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We consider the time-oscillating Hartree-type Schrödinger equation 𝑖𝑢
𝑡
+ Δ𝑢 + 𝜃 (𝜔𝑡) (|𝑥|

−𝛾
∗ |𝑢|
2
) 𝑢 = 0, where 𝜃 is a periodic

function. For themean value 𝐼(𝜃) of 𝜃, we show that the solution 𝑢
𝜔
converges to the solution of 𝑖𝑈

𝑡
+Δ𝑈+𝐼 (𝜃) (|𝑥|

−𝛾
∗ |𝑈|
2
)𝑈 = 0

for their local well-posedness and global well-posedness.

1. Introduction

In this paper, we discuss the following Hartree-type
Schrödinger equation:

𝑖𝑢
𝑡
+ Δ𝑢 + 𝜃 (𝜔𝑡) (|𝑥|

−𝛾
∗ |𝑢|
2
) 𝑢 = 0,

𝑢 (0) = 𝜑 ∈ 𝐻
1
(R
𝑁
) ,

(OHS)

where ∗ represents the convolution operator, 𝛾 ∈ (0, 4] ∩

(0,𝑁), 𝜔 ∈ R, and 𝜃 is a periodic function belonging to
𝐶
1
(R,R). People are interested in Hartree equation since it

hasmany applications in the quantum theory of large systems
of nonrelativistic bosonic atoms andmolecules.The numbers
of bosons in such systems are very large, but the interactions
between them are weak. Hartree equation arises in the study
of the mean-field limit of such systems; see, for example, [1–
3].

Different from the classical Hartree-type Schrödinger
equation, the coefficient of nonlinearity of (OHS) is a
function, especially a periodic function, not some constant,
although its 𝐿∞ norm is finite. We assume 𝜏 is the period of
𝜃; then we can define the mean value

𝐼 (𝜃) =
1

𝜏
∫

𝜏

0

𝜃 (𝑠) 𝑑𝑠. (1)

One can take such mean value as the coefficient of
nonlinearity of Hartree-type Schrödinger equation:

𝑖𝑈
𝑡
+ Δ𝑈 + 𝐼 (𝜃) (|𝑥|

−𝛾
∗ |𝑈|
2
)𝑈 = 0,

𝑈 (0) = 𝜑 ∈ 𝐻
1
(R
𝑁
) .

(HS)

Then, (OHS) is a time-oscillating equation and (HS) is the
corresponding deterministic one. In this paper, our purpose
is to discuss the relationship of well-posedness of solutions
between (OHS) and (HS).

The Cauchy problem has been settled by Cazenave and
Weissler [4, 5] and Miao et al. [6–8]. For the sake of con-
ciseness, we only state the results without any detailed proof.
The definition of admissible pair is arranged in Section 2,
although we use it here.

Proposition 1. For any initial data 𝜑 ∈ 𝐻
1
(R𝑁), there exists a

unique𝐻1 solution of (OHS) (or (HS)) defined on themaximal
life interval (−𝑇min, 𝑇max)with 0 < 𝑇max, 𝑇min ≤ ∞. Moreover,
the following properties hold.

(1) 𝑢 ∈ 𝐶((−𝑇min, 𝑇max),𝐻
1
(R𝑁)) ∩ 𝐿

𝑞

loc((−𝑇min, 𝑇max),

𝑊
1,𝑟

(R𝑁)) for any admissible pair (𝑞, 𝑟);
(2) (blow-up alternative) if 𝑇max < ∞ (resp., 𝑇min < ∞),

then, for 𝛾 < 4, one has lim
𝑡↑𝑇max

‖∇𝑢‖
𝐿
2
(R𝑁) = +∞

and, for 𝛾 = 4, one has ‖𝑢‖
𝐿
3
((0,𝑇max),𝐿

6𝑁/(3𝑁−10)
(R𝑁)) =

+∞.
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As mentioned above, we are concerned with the behavior
of solution of (OHS), when |𝜔| → +∞. Precisely, in the
maximal life interval of solution of (HS), we attempt to find
the relationship of solutions between (OHS) and (HS) as |𝜔|

is sufficiently large. Mimicking the approach of Cazenave
and Scialom [9] and Fang and Han [10] in the case of the
𝐻
1 Schrödinger equation with the local nonlinear term, we

obtain the following theorems for Hartree-type.

Theorem 2. Assume the initial data 𝜑 ∈ 𝐻
1
(R𝑁) and define

𝑢
𝜔
as the solutions of (OHS). Let𝑈 be the solution of (HS)with

the maximal life interval [0, 𝑆max). Then, we have
(1) for any time 𝑇 satisfying 0 < 𝑇 < 𝑆max, if |𝜔| is

sufficiently large, the solution 𝑢
𝜔
of (OHS) exists in

[0, 𝑇];
(2) for any admissible pair (𝑞, 𝑟) and time 0 < 𝑇 < 𝑆max,

𝑢
𝜔

→ 𝑈 in 𝐿
𝑞
((0, 𝑇),𝑊

1,𝑟
(R𝑁)) as |𝜔| → ∞. In

particular, the convergence holds in𝐶([0, 𝑇],𝐻
1
(R𝑁)).

Theorem 2 describes the relationship of local well-
posedness of solutions between (OHS) and (HS). Further-
more, if the solution of (HS) is globally existent, that is, 𝑆max =

+∞, we want to know whether Theorem 2 still holds. The
following theorem gives the positive answer if the solution of
(HS) owns sufficient decay as 𝑡 → ∞.

Theorem 3. Under the assumptions of Theorem 2, suppose
that 𝛾 > 2 and

𝑈 ∈ 𝐿
12/(8−𝛾)

((0, 𝑆max) , 𝐿
6𝑁/(3𝑁−2−2𝛾)

(R
𝑁
)) ; (2)

and then it follows that solution 𝑈 of (HS) is global; that is,
𝑆max = ∞. Moreover, solution 𝑢

𝜔
of (OHS) is also global if |𝜔|

is sufficiently large, and 𝑢
𝜔

→ 𝑈 in 𝐿
𝑞
((0,∞),𝑊

1,𝑟
(R𝑁)) as

|𝜔| → ∞, for all admissible pairs (𝑞, 𝑟).

