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Nowadays, swarm robotics research is having a great increase due to the benefits derived from its use, such as robustness, parallelism,
and flexibility. Unlike distributed robotic systems, swarm robotics emphasizes a large number of robots, and promotes scalability.
Among the multiple applications of such systems we could find are exploring unstructured environments, resource monitoring, or
distributed sensing. Two of these applications, monitoring, and perimeter/area detection of a given resource, have several ecological
uses. One of them is the detection and monitoring of pollutants to delimit their perimeter and area accurately. Maritime activity
has been increasing gradually in recent years. Many ships carry products such as oil that can adversely affect the environment. Such
products can produce high levels of pollution in case of being spilled into sea. In this paperwewill present a distributed systemwhich
monitors, covers, and surrounds a resource by using a swarm of homogeneous low cost drones. These drones only use their local
sensory information and do not require any direct communication between them. Taking into account the properties of this kind
of oil spills we will present a microscopic model for a swarm of drones, capable of monitoring these spills properly. Furthermore,
we will analyse the proper macroscopic operation of the swarm. The analytical and experimental results presented here show the
proper evolution of our system.

1. Introduction

Maritime activity has been increasing gradually in recent
years. For example, around 42000 vessels (excluding the
fishing ones) pass throughout the North Sea, carrying prod-
ucts that can adversely affect the environment, such as oil,
which can produce high levels of pollution in case of being
spilled into sea. Moreover, many pollutants are accidentally
spilled from ships during “normal” operations. These spills
are probably small but become significant due to the large
number of ships.

Dramatic incidences of marine pollution, such as the
Prestige oil spill off the Spanish north coast [1–3], have
highlighted the potential for human-caused environmental
damage. In attempting to mitigate or avoid future damage
to valuable natural resources caused by marine pollution,
research has been undertaken by the scientific community
to study the processes affecting the fate and distribution of
marine pollution and especially to model and simulate these
processes. Furthermore, active systems, able to detect and

track such kind of spills, are an invaluable tool to help to locate
and clean the affected resources [4–6].

Moreover, swarm robotics is an approach to solve prob-
lems inspired by the collective behaviour of social animals
and it is focused on the interaction of multiple robots. It is a
different approach to classical artificial intelligence, where the
main goal is usually to develop behaviours thatmimic human
brain function. Swarm robotics is based on the metaphor
of social insects and emphasizes aspects like decentralized
control, limited communication between agents, local infor-
mation, emergence of a global behaviour, and robustness
[7–10]. As it has been shown [10] it is different from other
multirobotic systems, because, for example, the swarm robots
are relatively simple.

However, the distributed nature of these systems makes
it difficult to develop an architecture that correctly models
a swarm and coordinates it to perform complex tasks. In
order to design a swarm behaviour, a mathematical model
must be provided for both the individual agents and the
whole swarm [11, 12]. These models will be tested to evaluate
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the performance of the swarm before its deployment in
real UAVs. This is mainly because this kind of systems has
emergent properties that make it difficult to predict the
overall operation of the swarmwhen only the local behaviour
of the agents is being analysed.

In this paper, we will present a swarm behaviour to be
used with robotic drones in order to cover the perimeter
or the area of an oil spill. We will use GNOME [13], a
very realistic environmental simulation system for marine
pollutants. With the data provided by this simulation, using
real maritime information and air currents predictions, we
will create a virtual oil spill in the Spanish coast.We will show
that our behaviour is able to both detect and track the spill for
a given period of time. Moreover, we will also show, through
the use of the macroscopic model derived by the local rules
of the robots, that the swarm will track the oil pollutants. A
Fokker-Plank equation will be derived from the microscopic
behaviour in order to predict the probability that a drone stays
in a given position at time 𝑡.

2. Pollutant Dispersion Model

Whether the trajectory model is accurate, adequate, or
correct is often questioned. The accuracy and adequacy of a
model are associated with the data used for the calculations
andmodelled physical processes.Themodelling of an oil spill
is not a simple task, mainly due to the number of factors
influencing the trajectories of pollutants: sea currents, winds,
and even the gravitational force or surface tension of water.

