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We propose a novel method, called Kernel Neighborhood Discriminant Analysis (KNDA), which can be regarded as a supervised
kernel extension of Locality Preserving Projection (LPP). KNDA nonlinearly maps the original data into a kernel space in which
two graphs are constructed to depict the within-class submanifold and the between-class submanifold. Then a criterion function
which minimizes the quotient between the within-class representation and the between-class representation of the submanifolds is
designed to separate each submanifold constructed by each class.The real contribution of this paper is that we bring and extend the
submanifold based algorithm to a general model and by some derivation a simple result is given by which we can classify a given
object to a predefined class effectively. Experiments on the MNIST Handwritten Digits database, the Binary Alphadigits database,
the ORL face database, the Extended Yale Face Database B, and a downloaded documents dataset demonstrate the effectiveness
and robustness of the proposed method.

1. Introduction

In many practical applications, such as data mining, machine
learning, and computer vision, the dimensionality reduction
is a necessary preprocessing step for the purpose of noise
reduction and reducing the computation complexity. The
basic principle of dimensionality reduction is to map the
data point from the original space to a low dimensional
space through a linear or a nonlinear map. Many dimen-
sionality reduction methods have been developed to deal
with this problem. Principal Component Analysis (PCA)
[1] and Linear Discriminant Analysis (LDA) [2] are two
traditional linear methods. PCA seeks to find a set of bases
along which the data exhibit greater variances than other
axes. LDA attempts to make the samples as separable as
possible in the lowdimensional space.Thenumber of features
extracted by LDA is at most 𝑐 − 1 (𝑐 is the number of classes),
which is suboptimal for classification in Bayes sense unless a
posteriori probability functions are selected. Since PCA and
LDA optimize the mapping based on the global correlations
in the given dataset, it is likely to distort the local correlation
structures of the data. Meantime, they use the Euclidean dis-
tance in the space, which assumes that the space is isotropic

and homogeneous, but this assumption is often invalid due to
the curse of dimensionality. So an algorithm which is based
on the original Euclidean distance is not a good choice all the
time. To address this problem, some other algorithms have
been developed, such as Locally Linear Embedding (LLE) [3,
4], Isomap [5], Laplacian Eigenmaps [6], Locality Preserving
Projections [7, 8], Neighborhood Preserving Embedding
[9], and Tangent Distance Preserving Mapping [10]. These
methods attempt to use the local geometry structure of
the data manifold to approach the original whole manifold
structure. Based on the different geometric intuitions, these
methods can reveal the low dimensional structure of the
manifold that cannot be detected by classical linear methods.

Recently, lots of novel algorithms which tend to extend
or combine the classical linear and nonlinear dimensionality
reduction algorithms have been proposed. Weighed Locally
Linear Embedding (WLLE) [11] modifies the LLE algorithm
based on the weighted distance measurement to improve
the dimension reduction and the internal feature extraction
performance especially for the deformed distributed data. In
reference [12], a novel nonlinear dimensionality reduction
algorithm is proposed. It uses relative distance comparisons
to explore the local geometrical relations between data points.
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All such relative comparisons derived in each neighborhood
on the manifold are enumerated and maintained in low-
dimensional manifold to be learned. Sparse Multinomial
Kernel Discriminant Analysis (sMKDA) [13] is a method
for sparse, multinomial kernel discriminant analysis. It is
based on the connection between Canonical Variate Analysis
(CVA) [14] and least-squares and uses forward selection via
orthogonal least-squares to approximate a basis, generalizing
a similar approach for binomial problems. Neighborhood
Component Analysis (NCA) [15] is a method to learn a
transformation by maximizing a stochastic variant of leave-
one-out knn score on the training set, such that in the
transformed space all similar inputs of the same class are
clustered as tightly as possible. There are some other related
algorithms, including [16–20], proposed to deal with these
kind of problems.

Most of these methods design a heuristic criterion by
using the locally geometrical information of the data man-
ifold and through some optimization methods to get the
low dimension data. Also, most of these methods may have
their supervised versions by using the class label information
which is closed to the discriminant ability of an algorithm.