The assumption (2) makes sure the solution 𝑈 of (HS)
owning sufficient decay, by which deduces 𝑈 not only is
global but also has scattering state (the details can be referred
to in [6–8]). In fact, (2) shows that 𝑈 is global when
𝛾 = 4 immediately, according to the blow-up alternative in
Proposition 1. And for 𝛾 < 4, the norm of ‖∇𝑈(𝑡)‖

𝐿
2
(R𝑁)

can be controlled by (2), for any 𝑡 ∈ [0, 𝑆max), which shows
𝑆max = ∞ by the blow-up alternative in Proposition 1. The
details can be found in Lemma 9.

Many people show that the condition (2) holds in differ-
ent cases. Cazenave in [4] shows (2) is true for defocusing case
(𝐼(𝜃)) when 2 < 𝛾 < 4. When 𝛾 = 4, Miao et al. in [6] show
(2) is true for defocusing case with the radial initial data and
for focusing case with the radial initial data and its energy and
kinetic energy smaller than the ground state’s.

When solution 𝑈 of (HS) is global but (2) does not hold,
we are not sure the behavior of solution 𝑢

𝜔
of (OHS) even 𝜔

is sufficiently large. In order to have a good understanding of
the development of 𝑢

𝜔
, we think that we should understand

the development of𝑈 firstly, especially the blow-up rate of𝑈.
In Section 2, we introduce some notations and some use-

ful lemmas. Theorem 2 is proved in Section 3, and Section 4
is devoted to provingTheorem 3.

2. Notations and Some Tools

In this section, we introduce some notations and useful
lemmas. In order to discuss nonlinear Schrödinger equation
conveniently, we always consider the equivalence of (OHS)
(or (HS)):

𝑢 (𝑡) = 𝑒
𝑖𝑡Δ

𝜑 + 𝑖 ∫

𝑡

0

𝑒
𝑖(𝑡−𝑠)Δ

𝜃 (𝜔𝑠)

× (|𝑥|
−𝛾

∗ |𝑢|
2
) 𝑢 (𝑠) 𝑑𝑠,

(3)

where (𝑒
𝑖𝑡Δ

)
𝑡∈R represents the Schrödinger group.

Definition 4 (admissible pair). A pair (𝑞, 𝑟) is called admissi-
ble if (2/𝑞) + (𝑛/𝑟) = 𝑛/2 and 2 ≤ 𝑞, 𝑟 ≤ ∞ (if 𝑁 = 1, then
2 ≤ 𝑟 ≤ ∞; if𝑁 = 2, then 2 ≤ 𝑟 < ∞).

Before stating the useful lemma, we describe the Classical
Strichartz estimates. The proofs of Strichartz estimates are
referred to in [5, 11–14].

Lemma 5 (classical Strichartz estimates). The following prop-
erties hold.

(i) For any 𝜑 ∈ 𝐿
2
(R𝑁) and any admissible pair (𝑞, 𝑟), the

function 𝑡 󳨃→ 𝑒
𝑖𝑡Δ

𝜑 belongs to

𝐿
𝑞
(R, 𝐿
𝑟
(R
𝑁
)) ∩ 𝐶 (R, 𝐿

2
(R
𝑁
)) . (4)

In addition, there exists a constant 𝐶 such that
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑖𝑡Δ

𝜑
󵄩󵄩󵄩󵄩󵄩𝐿𝑞(R,𝐿𝑟)

≤ 𝐶
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐿2 . (5)

(ii) Let 𝐼 be an interval in R, 𝐽 = 𝐼, and 𝑡
0
∈ 𝐽. If (𝛾, 𝜌)

is an admissible pair and 𝑓 ∈ 𝐿
𝛾
󸀠

(𝐼, 𝐿
𝜌
󸀠

(R𝑁)), then for
any admissible pair (𝑞, 𝑟), the function

𝑓 󳨃󳨀→ ∫

𝑡

𝑡
0

𝑒
𝑖(𝑡−𝑠)Δ

𝑓 (𝑠) 𝑑𝑠, 𝑤ℎ𝑒𝑟𝑒 𝑡 ∈ 𝐼, (6)

belongs to 𝐿
𝑞
(R, 𝐿
𝑟
(R𝑁)) ∩ 𝐶(R, 𝐿

2
(R𝑁)). Moreover,

there exists a constant 𝐶 independent of 𝐼 such that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡
0

𝑒
𝑖(𝑡−𝑠)Δ

𝑓(𝑠)𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑞(𝐼,𝐿𝑟)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝛾
󸀠

(𝐼,𝐿
𝜌
󸀠

)
. (7)

We also need the following maximal estimate, which
follows immediately from the sharp Hardy inequality (see
[15]).

Lemma 6. Let 0 < 𝛾 < 𝑁; one has
󵄩󵄩󵄩󵄩󵄩
|𝑥|
−𝛾

∗ |𝑢|
2󵄩󵄩󵄩󵄩󵄩𝐿∞(R𝑁)

≲ ‖𝑢‖
2

𝐻̇
𝛾/2
(R𝑁)

. (8)

The following lemma is the key to discussing the rela-
tionship between (OHS) and (HS), which shows that when
|𝜔| goes to infinity, the nonlinearity of (OHS) converges to
the nonlinearity of (HS). The lemma has been proved by
Cazenave and Scialom [9]; therefore, we only state it here
without any detailed proof.
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Lemma 7. Let (𝛾, 𝜌) be an admissible pair, and fix a time 𝑡
0
.

Given 𝑓 ∈ 𝐿
𝛾
󸀠

(R, 𝐿
𝜌
󸀠

(R𝑁)), it follows that

∫

𝑡

𝑡
0

𝜃 (𝜔𝑠) 𝑒
𝑖(𝑡−𝑠)Δ

𝑓 (𝑠) 𝑑𝑠 󳨀→
|𝜔|→∞

𝐼 (𝜃) ∫

𝑡

𝑡
0

𝑒
𝑖(𝑡−𝑠)Δ

𝑓 (𝑠) 𝑑𝑠, (9)

in 𝐿
𝑞
(R, 𝐿
𝑟
(R𝑁)), for any admissible pair (𝑞, 𝑟).