There are several applications that model and simulate
pollutant discharges into the sea.These applications are based
on themodelling of themost important forces that interact on
an oil slick. In this paper, one of these applications has been
used to obtain realistic data of an oil spill off Spanish coast.
As it will be seen in subsequent sections, we use both ocean
currents and wind data. These data will be used for testing a
realistic oil spill using a swarm of flying robots (drones).

More specifically, we have used GNOME, an interactive
environmental simulation system designed for the rapid
modelling of pollutant trajectories in the marine environ-
ment. GNOME simulates oil movement due to winds, cur-
rents, tides, and spreading. It was developed by theHazardous
Materials Response Division (HAZMAT) of the National
Oceanic andAtmospheric AdministrationOffice of Response
and Restoration (NOAA OR&R). HAZMAT uses GNOME
during spill events to calculate the spill trajectory and the
associated uncertainty in that trajectory. As it has been
mentioned in [14], GNOME can be used for predicting how
winds, currents, and other processes might move and spread
oil on the water, for studying how predicted oil trajectories
are affected by inexactness (uncertainty) in current and wind
observations and forecasts, and for predicting the chemical
and physical changes of the oil spill during the time that it
remains on the water surface.

One of the benefits of this tool is the possibility of using
external files containing information on tides, currents, and
so forth. If this information is added, then GNOME uses
it to make the trajectory prediction of the spill (even using

uncertainty during simulation) in the specified region. The
output from the model consists of graphics, movies, and data
files for postprocessing in a geographic information system
(GIS) or NOAA Emergency Response Division’s (ERD1) in-
house model GNOME Analyst.

The model used by this tool is general and applies to
trajectory problems. It is an Eulerian/Lagrangian model that
is two-dimensional (2-D) in space, but vertically isolated
layered systems can be modelled. Shoreline maps are inputs
to the model, so any area can be modelled. The model
automatically handles either hemisphere or east or west
longitude.

More specifically, random spreading (diffusion) is calcu-
lated by a simple random walk with a square unit probability.
The random walk is based on the diffusion value, 𝐷, that
represents the horizontal turbulent diffusion of the spill in
the water. During a spill, the value is calibrated as based on
overflight data. In this way diffusion and spreading are treated
as stochastic processes. Gravitational and surface tension
effects are ignored, as these are only important during the
first moments of a spill. Complex representation of subgrid
diffusion and spreading effects are ignored.

The main diffusion equation used in GNOME is pre-
sented in [13], where 𝐷

𝑥
and 𝐷

𝑦
are the scalar diffusion

coefficients in 𝑥 and 𝑦 directions and 𝐶 is the pollutant
concentration:
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GNOME simulates this diffusion with a random walk
with any distribution, with the resulting diffusion coefficient
being one-half the variance of the distribution of each step
divided by the time step:
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, (2)

where 𝜎
2 is the variance of the distribution of diffused points

and Δ𝑡 is the time elapsed between time steps.
Evaporation in GNOME is modelled by a simplistic 3-

phase evaporation algorithm where the pollutant is treated
as a three-component substance with independent half-lives
[15]:
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where 𝑡
𝑖
and 𝑡
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are the time elapsed (age; in hours) at time
step 𝑖 and the previous time step 𝑡 − 1, respectively, since
the LEs release. 𝐻
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are the percentages of each constituent (as decimals) for the
pollutant.
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Spilled substances are modelled as point masses (up
to 10, 000

4) called LEs (Lagrangian elements) or “splots”
(from “spill dots”). Spills can be initialized as one-time or
continuous releases and as point or line sources or evenly
spaced in a grid on the map for diagnostic purposes.

Once GNOME executes a simulation, the solution is
produced in the form of a trajectory. GNOME provides two
solutions to an oil spill scenario, the best estimate trajectory
and the uncertainty trajectory. The best estimate solution
shows the model result with all of the input data assumed
to be correct. The uncertainty solution allows the model to
predict other possible trajectories that are less likely to occur,
but which may have higher associated risks. In this paper
we will use the uncertainty solution of pollutant particles
(represented by its LEs) for generating a continuous pollutant
map. More details of this mathematical model could be
obtained in [13].