Here, by using a different locally geometrical intuition, we
proposed a novel submanifold learningmethod, calledKernel
Neighborhood Discriminant Analysis (KNDA), which is
based on the kernel tricks [21–23]. KNDA considers both the
within-class submanifold and the betweenclass submanifold
by integrating the neighboring information into a weighted
matrix in the kernel space. The final goal of KNDA is to
keep the within-class data as close as possible in the low
dimensional space while keeping away the between-class data
in a greatest degree.

However, our method may seemed to be a supervised
kernel extension of Locality Preserving Projections (LPP), so
before explaining our method, we first briefly introduce LPP.

The rest of the paper is organized as follows. In Section 2,
Locality Preserving Projections is reviewed, and then in
Section 3, we elaborate the proposed method Kernel Neigh-
borhood Discriminant Analysis (KNDA). Section 4 presents
the experiment results. Section 5 will make the discussions
about KNDA. Finally, in Section 6, the conclusion is given.

2. Review of Locality Preserving
Projections (LPP)

LPP is a linear approximation of the nonlinear Laplacian
Eigenmap for learning a locality preserving subspace which
preserves the intrinsic geometry of the data and local struc-
ture. A neighborhood relationship graph 𝐺 is built to depict
the local structure of the data points.

Let 𝑋 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
] be a set of vectors, where 𝑥

𝑖
(𝑖 =

1, 2, . . . , 𝑛) ∈ 𝑅
𝑚. LPP seeks a direction 𝑃 to project 𝑋 into a

low dimensional space in which the local structure of 𝑋 can
be preserved.

The objective function of LPP is defined as

min∑
𝑖

∑

𝑗
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𝑗
) is among 𝑘 nearest

neighbors of 𝑥
𝑗
(𝑥
𝑖
)

0 otherwise.
(2)

Here, parameter 𝑡 ∈ 𝑅. The justification for this choice can be
found in [6].

(2) Constant Weight:

𝑊
𝑖𝑗
=

{
{

{
{

{

1 if 𝑥
𝑖
(𝑥
𝑗
) is among 𝑘 nearest

neighbors of 𝑥
𝑗
(𝑥
𝑖
)

0 otherwise.
(3)

The weight 𝑊
𝑖𝑗
defines a matrix 𝑊, whose entry 𝑊

𝑖𝑗
is

nonzero onlywhen𝑥
𝑖
and𝑥
𝑗
are adjacent. Also notice that the

entries of𝑊 are nonnegative, and𝑊 is sparse and symmetric.
There is also an imposed constraint to (1), namely,

𝑌
𝑇
𝐷𝑌 = 𝐼, where𝐷 is a diagonal matrix, with𝐷

𝑖𝑖
= ∑
𝑗
𝑊
𝑖𝑗
.

Finally, the minimization problem reduces to the follow-
ing form:

arg min𝑃𝑇𝑋𝐿𝑋𝑇𝑃

𝑃
𝑇
𝑋𝐷𝑋
𝑇
𝑃 = 𝐼,

(4)

where 𝐿 = 𝐷 − 𝑊 is the Laplacian [24] of the graph 𝐺

constructed by LPP and 𝑃 is the projection matrix, whose
column vectors are the mapping directions by which we can
project𝑋 into a low dimensional space.

In order to get the optimal projectionmatrix 𝑃LPP, we just
need to get the eigenvectors corresponding to the minimum
eigenvalues of the generalized eigenvalue problem:

𝑋𝐿𝑋
𝑇
𝑃 = 𝜆𝑋𝐷𝑋

𝑇
𝑃. (5)

When we get 𝑃LPP, we can obtain the projection results of 𝑋
easily by 𝑌 = 𝑃LPP

𝑇
𝑋. Here, the size of matrix 𝑃LPP is 𝑚 ∗

𝑑, 𝑚 is the dimensionality of the original space, and 𝑑 is the
dimensionality of the space into which we map the original
matrix𝑋.

3. Kernel Neighborhood Discriminant
Analysis (KNDA)

Although LPP has a strong principle base and can project
the high dimensional data into a low dimensional space with
the local geometry structure of the original manifold being
preserved, it does not use the class relationship of the data
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points, which is more important in pattern classification.
Here, we propose a robust and promising method, which
first nonlinearly maps the original data points into a high
dimensional space and then explicitly constructs an affinity
graph by using the label of each point.