Lemma 8. Let the initial data 𝜑 ∈ 𝐻
1
(R𝑁). For any 𝜔 ∈ R,

define 𝑢
𝜔
as the solution of (OHS), and𝑈 is the solution of (HS)

with the maximal life interval [0, 𝑆max). Fix a time 𝑙 satisfying
0 < 𝑙 < 𝑆max, and suppose 𝑢

𝜔
exists in the interval [0, 𝑙] when

|𝜔| is sufficiently large. Suppose the following conditions hold:

lim sup
|𝜔|→∞

󵄩󵄩󵄩󵄩𝑢𝜔
󵄩󵄩󵄩󵄩𝑋(0,𝑙)

< ∞, (10)

where

𝑋(0, 𝑙) =

{{{{

{{{{

{

𝐿
∞

((0, 𝑙) ,𝐻
1
(R𝑁)) , 𝑖𝑓 𝛾 ≤ 2;

𝐿
6/(𝛾−2)

((0, 𝑙) , 𝐿
6𝑁/(3𝑁−2−2𝛾)

(R𝑁))

∩𝐿
∞

((0, 𝑙) ,𝐻
1
(R𝑁)) , 𝑖𝑓 2 < 𝛾 ≤ 4.

(11)

Then, for any admissible pair (𝑞, 𝑟), one has
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩𝐿𝑞((0,𝑙),𝑊1,𝑟(R𝑁))
󳨀→
|𝜔|→∞

0. (12)

Proof. From the conditions (10), we can choose two constants
𝐿 and𝑀 such that when |𝜔| ≥ 𝐿, we have

sup
|𝜔|≥𝐿

󵄩󵄩󵄩󵄩𝑢𝜔
󵄩󵄩󵄩󵄩𝑋(0,𝑙) ≤ 𝑀. (13)

Set

𝑄 = ‖𝑈‖
𝑋(0,𝑙)

, (14)

and then Proposition 1 deduces 𝑄 < ∞.
It follows from (3) that 𝑢

𝜔
− 𝑈 = 𝑖(𝐼

1
+ 𝐼
2
), where

𝐼
1
= ∫

𝑡

0

𝜃 (𝜔𝑠) 𝑒
𝑖(𝑡−𝑠)Δ

[(|𝑥|
−𝛾

∗
󵄨󵄨󵄨󵄨𝑢𝜔

󵄨󵄨󵄨󵄨

2

) 𝑢
𝜔
(𝑠)

− (|𝑥|
−𝛾

∗ |𝑈|
2
)𝑈 (𝑠)] 𝑑𝑠,

𝐼
2
= ∫

𝑡

0

[𝜃 (𝜔𝑠) − 𝐼 (𝜃)] 𝑒
𝑖(𝑡−𝑠)Δ

(|𝑥|
−𝛾

∗ |𝑈|
2
)𝑈 (𝑠) 𝑑𝑠.

(15)

By Lemma 6, Hardy-Littlewood-Sobolev inequality, Hölder
inequality, and Sobolev embedding, we obtain

󵄩󵄩󵄩󵄩󵄩
(|𝑥|
−𝛾

∗ |𝑈|
2
)𝑈

󵄩󵄩󵄩󵄩󵄩𝑌(0,𝑙)
≲ 𝑙
𝛼
‖𝑈‖
3

𝑋(0,𝑙)
≲ 𝑙
𝛼
𝑄
3
, (16)

where

𝑌 (0, 𝑙) =

{{{{

{{{{

{

𝐿
1
((0, 𝑙) ,𝐻

1
(R𝑁)) , if 𝛾 ≤ 2;

𝐿
6/(8−𝛾)

((0, 𝑙) ,𝑊
1,6𝑁/(3𝑁+2𝛾−4)

(R𝑁)) ,

if 2 < 𝛾 ≤ 4,

𝛼 =
{

{

{

1, if 𝛾 ≤ 2;

2 −
𝛾

2
, if 2 < 𝛾 ≤ 4.

(17)

Therefore, we can obtain from Strichartz estimates and
Lemma 7 that

󵄩󵄩󵄩󵄩𝐼2
󵄩󵄩󵄩󵄩𝐿𝑞((0,𝑙)𝑊1,𝑟(R𝑁))

:= 𝐶𝜀
𝜔

󳨀→
|𝜔|→∞

0. (18)

It follows from Strichartz estimates, Lemma 6, Hardy-
Littlewood-Sobolev inequality, Hölder inequality, and
Sobolev embedding that
󵄩󵄩󵄩󵄩𝐼1

󵄩󵄩󵄩󵄩𝐿𝑞((0,𝑙)𝑊1,𝑟(R𝑁))

≤ 𝐶𝑙
𝛼
[
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩𝑋(0,𝑙)
(
󵄩󵄩󵄩󵄩𝑢𝜔

󵄩󵄩󵄩󵄩

2

𝑋(0,𝑙)
+ ‖𝑈‖

2

𝑋(0,𝑙)
)

+
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩

2

𝑋(0,𝑙)
(
󵄩󵄩󵄩󵄩𝑢𝜔

󵄩󵄩󵄩󵄩𝑋(0,𝑙)
+ ‖𝑈‖

𝑋(0,𝑙)
)]

≤ 𝐶𝑙
𝛼
(𝑀
2
+ 𝑄
2
) [

󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈
󵄩󵄩󵄩󵄩

2

𝑋(0,𝑙)
+
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩𝑋(0,𝑙)
] .

(19)

Equations (19) and (18) can deduce that
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩𝐿𝑞((0,𝑙),𝑊1,𝑟(R𝑁))

≤ 𝐶𝜀
𝜔
+ 𝐶𝑙
𝛼
(𝑀
2
+ 𝑄
2
)

× [
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩

2

𝑋(0,𝑙)
+
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩𝑋(0,𝑙)
] .