3. Swarm Design

In this section we will analyse the features that must have a
robotic swarm to detect and follow an oil spill in effective
way. We will also propose a specific microscopic behaviour
for this task. As mentioned above, the modelling of this kind
of pollutants is a complex task because of the interaction
of many factors. However, it is easy to extract a set of
characteristics that a system needs to locate this kind of spills.

On the one hand, the swarm must be able to detect and
follow pollutants that can change and move in time mainly
by the action of advection and diffusion. Depending on the
application, two situations can be found: the origin of the spill
is known or the swarm initially makes the detection process
(in this work it is assumed that detection is one of the tasks to
be performed). On the other hand, the appearance of several
polluting slicks is very probable due, among other factors, to
the transport and deposit of sediments on the coast while the
oil slick disperses and evaporates.

The behaviour of the swarm must be highly robust
and tolerant to failures and should be totally distributed.
Therefore, all agents must have the same importance when
performing the behaviour, without the existence of any
agent more prominent than another. Finally, the behaviour
should be highly scalable for two reasons: robust issues and
performance of the behaviour, since as a first step it may be
beneficial to use a reduced number of agents until they find
any evidence of a particular discharge.

Although in this paper behaviours will be analysed in
a simulated way, the features of agents are directly based
on flying robots (our intention is to use these algorithms in
drones).These drones will have a video camera that will use a
vision algorithm to determine the existence of any oil slick in
its visual field (as presented in [4, 16]). For security reasons,
we assume that drones will fly at different heights, so that
collisions in a position (𝑥, 𝑦) are avoided. We also assume
that due to flight altitude (about 500m above sea level)
the differences in the visual field caused by different flying
altitudes are negligible. All tests, unless otherwise specified,

will be carried out by a swarm of 200 drones. It is a medium-
sized swarm, appropriate for simulation.

Our main goal, once the behaviour is designed, is to
determine the ability of the swarm to locate, converge,
and follow an oil spill. Therefore, a macroscopic model to
predict the global behaviour of the swarm and to verify its
performance will be specified. More specifically, we propose
a homogeneous behaviour, executed by all agents, consisting
of three states. Initially, drones look for any trace of the spill
in the environment. Once the spill is detected, the drone will
head to it. Finally, the drone will try to stay inside it (to cover
the slick) or in its perimeter (to mark it).

Figure 1 shows the finite state machine (FSM) that gov-
erns the behaviour of each robot. The initial state isWander,
since we initially assume that the position of the spill is
unknown. The transition from Wander state is performed
when the agent’s visual sensor detects an oil slick. In this case,
the new state will be Resource. This state (Resource) has two
possible transitions: the spill is not detected (transition 𝑑)
so the system returns to Wander state or the amount of oil
detected is >80% of the image (transition b), so, the system
switches to InResource state. The agent remains in this state
if the detected oil percentage is >80%; otherwise, the system
returns to Resource state.

Next, each behaviour specified in the FSM will be
described in more detail.

At the beginning of the execution agents start atWander
state. At that time they have no idea where to find an oil spill.
Therefore, all directions are equally valid and they will move
randomly. The velocity of the drone at time 𝑡 is defined as

v
𝑤
(𝑡) = v

𝑤
(𝑡 − 1) + rand ⋅ 𝜇

1
, (4)

where rand is a random uniform vector defined within the
interval of themaximumandminimumvelocity of the drone,
and 𝜇

1
is the coefficient of variability on the current velocity.

With values close to 1, the robot will move in a totally random
way.

If a drone detects the resource, it heads to the resource
to position itself at the perimeter or over it, depending on the
desired behaviour.The velocity of the agent is defined by three
factors:
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1
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2
+ 𝛼
3
= 1 and these values define the intensity

of each factor.
More specifically, k

𝑐
specifies the direction of the robot.