Assume that the dataset is represented as 𝑋 =

[𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
], where 𝑥

𝑖
(𝑖 = 1, 2, . . . , 𝑛) ∈ 𝑅

𝑚 and each data
point is assigned a label 𝑐

𝑖
∈ {1, 2, . . . , 𝑁

𝑐
}, where 𝑁

𝑐
is the

number of classes.
First, we utilize a nonlinear function𝜙 tomap the original

data points into a kernel space𝐻, in which data points can be
represented as

𝜙 (𝑋) = [𝜙 (𝑥
1
) , 𝜙 (𝑥

2
) , . . . , 𝜙 (𝑥

𝑛
)] . (6)

Then, in order to use the label information, we construct the
within-class affinity graph and between-class affinity graph in
the kernel space𝐻.

3.1. Build the Within-Class Manifold Structure. This step is
somewhat like the LPP, we construct an affinity graph, each
vertex of which is a data point in the kernel space. But we
constrain that there is one edge between two vertexes only
when they are from the same class; namely, they have the
same label.

When the within-class affinity graph is obtained, each
edge of the graphwill be given a value tomeasure the nearness
relationship between the two vertexes which form an edge.
Here, we use the constant weight:

𝑊
𝑖𝑗
= {

1 if 𝜙 (𝑥
𝑖
) (𝜙 (𝑥

𝑗
)) is linked with 𝜙 (𝑥

𝑗
) (𝜙 (𝑥

𝑖
))

0 otherwise.
(7)

Aiming at preserving the local geometry structure of sub-
manifold constructed by each class, we wish to minimize
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where 𝑉 is the projection matrix whose columns are the axes
of the subspace. Equation (8) can be reduced as follows:
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= 2 (𝑉
𝑇
𝜙 (𝑋) (𝐷 −𝑊min) 𝜙(𝑋)

𝑇
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𝐷min=𝐷
→ 2 (𝑉

𝑇
𝜙 (𝑋) (𝐷min −𝑊min) 𝜙(𝑋)

𝑇
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(9)

where𝐷 is a diagonal matrix with𝐷
𝑖𝑖
= ∑
𝑗
𝑊
𝑖𝑗
and𝑊min is a

matrix with𝑊min(𝑖, 𝑗) = 𝑊
𝑖𝑗
.

Notice that 𝑉 can be represented as a linear combination
of 𝜙(𝑥

𝑖
) (𝑖 = 1, 2, . . . , 𝑛), namely,

𝑉 = ∑

𝑖

𝜇
𝑖
𝜙 (𝑥
𝑖
) = 𝜙 (𝑋) 𝜇. (10)

So, (8) can be reduced further to

𝐶min = ∑

𝑖
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𝑇
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𝑇
𝜙(𝑋)
𝑇
𝜙 (𝑋) (𝐷min −𝑊min) 𝜙(𝑋)

𝑇
𝜙 (𝑋) 𝜇

= 2𝜇
𝑇
𝐾(𝐷min −𝑊min)𝐾𝜇,

(11)

where𝐾 is the kernel matrix in the kernel space.

3.2. Build the Between-Class Manifold Structure. The sub-
manifolds constructed by each class maybe overlap, which
is the main reason why the recognition rate is low in the
classification works. So, how to separate the submanifolds in
the low dimensional space is a key issue in dimensionality
reduction researches. Here, we explore the between-class
relationship to build an affinity graph which reflects the
membership between data points with different labels.

We link two points 𝜙(𝑥
𝑖
) and 𝜙(𝑥

𝑗
) in the kernel space

only when the Euclidean distance between them is less than
some limit values and they are from different class. Here,
unlike building the within-class manifold structure, we add
another limit; namely, the two data pointswith different labels
must reside on a local sphere with a small radius.We suppose
this limit is because if two data points with different labels
are much close to each other in the space, there will be a
higher possibility of classifying the data points falsely. So we
are compelled to add this limit in order to make the points
with different labels far away furthest in the low dimension
space. The radius value should be chosen to make the local
spheres contains a few data points that have different labels to
the data point reside on the centre of the sphere, meanwhile,
the radius value should be as small as possible, which will
reflect the local structure of the manifold faithfully.