(20)

The conclusion (12) can be obtained from the above inequal-
ity, if we can show

󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈
󵄩󵄩󵄩󵄩𝑋(0,𝑙)

󳨀→
|𝜔|→∞

0. (21)

Divide [0, 𝑙] into subintervals [𝑡
𝑖
, 𝑡
𝑖+1

], 𝑖 = 0, . . . , 𝐽 − 1,
with 𝑡

0
= 0, 𝑡
𝐽
= 𝑙 such that in each subinterval, we have

𝐶𝑙
𝛼
(
󵄩󵄩󵄩󵄩𝑢𝜔

󵄩󵄩󵄩󵄩

2

𝑋(𝑡
𝑖
,𝑡
𝑖+1
)
+ ‖𝑈‖

2

𝑋(𝑡
𝑖
,𝑡
𝑖+1
)

+
󵄩󵄩󵄩󵄩𝑢𝜔

󵄩󵄩󵄩󵄩𝑋(𝑡
𝑖
,𝑡
𝑖+1
)
+ ‖𝑈‖

𝑋(𝑡
𝑖
,𝑡
𝑖+1
)
) ≤

1

2
,

(22)

where 𝐽 only depends on𝑀 and 𝑄.
In the initial interval [𝑡

0
, 𝑡
1
], since 𝑢

𝜔
(𝑡
0
) = 𝑈(𝑡

0
) = 𝜑,

(19), (18), and (22) deduce that
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩𝑋(𝑡
0
,𝑡
1
)

≤ 𝐶𝜀
𝜔
+

1

2
[
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩

2

𝑋(𝑡
0
,𝑡
1
)
+
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩𝑋(𝑡
0
,𝑡
1
)
] ,

(23)

where we let 𝐿𝑞((𝑡
0
, 𝑡
1
),𝑊
1,𝑟

(R𝑁)) = 𝑋(𝑡
0
, 𝑡
1
) by the special

choice of (𝑞, 𝑟).
Then by the continuity argument, we have

󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈
󵄩󵄩󵄩󵄩𝐿𝛾((𝑡

0
,𝑡
1
),𝐿
𝜌
(R𝑁))

< 4𝐶𝜀
𝜔
. (24)

Since𝑢
𝜔
and𝑈 both belong to𝐶([0, 𝑙],𝐻

1
), we choose (𝑞, 𝑟) =

(∞, 2) and obtain
󵄩󵄩󵄩󵄩𝑢𝜔(𝑡1) − 𝑈(𝑡

1
)
󵄩󵄩󵄩󵄩𝐻1

≤ 𝐶𝜀
𝜔
+

1

2
[
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩

2

𝑋(𝑡0 ,𝑡1)
+
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩𝑋(𝑡
0
,𝑡
1
)
]

< 4𝐶𝜀
𝜔
.

(25)
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In the interval [𝑡
1
, 𝑡
2
], Strichartz estimates and inequali-

ties (18), (22), and (25) deduce that
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩𝐿𝑞((𝑡
1
,𝑡
2
),𝑊
1,𝑟
(R𝑁))

≤
󵄩󵄩󵄩󵄩𝑢𝜔(𝑡1) − 𝑈(𝑡

1
)
󵄩󵄩󵄩󵄩𝐻1

+ 𝐶𝜀
𝜔

+
1

2
[
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩

2

𝑋(𝑡
1
,𝑡
2
)
+
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩𝑋(𝑡
1
,𝑡
2
)
]

≤ 5𝐶𝜀
𝜔
+

1

2
[
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩

2

𝑋(𝑡
1
,𝑡
2
)
+
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩𝑋(𝑡
1
,𝑡
2
)
] .

(26)

Let 𝐿𝑞((𝑡
1
, 𝑡
2
),𝑊
1,𝑟

(R𝑁)) = 𝑋(𝑡
0
, 𝑡
1
) and apply the continuity

argument; we have
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩𝑋(𝑡
1
,𝑡
2
)
< 16𝐶𝜀

𝜔
. (27)

Furthermore, let (𝑞, 𝑟) = (∞, 2) again; we have
󵄩󵄩󵄩󵄩𝑢𝜔(𝑡2) − 𝑈(𝑡

2
)
󵄩󵄩󵄩󵄩𝐻1 < 16𝐶𝜀

𝜔
. (28)

Therefore, by induction argument, we obtain
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩𝑋(𝑡
𝑖
,𝑡
𝑖+1
)
< 4
𝑖+1

𝐶𝜀
𝜔
,

󵄩󵄩󵄩󵄩𝑢𝜔(𝑡𝑖+1) − 𝑈(𝑡
𝑖+1

)
󵄩󵄩󵄩󵄩𝐻1

< 4
𝑖+1

𝐶𝜀
𝜔
,

(29)

where 𝑖 = 0, . . . , 𝐽 − 1.
Finally, put all estimates in each subinterval together; we

have

󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈
󵄩󵄩󵄩󵄩𝑋(0,𝑙)

≤

𝐽−1

∑

𝑖=0

4
𝑖+1

𝐶𝜀
𝜔
< 4
𝐽+1

𝐶𝜀
𝜔

󳨀→
|𝜔|→∞

0, (30)

which shows (21) is true and finishes the proof of lemma.

At the end of section, we give a blow-up alternative for
(HS) (or (OHS)), which is useful for the proof of Theorem 3.

Lemma 9. For any initial data 𝜑 ∈ 𝐻
1
(R𝑁) and 𝛾 > 2, there

exists a unique 𝐻
1 solution 𝑈 of (HS) (or (OHS)) defined on

the maximal life interval [0, 𝑇max) with 0 < 𝑇max ≤ ∞. If one
supposes

𝑈 ∈ 𝐿
12/(8−𝛾)

((0, 𝑇max) , 𝐿
6𝑁/(3𝑁−2−2𝛾)

(R
𝑁
)) , (31)

then one has 𝑇max = ∞ and 𝑈 ∈ 𝐿
𝑞
((0,∞),𝑊

1,𝑟
(R𝑁)) with

any admissible pair (𝑞, 𝑟).