This direction is determined by the area with the larger
intensity resource average:

v
𝑐
= 𝛾 (𝑆) ×
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, (6)

where 𝑆 is sensor readings that detect the resource at a given
time, pos(𝑠) is the position vector of a reading, and pos(rob)
is the position of the robot.We assume that the intensity of the
resource is in the range [0, 1], where 0 is the complete lack of
resource and 1 is the unambiguous detection of it.
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Figure 1: Finite state machine (FSM) that governs the operation of each agent. The initial state is Wander. The transition a is triggered when
the agent’s visual sensor detects an oil slick. Transition b occurs when the amount of oil detected is >80% of the image. Transition c is triggered
when the amount of oil is ≤80% of the image. Finally, transition d is triggered if no oil is detected.

𝛾 determines the direction of the velocity vector, depend-
ing on whether the robot is outside or inside de resource.The
aim of this variable is, therefore, to keep the robot on the
perimeter of the resource:
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where 𝜂 is a threshold that determines, from the quantity
of resource detected (0 means no resource and 1 maximum
quantity of resource), if the agent is located on the perimeter.
If the main objective of the system is that drones cover the
pollute slick, then 𝛾(𝑆) will be defined as 1 for any set of
readings 𝑆 at a given time.

ko specifies an avoidance vector with respect to all robots
detected at a given moment:

vo =
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where 𝑅 is the set of detected robots, pos(𝑟
𝑖
) is the position

of the detected robot 𝑖, and pos(rob) is the position of the
current robot.

Moreover, we will take into account the accuracy of the
transmitted locations: there are several factors that could
make these locations not to be optimal. We will include,
therefore, a random component to model this uncertainty in
the movement of the robot: kr(𝑡) = k

𝑟
(𝑡−1)+rand ⋅𝜇

2
, where

𝜇
2
is the coefficient of variability on the velocity.
Finally, when drones are located inside the spill and,

therefore, the borders of the resource are not detected, we
assume that drones will develop a random wander behaviour
until they find water again because there is no other informa-
tion about which direction is better to follow:

v
𝑠
(𝑡) = v

𝑠
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3
, (9)

where 𝜇
3
is the coefficient of variability on the velocity.

In this section we have defined a microscopic behaviour
for the detection and tracking of an oil spill. Each agent
of the swarm executes this behaviour locally. It is a simple
behaviour that can be run in low processing capacity systems.
This behaviour does not require any communication between
agents or a global positioning system.

4. Experimentation

We will now present a set of experiments in order to test the
operation of the proposed microscopic behaviour. As we will
see, these experiments use simulations of oil spills based on
real data.

We have simulated an oil spill in the coastal area of
“Sant Antoni de Portmany,” on Ibiza island, using an area of
approximately 350 km2. This area has been chosen because
of the various currents that affect it and its proximity to the
peninsula. Real weather data have been used for both sea and
air currents, considering the start date of the spill on April
10, 2013, at 0:00 h. We use these real data to run a simulation
for seven days from the start of the spill, simulating a ship
loaded with 100000 barrels of oil. Figure 7 shows the map
of the main area affected and the initial place of impact. In
order to work with data generated by GNOME we use the
average of the points of discharge generated by the application
(More specifically,𝑀(𝑡)

󸀠

= 𝐺(𝑀(𝑡)⊕𝑠shape)where𝑀(𝑡) is the
map obtained with GNOME at time 𝑡, 𝐺 is a Gaussian filter
with 𝜎 = 10|𝑆|, and ⊕ is a morphological binary operator)
(splots in GNOME), making uniform the continuity between
nearby contaminated areas and simplifying the simulation.
This allows us to reduce the number of splots needed in the
simulation:

Robots = 200

𝜇
1
= 0.3

𝜇
2
= 0.3

𝜇
3
= 0.3
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Figure 2:Distribution of agentswith respect to time (in seconds) for the task of detecting the perimeter of an oil spill: (a) geographical location
of the spill and initial position of agents, (b) distribution of agents at time 𝑡 = 15000 s, and (c) distribution of agents at time 𝑡 = 30000 s.
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(10)

The previous equation shows default parameters used in
simulations for the microscopic model. These parameters
have been adjusted taking into account the microscopic
behaviour experiments.