When the between-class affinity graph is obtained, like in
Section 3.1, we give each edge of the graph a value. We also
utilize the constant weight here; namely,

𝑊
𝑖𝑗
=

{
{

{
{

{

1 if 

𝜙 (𝑥
𝑖
) − 𝜙 (𝑥

𝑗
)






≤ 𝜀

and label (𝜙 (𝑥
𝑖
)) ̸= label (𝜙 (𝑥

𝑗
))

0 otherwise.
(12)
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Since we conduct this step in the kernel space, so we can
calculate ‖𝜙(𝑥

𝑖
) − 𝜙(𝑥

𝑗
)‖ like the following:






𝜙 (𝑥
𝑖
) − 𝜙 (𝑥

𝑗
)







= √𝜙 (𝑥
𝑖
) − 𝜙(𝑥

𝑗
)

𝑇

(𝜙 (𝑥
𝑖
) − 𝜙 (𝑥

𝑗
))

= √(𝜙 (𝑥
𝑖
) , 𝜙 (𝑥

𝑖
)) − 2 (𝜙 (𝑥

𝑖
) , 𝜙 (𝑥

𝑗
)) + (𝜙 (𝑥

𝑗
) , 𝜙 (𝑥

𝑗
))

= √𝐾 (𝑖, 𝑖) − 2𝐾 (𝑖, 𝑗) + 𝐾 (𝑗, 𝑗),

(13)

where matrix 𝐾 is the kernel matrix whose entries are the
inner product of all pairs of𝜙(𝑥

𝑖
) and𝜙(𝑥

𝑗
) (𝑖, 𝑗 = 1, 2, . . . , 𝑛).

In order to make the between-class submanifolds con-
structed by each class as separable as possible in the low
dimensional space, we wish to maximize

𝐶max = ∑

𝑖

∑

𝑗

(𝑉
𝑇
𝜙 (𝑥
𝑖
) − 𝑉
𝑇
𝜙 (𝑥
𝑗
))

2

𝑊
𝑖𝑗
. (14)

According to Section 3.1, (14) can be reduced to

𝐶max = ∑

𝑖

∑

𝑗

(𝑉
𝑇
𝜙 (𝑥
𝑖
) − 𝑉
𝑇
𝜙 (𝑥
𝑗
))

2

𝑊
𝑖𝑗

= 2𝜇
𝑇
𝐾(𝐷max −𝑊max)𝐾𝜇,

(15)

where 𝐷max is a diagonal matrix with 𝐷
𝑖𝑖
= ∑
𝑗
𝑊
𝑖𝑗
, 𝑊max is

a matrix with𝑊max(𝑖, 𝑗) = 𝑊
𝑖𝑗
, and 𝐾 is the kernel matrix in

the kernel space.

3.3. Criterion Function. Since Kernel Neighborhood Dis-
criminant Analysis is designed to preserve the within-class
geometry structure of all the submanifolds and meanwhile
keep away the between-class submanifold, we define the
criterion function as follows:

arg min =

𝐶min (𝑉)

𝐶max (𝑉)

=

𝜇
𝑇
𝐾(𝐷min −𝑊min)𝐾𝜇

𝜇
𝑇
𝐾(𝐷max −𝑊max)𝐾𝜇

.

(16)

This problem can be reformulated as a constrainedminimiza-
tion problem:

min 𝜇
𝑇
𝐾(𝐷min −𝑊min)𝐾𝜇

s.t. 𝜇
𝑇
𝐾(𝐷max −𝑊max)𝐾𝜇 = 1.

(17)

We can obtain the solution of (17) easily by solving the
following generalized eigenvalue problem:

𝐾(𝐷min −𝑊min)𝐾𝜇 = 𝜆𝐾 (𝐷max −𝑊max)𝐾𝜇. (18)

If 𝐾(𝐷max − 𝑊max)𝐾 is invertible, we can reduce (18) to the
common eigenvalue problem:

(𝐾 (𝐷max −𝑊max)𝐾)
−1

𝐾(𝐷min −𝑊min)𝐾𝜇 = 𝜆𝜇. (19)

In real operation, we can add a diagonal matrix with small
entry value, such as 0.01, to the matrix 𝐾(𝐷max − 𝑊max)𝐾 to
ensure that it has full rank.Then the optimal solution vectors
𝜇
∗
of (17) are the eigenvectors corresponding to the smallest