Proof. We assume 𝑇max < ∞; then according to Proposi-
tion 1, we obtain ‖𝑈‖

𝑋(0,𝑇max)
= ∞ and for any 𝑇 ∈ [0, 𝑇max),

‖𝑈‖
𝑋(0,𝑇)

< ∞. Since 𝑈 ∈ 𝐿
12/(8−𝛾)

((0, 𝑇max), 𝐿
6𝑁/(3𝑁−2−2𝛾)

(R𝑁)), we can choose 𝑇
0
sufficiently close to 𝑇max such that

‖𝑈‖
𝐿
12/(8−𝛾)
((𝑇
0
,𝑇max),𝐿

6𝑁/(3𝑁−2−2𝛾)
(R𝑁)) < 𝜀, (32)

where 𝜀 is sufficiently small.
For any admissible pair (𝑞, 𝑟), Strichartz estimate deduces

that
‖∇𝑈‖
𝐿
𝑞
((𝑇
0
,𝑇),𝐿
𝑟
(R𝑁))

≲
󵄩󵄩󵄩󵄩∇𝑈 (𝑇

0
)
󵄩󵄩󵄩󵄩𝐿2

+
󵄩󵄩󵄩󵄩󵄩
∇[(|𝑥|

−𝛾
∗ |𝑈|
2
)𝑈]

󵄩󵄩󵄩󵄩󵄩𝐿6/(8−𝛾)((𝑇
0
,𝑇),𝐿
6𝑁/(3𝑁−4+2𝛾)

(R𝑁))
.

(33)

Note that

∇ [(|𝑥|
−𝛾

∗ |𝑈|
2
)𝑈]

= [|𝑥|
−𝛾

∗ ∇ (|𝑈|
2
)]𝑈 + (|𝑥|

−𝛾
∗ |𝑈|
2
) ∇𝑈.

(34)

It follows from Hardy-Littlewood-Sobolev inequality and
Hölder inequality that
󵄩󵄩󵄩󵄩󵄩
∇ [(|𝑥|

−𝛾
∗ |𝑈|
2
)𝑈]

󵄩󵄩󵄩󵄩󵄩𝐿6/(8−𝛾)((𝑇
0
,𝑇),𝐿
6𝑁/(3𝑁−4+2𝛾)

(R𝑁))

≲ ‖∇𝑈‖
𝐿
∞
((𝑇
0
,𝑇),𝐿
2
)
‖𝑈‖
2

𝐿
12/(8−𝛾)
((𝑇
0
,𝑇max),𝐿

6𝑁/(3𝑁−2−2𝛾)
(R𝑁))

≤ 𝐶𝜀
2
‖𝑈‖
𝑋(𝑇
0
,𝑇)

.

(35)

From (33) and (35), we obtain

‖∇𝑈‖
𝐿
𝑞
((𝑇
0
,𝑇),𝐿
𝑟
(R𝑁)) ≤ 𝐶

󵄩󵄩󵄩󵄩∇𝑈(𝑇
0
)
󵄩󵄩󵄩󵄩𝐿2

+ 𝐶𝜀
2
‖𝑈‖
𝑋(𝑇
0
,𝑇)

. (36)

By Sobolev embedding and the definition of 𝑋(𝑇
0
, 𝑇), we

have

‖𝑈‖
𝑋(𝑇
0
,𝑇)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑈(𝑇
0
)
󵄩󵄩󵄩󵄩𝐻1

+ 𝐶𝜀
2
‖𝑈‖
𝑋(𝑇
0
,𝑇)

. (37)

If we choose 𝐶𝜀
2
< 1/2, we have ‖𝑈‖

𝑋(𝑇
0
,𝑇)

≤ 2𝐶‖𝑈(𝑇
0
)‖
𝐻
1 ,

which is uniformly bounded for any 𝑇. Then let 𝑇 converge
to 𝑇max; we have ‖𝑈‖

𝑋(𝑇
0
,𝑇max)

≤ 2𝐶‖𝑈(𝑇
0
)‖
𝐻
1 , which is a

contradiction. Now, we know𝑈 ∈ 𝑋(0,∞).Then, by (33) and
(35), we know ∇𝑈 ∈ 𝐿

𝑞
((0,∞), 𝐿

𝑟
(R𝑁)). The similar way can

show 𝑈 ∈ 𝐿
𝑞
((0,∞), 𝐿

𝑟
(R𝑁)); thus we finish the proof.

3. The Proof of Theorem 2

In this section, we prove theTheorem 2. In view of Lemma 8,
we only need to show that the solution 𝑢

𝜔
of (OHS) exists in

the interval [0, 𝑇] for sufficiently large 𝜔 and the condition
(10) holds.

Proof. For any 0 < 𝑇 < 𝑆max, let 𝑀 := 2‖𝑈(𝑡)‖
𝑋(0,𝑇)

and
‖𝜃‖
𝐿
∞ ≤ 𝐴; furthermore, we have |𝐼(𝜃)| ≤ 𝐴, where the norm

𝑋 is defined as (11). Divide the interval [0, 𝑇] into subintervals
[𝑡
𝑖
, 𝑡
𝑖+1

], 𝑖 = 0, . . . , 𝐽 − 1, and 𝑡
0
= 0, 𝑡
𝐽
= 𝑇, such that in each

subinterval [𝑡
𝑖
, 𝑡
𝑖+1

], we have

‖𝑈(𝑡)‖
𝑋(𝑡
𝑖
,𝑡
𝑖+1
)
≤ 𝜀, (38)

where 𝐽 only depends on𝑀 and𝑇, and 𝜀 is a sufficiently small
constant which is chosen later.

In each subinterval [𝑡
𝑖
, 𝑡
𝑖+1

], the integral forms (3), (19)
(let 𝑢
𝜔
= 0, 𝜃(𝜔𝑠) = 𝐼(𝜃) and [0, 𝑙] = [𝑡

𝑖
, 𝑡
𝑖+1

]), and (38) apply
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑖(𝑡−𝑡
𝑖
)Δ
𝑈(𝑡
𝑖
)
󵄩󵄩󵄩󵄩󵄩𝑋(𝑡
𝑖
,𝑡
𝑖+1
)

≤ ‖𝑈 (𝑡)‖
𝑋(𝑡
𝑖
,𝑡
𝑖+1
)
+ CAT𝛼‖𝑈‖

3

𝑋(𝑡
𝑖
,𝑡
𝑖+1
)

≤ 𝜀 + CAT𝛼𝜀3 ≤ 2𝜀,

(39)

where we choose 𝜀 sufficiently small such that CAT𝛼𝜀2 < 1

and

𝛼 =
{

{

{

1, if 𝛾 ≤ 2;

2 −
𝛾

2
, if 2 < 𝛾 ≤ 4.

