displayed in Table 2.

Then we estimate the parameters in the bivariate nonlin-
ear model (3) by MM using SPSS software (the initial values
of the parameters here are the same as those used in random
simulation). The results are displayed in Table 3.

3.2. Result Analysis. (1) In regression analysis, the coefficient
of determination 𝑅

2 = 1 − (residual sum of squares)/(total
sum of squares of deviations) is a statistic that measures the
goodness of fit of themodel under consideration. Specifically,
the coefficient of determination is a statisticalmeasure of how
well the regression line fits the real data points. The closer to
1 the 𝑅2 is, the closer the points of practical observations to
the sample line and the better the goodness of fit of themodel
are. From Tables 2 and 3, it can be seen that the 𝑅2 of MM is
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Table 2: Analysis for two-step method.

Statistics 𝑇
1

𝑇
2

𝑇
3

𝑇
4

𝑇
5

𝑅2 0.335 0.643 0.671 0.564 0.809
Sig. 0.008 0.000 0.000 0.000 0.000
𝐵
𝑖

0.906 0.973 0.955 0.831 0.917
𝐾
𝑖

0.003 0.008 0.011 0.01 0.022
Residual sum of squares 0.056 0.098 0.149 0.107 0.231

𝐵 = (∑𝐵
𝑖

)/5 = 0.916 = 0.916, 𝐴 = 193493.655, and 𝐶 = 6746.318.
The total residuals sum of squares = 0.641.

Table 3: Analysis for Marquardt’s method.

Sum of squares DF Mean square
Regression 55.235 4 13.809
Residuals 0.325 96 0.003
Total 55.5602 100

𝑅
2 = 1 − (residual sum of squares)/(total) = 0.843.

𝐵 = 0.973, 𝐴 = 35616.923, 𝐶 = 5689.481, and �̂� = 0.633.

larger than that of TSM, which indicates that the prediction
model of MM is more suitable for fitting the simulated data.

(2) Comparing the estimates of the parameters obtained
by the two methods, we can easily find out that the estimates
of the parameters ofMMare closer to the initial values, which
indicates that using MM to estimate the parameters in the
𝑦-𝑡-𝑇model is more reasonable.

(3) We compare their residual sum of squares. The
residual sum of squares for MM is 0.325, and that for TSM
is 0.641. The former is only half of the latter. Obviously, the
prediction error of the 𝑦-𝑡-𝑇model resulting from usingMM
is smaller, and the precision of its fitted equation is higher.

4. Conclusion

In this paper, we demonstrate that the MM is more suitable
for estimating the parameters of the aging lifetime model by
the theoretical analysis and random simulation. Our method
not only avoids a plenty of tedious calculation in TSM but
also adds the damping factor, which loosens the limitation
of selecting the initial values. Furthermore, compared with
TSM, MM greatly decreases the fitting error between the
predicted values and the practical observed values, and
we obtain the best-fit parameters. In addition, the model
estimated by MM has higher fitting precision than that by
TSM.

We note that the parametric estimation in this paper can
also be used in the prediction of lifetime of other materials,
such as composite materials (see [12]).
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