𝑑 eigenvalues of (𝐾(𝐷max −𝑊max)𝐾)
−1
𝐾(𝐷min −𝑊min)𝐾 (𝑑

is the reduction dimensionality).
When 𝜇

∗
is gotten, the data points in the kernel space can

be mapped into a subspace by

𝑌 = 𝜇
𝑇

∗
𝐾. (20)

And for a new test sample 𝑥, it can bemapped to the subspace
by

𝑦 = 𝜇
𝑇

∗
𝜙(𝑋)
𝑇
𝜙 (𝑥) . (21)

Algorithm 1. The formal algorithm procedure can be
described as follows.

Let 𝑋 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
] and 𝑥

𝑖
(𝑖 = 1, 2, . . . , 𝑛) ∈ 𝑅

𝑚 be
the dataset.

Step 1. Compute the kernel matrix𝐾 of the data points.

Step 2.Construct thewithin-class affinity graph, and compute
the weigh matrix𝑊min and𝐷min:

𝑤
𝑖𝑗
= {

1 if 𝜙 (𝑥
𝑖
) (𝜙 (𝑥

𝑗
)) is linked with 𝜙 (𝑥

𝑗
) (𝜙 (𝑥

𝑖
))

0 otherwise,
(22)

𝐷min is a diagonal matrix with𝐷
𝑖𝑖
= ∑
𝑗
𝑊
𝑖𝑗
.

Step 3. Construct the between-class affinity graph, and com-
pute the weigh matrix𝑊max and𝐷max:

𝑤
𝑖𝑗
=

{
{

{
{

{

1 if 

𝜙 (𝑥
𝑖
) − 𝜙 (𝑥

𝑗
)






≤ 𝜀

and label (𝜙 (𝑥
𝑖
)) ̸= label (𝜙 (𝑥

𝑗
))

0 otherwise,
(23)

𝐷max is a diagonal matrix with𝐷
𝑖𝑖
= ∑
𝑗
𝑊
𝑖𝑗
.

Step 4. Solve the eigenvalue problem:

(𝐾 (𝐷max −𝑊max)𝐾)
−1

𝐾(𝐷min −𝑊min)𝐾𝜇 = 𝜆𝜇. (24)

In real operation, we can add a diagonal matrix with small
entry value, such as 0.01, to the matrix 𝐾(𝐷max − 𝑊max)𝐾 to
ensure that it has full rank.

Step 5. Produce the mapped vectors. Let 𝜇∗
1
, 𝜇
∗

2
, . . . , 𝜇

∗

𝑑
be the

eigenvectors corresponding to the smallest 𝑑 eigenvalues of
the eigenvalue problem shown in Step 4; the final𝑑dimension
embedding result of the original data points is

𝑌 = 𝜇
𝑇

∗
𝐾, (25)

where 𝜇
∗
= [𝜇
∗

1
, 𝜇
∗

2
, . . . , 𝜇

∗

𝑑
].

4. Experiments and Discussions

In this section, we conduct several experiments on different
datasets to demonstrate the effectiveness and the robustness
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Figure 1: Sample digit images fromMNIST database.

of our proposedmethod Kernel Neighborhood Discriminant
Analysis (KNDA). Remember that in all the following exper-
iments the parameter 𝑘 used to find the nearest neighbor-
hoods in LPP and KLPP is set to 10. Also by an auxiliary
experiment, we find that by using polynomial kernel with
KNDA can get better results than other kernel functions,
such as Gaussian kernel and sigmoid kernel, and there are no
serious impacts on the experiment results when parameter
𝑑 is disturbed in polynomial kernel. So for comparison and
simplicity, we employ polynomial kernel by choosing “𝑑”
equal to 2 in KNDA, KPCA, KLDA, and KLPP.

4.1. Digit Visualization

4.1.1. MNIST Handwritten Digits. In this experiment, we use
a subset of the MNIST Handwritten Digits database [25],
which contains 8 bit grayscale images of “0” through “9”.
Each digit image sample is represented as a high dimensional
vector of length 784. Figure 1 depicts two digits “0” and “1” of
the database.