(40)
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On [𝑡
0
, 𝑡
1
], since 𝑢

𝜔
(𝑡
0
) = 𝑈(𝑡

0
) = 𝜑, then by Strichartz

estimate, (19) (let 𝑈 = 0), and (39), we obtain
lim
|𝜔|→∞

󵄩󵄩󵄩󵄩𝑢𝜔
󵄩󵄩󵄩󵄩𝑋(𝑡
0
,𝑡
1
)

≤
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑖𝑡Δ

𝜑
󵄩󵄩󵄩󵄩󵄩𝑋(𝑡
0
,𝑡
1
)

+ CAT𝛼( lim
|𝜔|→∞

󵄩󵄩󵄩󵄩𝑢𝜔
󵄩󵄩󵄩󵄩𝑋(𝑡
0
,𝑡
1
)
)

3

≤ 2𝜀 + CAT𝛼( lim
|𝜔|→∞

󵄩󵄩󵄩󵄩𝑢𝜔
󵄩󵄩󵄩󵄩𝑋(𝑡
0
,𝑡
1
)
)

3

.

(41)

Then the continuity argument deduces that

lim
|𝜔|→∞

󵄩󵄩󵄩󵄩𝑢𝜔
󵄩󵄩󵄩󵄩𝑋(𝑡
0
,𝑡
1
)
≤ 2

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑖𝑡Δ

𝜑
󵄩󵄩󵄩󵄩󵄩𝑋(𝑡
0
,𝑡
1
)
≤ 𝑀, (42)

if 𝜀 is sufficiently small such that 8CAT𝛼𝜀 < 1, where the
second inequality comes from the Strichartz estimate and the
definition of𝑀.

Therefore, if |𝜔| is sufficiently large, the solution 𝑢
𝜔

exists on [𝑡
0
, 𝑡
1
] and (10) holds. By Lemma 8, we have

lim
|𝜔|→∞

‖𝑢
𝜔
(𝑡
1
) − 𝑈(𝑡

1
)‖
𝐻
1 = 0.

On [𝑡
1
, 𝑡
2
], Strichartz estimate and (19) deduce

lim
|𝜔|→∞

󵄩󵄩󵄩󵄩𝑢𝜔
󵄩󵄩󵄩󵄩𝑋(𝑡
1
,𝑡
2
)

≤ lim
|𝜔|→∞

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑖(𝑡−𝑡
1
)Δ
𝑢
𝜔
(𝑡
1
)
󵄩󵄩󵄩󵄩󵄩𝑋(𝑡
1
,𝑡
2
)

+ CAT𝛼( lim
|𝜔|→∞

󵄩󵄩󵄩󵄩𝑢𝜔
󵄩󵄩󵄩󵄩𝑋(𝑡
1
,𝑡
2
)
)

3

≤ lim
|𝜔|→∞

󵄩󵄩󵄩󵄩𝑢𝜔(𝑡1) − 𝑈(𝑡
1
)
󵄩󵄩󵄩󵄩𝐻1

+
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑖(𝑡−𝑡
1
)Δ
𝑈(𝑡
1
)
󵄩󵄩󵄩󵄩󵄩𝑋(𝑡
1
,𝑡
2
)

+ CAT𝛼( lim
|𝜔|→∞

󵄩󵄩󵄩󵄩𝑢𝜔
󵄩󵄩󵄩󵄩𝑋(𝑡
1
,𝑡
2
)
)

3

≤
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑖(𝑡−𝑡
1
)Δ
𝑈(𝑡
1
)
󵄩󵄩󵄩󵄩󵄩𝑋(𝑡
1
,𝑡
2
)
+ CAT𝛼( lim

|𝜔|→∞

󵄩󵄩󵄩󵄩𝑢𝜔
󵄩󵄩󵄩󵄩𝑋(𝑡
1
,𝑡
2
)
)

3

.

(43)
Applying the continuity argument again, we have

lim
|𝜔|→∞

󵄩󵄩󵄩󵄩𝑢𝜔
󵄩󵄩󵄩󵄩𝑋(𝑡
1
,𝑡
2
)
≤ 2

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑖(𝑡−𝑡
1
)Δ
𝑈(𝑡
1
)
󵄩󵄩󵄩󵄩󵄩𝑋(𝑡
1
,𝑡
2
)
≤ 𝑀. (44)

Therefore, when |𝜔| is sufficiently large, the solution
𝑢
𝜔
still exists in [𝑡

1
, 𝑡
2
], and (10) holds. Furthermore, by

Lemma 8, we have lim
|𝜔|→∞

‖𝑢
𝜔
(𝑡
2
) − 𝑈(𝑡

2
)‖
𝐻
1 = 0.

By induction, on each subinterval [𝑡
𝑖
, 𝑡
𝑖+1

], we always have
lim
|𝜔|→∞

‖𝑢
𝜔
‖
𝑋(𝑡
𝑖
,𝑡
𝑖+1
)
≤ 𝑀 since the number of subintervals

is finite, which only depends on 𝑀 and 𝑇. So, if |𝜔| is
sufficiently large, the solution 𝑢

𝜔
exists in [0, 𝑇], and the

condition (10) holds. Therefore, Theorem 2 follows from
Lemma 8; thus we complete the proof.

4. The Proof of Theorem 3

The last section is devoted to the proof ofTheorem 3. By blow-
up alternative in Proposition 1, the key point is to show the
boundness of ‖𝑢

𝜔
‖
𝑋(0,∞)

as 𝜔 being sufficiently large.

Proof. The global existence of solution 𝑈 of (HS) is followed
from Lemma 9. For any 𝑇 ∈ (0,∞), Theorem 2 shows that
the solution 𝑢

𝜔
of (OHS) exists in [0, 𝑇] for sufficiently large

𝜔 and 𝑢
𝜔

→ 𝑈 in 𝐿
𝑞
((0, 𝑇),𝑊

1,𝑟
(R𝑁)) as |𝜔| → ∞ with

any admissible pair (𝑞, 𝑟). In particular,

lim
𝜔→∞

󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈
󵄩󵄩󵄩󵄩𝑋(0,𝑇) = 0. (45)

Choose 𝑇
0
sufficiently large such that (32) holds, where 𝜀

satisfies the smallness in the proof of Lemma 9. According to
the proof of Lemma 9, we have

‖𝑈‖
𝑋(𝑇
0
,∞)

≤ 2𝐶
󵄩󵄩󵄩󵄩𝑈(𝑇
0
)
󵄩󵄩󵄩󵄩𝐻1 . (46)

For any 𝑆 ∈ [𝑇
0
, 𝑇
𝜔

max], triangle inequality deduces that
󵄩󵄩󵄩󵄩𝑢𝜔

󵄩󵄩󵄩󵄩𝑋(𝑇
0
,𝑆)

≤
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩𝑋(𝑇
0
,𝑆)

+ ‖𝑈‖
𝑋(𝑇
0
,𝑆)

≤
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩𝑋(𝑇
0
,𝑆)

+ 2𝐶
󵄩󵄩󵄩󵄩𝑈(𝑇
0
)
󵄩󵄩󵄩󵄩𝐻1

.

(47)

Let |𝜔| go to ∞ on both sides; then we obtain from (45) (let
𝑇 = 𝑆) that

lim
𝜔→∞

󵄩󵄩󵄩󵄩𝑢𝜔
󵄩󵄩󵄩󵄩𝑋(𝑇
0
,𝑆)

≤ 2𝐶
󵄩󵄩󵄩󵄩𝑈(𝑇
0
)
󵄩󵄩󵄩󵄩𝐻1

. (48)

The arbitrary value of 𝑆 shows thatwhen𝜔 is sufficiently large,
the solution 𝑢

𝜔
is global existence by blow-up alternative in

Proposition 1. Then Lemma 9 can deduce that

lim
𝜔→∞

󵄩󵄩󵄩󵄩𝑢𝜔
󵄩󵄩󵄩󵄩𝐿𝑞((0,∞),𝑊1,𝑟(R𝑁))

< ∞. (49)

Finally, we show that 𝑢
𝜔

→ 𝑈 in 𝐿
𝑞
((0,∞),𝑊

1,𝑟
(R𝑁))

as |𝜔| → ∞ for all admissible pairs (𝑞, 𝑟). Theorem 2 shows
that for any 𝑇 ∈ (0,∞)

lim
𝜔→∞

󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈
󵄩󵄩󵄩󵄩𝐿𝑞((0,𝑇),𝑊1,𝑟(R𝑁))

= 0; (50)

therefore, our attention is focused on

lim
𝜔→∞

󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈
󵄩󵄩󵄩󵄩𝐿𝑞((𝑇,∞),𝑊1,𝑟(R𝑁))

= 0. (51)

We note that

𝑢
𝜔
(𝑇 + 𝑡) − 𝑈 (𝑇 + 𝑡)

= 𝑒
𝑖⋅Δ

[𝑢
𝜔
(𝑇) − 𝑈 (𝑇)]

+ 𝑖 ∫

𝑡

0

𝜃 (𝜔 (𝑇 + 𝑠)) 𝑒
𝑖(𝑡−𝑠)Δ

× [(|𝑥|
−𝛾

∗
󵄨󵄨󵄨󵄨𝑢𝜔

󵄨󵄨󵄨󵄨

2

) 𝑢
𝜔
(𝑇 + 𝑠)

− (|𝑥|
−𝛾

∗ |𝑈|
2
)𝑈 (𝑇 + 𝑠)] 𝑑𝑠

+ 𝑖 ∫

𝑡

0

[𝜃 (𝜔 (𝑇 + 𝑠)) − 𝐼 (𝜃)] 𝑒
𝑖(𝑡−𝑠)Δ

× (|𝑥|
−𝛾

∗ |𝑈|
2
)𝑈 (𝑇 + 𝑠) 𝑑𝑠

:= (𝐼) + (𝐼𝐼) + (𝐼𝐼𝐼) .

(52)
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Strichartz estimates andTheorem 2 show that

‖(𝐼)‖
𝐿
𝑞
((0,∞),𝑊

1,𝑟
(R𝑁)) := 𝜀

1

𝜔
󳨀→
|𝜔|→∞

0. (53)

By Lemma 9, we know 𝑈 ∈ 𝐿
6/(8−𝛾)

((0,∞),𝑊
1,6𝑁/(2𝑁+2𝛾−4)

);
then Lemma 7 deduces that

‖(𝐼𝐼𝐼)‖
𝐿
𝑞
((0,∞),𝑊

1,𝑟
(R𝑁)) := 𝜀

2

𝜔
󳨀→
|𝜔|→∞

0. (54)

Since

(|𝑥|
−𝛾

∗
󵄨󵄨󵄨󵄨𝑢𝜔

󵄨󵄨󵄨󵄨

2

) 𝑢
𝜔
− (|𝑥|

−𝛾
∗ |𝑈|
2
)𝑈

= (|𝑥|
−𝛾

∗ (
󵄨󵄨󵄨󵄨𝑢𝜔

󵄨󵄨󵄨󵄨

2

− |𝑈|
2
)) 𝑢
𝜔
+ (|𝑥|

−𝛾
∗ |𝑈|
2
) (𝑢
𝜔
− 𝑈) ,

(55)

then it follows from Strichartz estimates, Hardy-Littlewood-
Sobolev inequality, and Hölder inequality that

‖(𝐼𝐼)‖
𝐿
𝑞
((0,∞),𝑊

1,𝑟
(R𝑁))

≤ 𝐶‖𝑈‖
2

𝐿
12/(8−𝛾)
((𝑇,∞),𝐿

6𝑁/(3𝑁−2−2𝛾)
(R𝑁))

×
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩𝐿∞((𝑇,∞),𝐻1(R𝑁))

+ 𝐶‖𝑈‖
𝐿
∞
((𝑇,∞),𝐻

1
(R𝑁))

× ‖𝑈‖
𝐿
12/(8−𝛾)
((𝑇,∞),𝐿

6𝑁/(3𝑁−2−2𝛾)
(R𝑁))

×
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩𝐿12/(8−𝛾)((𝑇,∞),𝐿6𝑁/(3𝑁−2−2𝛾)(R𝑁))

+ 𝐶
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩

2

𝐿
12/(8−𝛾)
((𝑇,∞),𝐿

6𝑁/(3𝑁−2−2𝛾)
(R𝑁))

× ‖𝑈‖
𝐿
∞
((𝑇,∞),𝐻

1
(R𝑁))

+
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩𝐿∞((𝑇,∞),𝐻1(R𝑁))

×
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩𝐿12/(8−𝛾)((𝑇,∞),𝐿6𝑁/(3𝑁−2−2𝛾)(R𝑁))

×
󵄩󵄩󵄩󵄩𝑢𝜔

󵄩󵄩󵄩󵄩𝐿12/(8−𝛾)((𝑇,∞),𝐿6𝑁/(3𝑁−2−2𝛾)(R𝑁))
.