We choose randomly 100 samples of every digit to form
our dataset, and we compare KNDAwith SLPP, SKLPP, PCA,
and KPCA. The results are shown in Figure 2.

We can see that the embedding result of KNDA almost
separates each class of the sample perfectly, while all the
other four methods result in the overlap of the data points
from different classes. That is because PCA type methods
are designed to preserve the global structure of the manifold
and LPP type methods consider the local structure of the
manifold more. Also PCA and KPCA neglect the key factor
“class label” that is very important in the classification work.
Notice that digits “4” and “9” are not separated completely by
KNDA (see Figure 2). If we look back to the digits “4” and
“9” in the original database, we can find that the two digits in
the database are somewhat similar. The images are shown in
Figure 3.

Here, we look back to Figure 2. We can find that the
centroid of the two clusters of digits “4” and “9” is too close, if
we canmake the abscissa of the two centroidmuch separated,
maybe we can split digits “4” and “9” totally. So, we discard
the eigenvector corresponding to the first smallest eigenvalue
of matrix (𝐾(𝐷max−𝑊max)𝐾)

−1
𝐾(𝐷min−𝑊min)𝐾 and use the

two eigenvectors corresponding to the second and the third
smallest eigenvalues ofmatrix (𝐾(𝐷max−𝑊max)𝐾)

−1
𝐾(𝐷min−

𝑊min)𝐾. This means that we use the original 𝑥-direction as
the 𝑦-direction now. The experiment result is in Figure 4.

This time, digits “4” and “9” are separated completely.
The result can be seen as a 90∘ globally clockwise rotation
to the result contained by KNDA in Figure 3 at a certain
degree, and now notice that the 𝑦-direction distance of the
cluster centroids of digits “4” and “9” is almost the same as

the 𝑥-direction in Figure 3, which is because now the
eigenvector corresponding to the 2nd eigenvalue of matrix
(𝐾(𝐷max−𝑊max)𝐾)

−1
𝐾(𝐷min−𝑊min)𝐾 is used as the embed-

ding vector of 𝑦-direction, and it is used as the embedding
vector of 𝑥-direction in the foregoing experiment.

4.1.2. Binary Alphadigits. The dataset used in this part is
Binary Alphadigits [25], which is composed of Binary 20×16
digits of “0” to “9” and capital “A” to “Z”. Each digit has
39 examples. Here, we use all the samples of the database.
Figure 5 depicts digit “9” and character “A” of the database.

By KNDA, we map all the data points to the 2-dimension
space, and the experiment results are shown in Figure 6.

It is very interesting and exciting that the samples from
each class are embedded to a point in the 2-dimension
space, which demonstrates the effectiveness and robustness
of KNDA. Since this database contains 36 different classes,
namely, digits “1–9” and characters “A–Z”, we do not show
the results produced by PCA, LPP, and NPE. All these three
methods’ results are somewhat like the ones in the MNIST
database.

However, digit “0” and character “O” are overlapped,
which is not deviant, if we take a look at the images in the
database, which is shown in Figure 7.

They are the same! That is why KNDA embeds digit
“0” and character “O” in the same place in the 2-dimension
embedding space.

4.2. Face Recognition

4.2.1. ORL. In this experiment, we use a famous face database
ORL [26]. ORL contains 40 different subjects, and each
subject has ten different images.The images include variation
in facial expressions (smile or not and open/closed eyes) and
pose. Figure 8 illustrates two sample subjects of the ORL
database along with variations in facial expressions and pose.

We test KNDA against DNDA (Direct Neighborhood
Discriminant Analysis), PCA, KPCA, LPP, KLPP, LDA, and
KLDA to demonstrate the predominance of KNDA. DNDA
is conducted by directly building the within-class manifold
structure and the within-class manifold structure in the
original data space and the other steps are the same as KNDA,
so we do not explain DNDA at length here. We form the
training set by randomly selecting 5 images per individual
with labels, and the rest of the database was considered to be
the testing set. Nearest neighborhood classifier is employed
in the experiments. Also, we find that if we run PCA prior
to LPP, the results of LPP can increase a lot. So in our
experiment, before conducting LPP we first run PCA. The
experiments are conducted 10 times, and we report the
average results here. The results are given in Figure 9. The
horizontal axis represents the dimension of the subspace and
the vertical axis stands for the recognition rate.

It can be seen that KNDA outperforms all the other
7 methods. Although DNDA, PCA, KPCA, LDA, KLDA,
and LPP perform well, KNDA exceeds them a lot. Another
point we should pay attention to is that LPP has the same
performance when the dimension is larger than 50. This is
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Figure 2: The 2-dimension embedding results by KNDA, SLPP, SKLPP, PCA, and KPCA using MNIST database.
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Figure 3: Subset of digits “4” and “9” in the MNIST database.
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matrix (𝐾(𝐷max −𝑊max)𝐾)
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𝐾(𝐷min −𝑊min)𝐾.

Table 1: The best recognition rate achieved by each method along
with the corresponding subspace dimension 𝑑.

Subspace dimension 𝑑 Recognition rate (%)
DNDA 120 93.8
KNDA 90 95.55
PCA 70 85.35
KPCA 90 87.8
LPP 40 86.6
KLPP 120 79.55
LDA 39 90.2
KLDA 39 92.1

because we run PCA to preserve 90 percent principal com-
ponent prior to conducting LPP, and the subspace dimension
obtained by PCA is smaller than 50. Also except KDNA,
DNDA, LDA, and KLDA, all the other 4 methods do not
consider explicitly the class labels of the data points, so
when comparing with KNDA, they look poorer. Meantime,
although it is obvious that DNDA, LDA, and KLDA, which
consider the label information explicitly, get better results,
KNDA outperforms them at a certain degree. We also list the
best recognition rate achieved by eachmethod along with the
corresponding subspace dimension 𝑑 in Table 1.

4.2.2. Extended Yale Face Database B. In this section,
Extended Yale Face Database B [27] is used to conduct
our experiments. Extended Yale Face Database B contains
16128 images of 28 human subjects under 9 poses and 64
illumination conditions. We use a subset of Yale Database B
here which contains 38 subjects under different illumination

Figure 5: Subset of digit “9” and character “A” in the Binary
Alphadigits database.
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Figure 6: The 2-dimension embedding results by KNDA, using
Binary Alphadigits database.

Figure 7: Subset of digit “0” and character “O” in the Binary
Alphadigits database.

Figure 8: Sample face images from the ORL database along with
variations in facial expressions and poses.
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Figure 9: The recognition rates versus the subspace dimension on
ORL database.
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Figure 10: Cropped example face images from the Extended Yale
Face Database B database under different illuminations.
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Figure 11: The recognition rates versus the subspace dimension on
Extended Yale Face Database B.

conditions and each subject has 64 cropped images. Figure 10
illustrates a cropped example face images from the Extended
Yale Face Database B, database under different illuminations.

We also test KNDAagainstDNDA (DirectNeighborhood
Discriminant Analysis), PCA, KPCA, LPP, KLPP, LDA, and
KLDA. The training set is formed by randomly selecting 30
images per subject with labels, and the rest of the databasewas
considered to be the testing set. Nearest neighborhood clas-
sifier is employed in the experiments. Like in Section 4.2.1,
we run PCA prior to LPP to achieve the best performance of
LPP. The experiments are conducted 10 times, and we report
the average results here.The results are given in Figure 11.The
horizontal axis represents the dimension of the subspace and
the vertical axis stands for the recognition rate.

This time, KNDA outperforms almost all the other 7
methods too. Although KLDA gets a better result when the
dimensionality is low, KNDA exceeds KLDA for 0.11 percent
when the dimension equals 120. Also, we must mention that
this result may be related to the dataset. In Section 4.2.1
we can see that KNDA outperforms KLDA a lot and the
intrinsic relationship between the dataset and the algorithm
is still unknown. Meanwhile, we can see that LPP is better
than PCA, KPCA, and KLPP, but KNDA exceeds it nearly
by 3 percent during the increasing of the dimension. Also,
if we look back to the experiment results in Section 4.2.1,
we will find that this time KLPP exceeds PCA and KPCA
a lot, but in the ORL database, this is almost the reverse.
However, KNDA gets the best recognition rate in both

Table 2: The best recognition rate achieved by each method along
with the corresponding subspace dimension 𝑑.