(56)

By Sobolev embedding 𝐻̇
1,6𝑁/(3𝑁+4−2𝛾)

󳨅→ 𝐿
6𝑁/(3𝑁−2−2𝛾)

and interpolation, for any time interval 𝐼, we have
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐿12/(8−𝛾)(𝐼,𝐿6𝑁/(3𝑁−2−2𝛾))

≤ 𝐶
󵄩󵄩󵄩󵄩∇𝜓

󵄩󵄩󵄩󵄩𝐿12/(8−𝛾)(𝐼,𝐿6𝑁/(3𝑁+4−2𝛾))

≤ 𝐶
󵄩󵄩󵄩󵄩∇𝜓

󵄩󵄩󵄩󵄩

(4−2𝛾)/(𝛾−8)

𝐿
12/(8−𝛾)
(𝐼,𝐿
6𝑁/(3𝑁−8+𝛾)

)

󵄩󵄩󵄩󵄩∇𝜓
󵄩󵄩󵄩󵄩

(3𝛾−12)/(𝛾−8)

𝐿
∞
(𝐼,𝐿
2
)

.

(57)

We set𝑍(𝐼) = 𝐿
∞
(𝐼,𝐻
1
(R𝑁))∩𝐿12/(8−𝛾)(𝐼,𝑊1,6𝑁/(3𝑁−8+𝛾)

(R𝑁). By (52)–(57), we have
󵄩󵄩󵄩󵄩𝑢𝜔 (𝑡) − 𝑈 (𝑡)

󵄩󵄩󵄩󵄩𝐿𝑞((𝑇,∞),𝑊1,𝑟(R𝑁)

≤ 𝜀
1

𝜔
+ 𝜀
2

𝜔

+ 𝐶‖𝑈‖
2

𝐿
12/(8−𝛾)
((𝑇,∞),𝐿

6𝑁/(3𝑁−2−2𝛾)
(R𝑁))

󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈
󵄩󵄩󵄩󵄩𝑍(𝑇,∞)

+ 𝐶𝑀‖𝑈‖
𝐿
12/(8−𝛾)
((𝑇,∞),𝐿

6𝑁/(3𝑁−2−2𝛾)
(R𝑁))

󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈
󵄩󵄩󵄩󵄩𝑍(𝑇,∞)

+ 𝐶𝑀
󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈

󵄩󵄩󵄩󵄩

2

𝑍(𝑇,∞)
+ 𝐶

󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈
󵄩󵄩󵄩󵄩

3

𝑍(𝑇,∞)

+ 𝐶‖𝑈‖
𝐿
12/(8−𝛾)
((𝑇,∞),𝐿

6𝑁/(3𝑁−2−2𝛾)
(R𝑁))

󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈
󵄩󵄩󵄩󵄩

2

𝑍(𝑇,∞)
,

(58)

where we suppose ‖𝑈‖
𝑋(0,∞)

≤ 𝑀.
Choose 𝑇 sufficiently large such that

𝐶‖𝑈‖
2

𝐿
12/(8−𝛾)
((𝑇,∞),𝐿

6𝑁/(3𝑁−2−2𝛾)
(R𝑁))

+ 𝐶𝑀‖𝑈‖
𝐿
12/(8−𝛾)
((𝑇,∞),𝐿

6𝑁/(3𝑁−2−2𝛾)
(R𝑁)) ≤

1

2
,

𝐶‖𝑈‖
𝐿
12/(8−𝛾
)((𝑇,∞),𝐿

6𝑁/(3𝑁−2−2𝛾)
(R𝑁)) ≤ 1.

(59)

Since (𝐿
12/(8−𝛾)

, 𝐿
6𝑁/(3𝑁−8+𝛾)

) and (∞, 2) both are admissible
pairs, then it follows from (58) with 𝐿

𝑞
((𝑇,∞),𝑊

1,𝑟
(R𝑁)) =

𝑍(𝑇,∞) that
󵄩󵄩󵄩󵄩𝑢𝜔(𝑡) − 𝑈(𝑡)

󵄩󵄩󵄩󵄩𝑍(𝑇,∞)

≤ 2𝜀
1

𝜔
+ 2𝜀
2

𝜔
+ 2𝐶𝑀

󵄩󵄩󵄩󵄩𝑢𝜔(𝑡) − 𝑈(𝑡)
󵄩󵄩󵄩󵄩

2

𝑍(𝑇,∞)

+ 2𝐶
󵄩󵄩󵄩󵄩𝑢𝜔 (𝑡) − 𝑈 (𝑡)

󵄩󵄩󵄩󵄩

3

𝑍(𝑇,∞)

+ 2
󵄩󵄩󵄩󵄩𝑢𝜔 (𝑡) − 𝑈 (𝑡)

󵄩󵄩󵄩󵄩

2

𝑍(𝑇,∞)
.

(60)

The standard continuity argument shows that if 2𝜀1
𝜔
+ 2𝜀
2

𝜔
is

sufficiently small, that is, 𝜔 large enough, we have
󵄩󵄩󵄩󵄩𝑢𝜔(𝑡) − 𝑈(𝑡)

󵄩󵄩󵄩󵄩𝑍(𝑇,∞)
≤ 4𝜀
1

𝜔
+ 4𝜀
2

𝜔
󳨀→
|𝜔|→∞

0. (61)

Finally, (53), (54), (58), and (61) deduce that

lim
𝜔→∞

󵄩󵄩󵄩󵄩𝑢𝜔 − 𝑈
󵄩󵄩󵄩󵄩𝐿𝑞((𝑇,∞),𝑊1,𝑟(R𝑁))

= 0. (62)
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Équations aux Dérivées Partielles (2003-2004), Exp. No. XIX, p.
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