Subspace dimension 𝑑 Recognition rate (%)
DNDA 120 83.5
KNDA 120 86.36
PCA 120 61.22
KPCA 120 52.82
LPP 100 82.78
KLPP 100 68.92
LDA 27 81.5
KLDA 27 86.25
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Figure 12: The recognition rates versus the subspace dimension
on random downloaded Web documents which belonged to 25
different classes.

the ORL database and the Extended Yale Face Database B,
which indicates a stabilized performance.

The best recognition rate achieved by each method along
with the corresponding subspace dimension 𝑑 is shown in
Table 2.

4.3. Text Categorization. In order to test the performance
of KNDA in the real application, a random set of Web
documents that belonged to 25 different classes has been
downloaded from the Internet by an auxiliary Web crawler
program. The number of the documents belonging to dif-
ferent classes is very different. Some classes, such as sport
or computer, have more than 2000 documents, and on
the other hand, classes such as decoration have less than
500 documents. This difference is deliberately imported to
simulate the real application context to the maximum extent.
We use 80 percent of each class to compose the train set
and the other 20 percent of each class are used to test.
The experiments are conducted 10 times, and we report the
average results here. The results are given in Figure 12. The
horizontal axis represents the dimension of the subspace and
the vertical axis stands for the recognition rate.
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Table 3: The best recognition rate achieved by each method along
with the corresponding subspace dimension 𝑑.

Subspace dimension 𝑑 Recognition rate (%)
DNDA 3000 82.13
KNDA 3000 86.24
PCA 3000 72.53
KPCA 3000 75.01
LPP 3000 84.2
KLPP 2700 77.11
LDA 24 82.01
KLDA 24 7875

We can see clearly that KNDA is the best method globally
comparing with others, although it is not the best one when
the dimensionality is low.Also, this timeLPPgets a better per-
formance than lots of the other methods, which suggests that
LPP is not stable when using different dataset. On the other
hand, sinceDNDAandKNDAconsider both thewithin-class
structure and the between-class structure of the data mani-
fold, a more stable performance is gotten.Meantime, remem-
ber that we use randomly downloaded Web documents
dataset as the train set, and the distribution of the documents
is not uniform, which means that KNDA can get a more
robust and effective result in the real application context.

Also, the best recognition rate achieved by each method
alongwith the corresponding subspace dimension 𝑑 is shown
in Table 3.

5. Discussions

KNDA is a nonlinear dimension reduction algorithm which
is based on the graph theory. There are other graph based
algorithms, such as S-Isomap [28], Tensor Subspace Analysis
[29], and Conformal Embedding Analysis (CEA) [30].

The key difference between KNDA and them is how to
construct the graph and how to choose the optimization
criterion, which is very important to the algorithm. KNDA
uses not only the within-class information but the between-
class information to construct the graphwhich can effectively
improve the discriminant ability of an algorithm.

Meantime, the criterion function of KNDA is similar to
the LDA type algorithms, so here we briefly summarize the
similarity and dissimilarity between them. The LDA type
algorithms are based on the global correlations in the given
dataset; it is likely to distort the local correlation structures
of the data. On the contrary, KNDA fully uses the locally
geometrical information of the datamanifold to construct the
discriminant criterion and can adapt to the problem of the
curse of dimensionality.

Also, one can combine both the global and the local
information of the data to design an algorithm, such as [31],
in which a new algorithm called Distinguishing Variance
Embedding (DVE) is proposed. DVE unfolds the dataset
by maximizing the global variance subject to the proxim-
ity relation preservation constraint originated in Laplacian
Eigenmaps.

6. Conclusions

In this paper, a kernel based neighborhood discriminant
submanifold learning algorithm called Kernel Neighbor-
hood Discriminant Analysis (KNDA) is proposed. KNDA
is derived by first nonlinearly maping the original dataset
into a kernel space, and then within-class submanifold and
between-class manifold are modeled in the kernel space in
order to separate each submanifold constructed by each class.
Through solving an eigenvalue problem, we get the embed-
ding vectors in the low dimension space. Digit visualization,
face recognition, and a real documents’ categorization exper-
iments are conducted on several different artificial or real
dataset to demonstrate the dominance of KNDA.
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