The simulation of the microscopic model has been devel-
oped using the softwareMASON [17].We use a swarm of 200
agents randomly distributed by the environment that moves
uniformly at 60 km/h. The simulation uses small size drones
(< 3m2) that are able to visually detect an area of 1 km2.

Using these parameters, several tests will be performed
to verify the correct operation of our model at local level.
Initially, first tests check the convergence of the swarm for a
single static slick. Using the same example, 𝛾will be modified
to cover the slick instead of marking its perimeter. Next tests
will verify the convergence of the swarm choosing an instant
with several active slicks. Finally, we will check the tracking
of the movement of the spill.

4.1. Spill Detection. First tests have been developed to detect
and monitor a static slick. On the one hand, the swarm will
mark the perimeter of the slick. Figure 2 shows the initial
distribution of agents with their geographical location (a) and
the position of agents at time 𝑡 = 15000 s and 𝑡 = 30000 s

((b) and (c)). At time 𝑡 = 30000 s the swarm completely
surrounds the oil slick. Figure 3 presents the percentage of
agents over an oil slick for ten independent simulations. As
it can be appreciated, this percentage increases progressively.

Moreover, as it has been discussed in the definition of
the microscopic model of the swarm, when 𝛾(𝑆) = 1 the
swarm will cover the slick instead of marking its perimeter.
Figure 4 shows the results of the swarm for this case, where
10 independent simulations have been carried out.

The experiments in Figure 2 show that the operation of
the swarm is correct: 50% of agents are able to detect the
spill in less than 4 hours since the beginning of the execution,
marking correctly the perimeter of the spill. However, in a real
environment the appearance of several slicks is common.This
case will be analysed in the next section.

4.2. Several Spills. When an oil spill occurs, the oil may
spread across kilometres generating several oil slicks. For this
reason, it is very important to verify the correct operation
of the swarm with different slicks that can spread out over
a wide area. In the simulation, at early hours, several areas
containing large proportions of pollutant are produced. For
example, underwater currents can move oil slick close to the
coast, while the ship continues spilling oil into the sea.

In order to check the operation of the microscopic model
in these cases, we have chosen an instant of the simulation
where the slick has a complex structure. Figure 5 shows the
evolution of the distribution of robots. As it can be seen in
this figure, even in this complex case and without previous
data that indicates the spill trend, our model is able to
locate and mark the perimeter of the slicks. More specifically,
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Figure 3: Percentage of agents on an oil slick with respect to time (in seconds). Ten different experiments have been carried out, showing the
average and variance.
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Figure 4: Distribution of agents for the task of covering the spill (𝛾(𝑆) = 1): (a) geographical location of the slick and initial position of agents,
(b) position of agents at time 𝑡 = 15000 s, (c) position of agents at time 𝑡 = 30000 s.

Figure 6 presents the percentage of agents that are located on
a polluted area. In this figure it can be seen that the number of
agents increases with time, therefore distributing uniformly
on the slick.

4.3. Spill Movement. Figure 5 tests have shown that the
swarm is able to detect and mark the perimeter/area with
complex slicks. However, in a real spill, finding the location
of the spill is as important as effective monitoring is. In this
sectionwewill analyse the behaviour of the swarm taking into
account that the spill will spread as time progresses.

A simulation of 168 hours of the evolution of the spill
has been performed, starting April 10, 2013, at 0:00 h. In

order to simplify the simulation, we capture an image of
the state of the spill every 4.5 hours. Although the spill will
experience changes in this period, the swarm can deal with
these changes. Figure 7 shows the origin point of the spill and
some captures of its evolution.

As in previous experiments, the swarm is distributed
randomly by the environment. In this case, in the simulation
process, the location of the resource obtained by GNOME is
updated every 4.5 hours. Figure 8 shows the evolution of the
swarm with respect to the state of the oil spill.

Figure 9 shows the percentage of drones that are on top of
a resource at a given time. In order to produce this graph, 10
different simulations have been carried out. The graph shows
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Figure 5: Distribution of agents for the task of detecting the perimeter of an oil spill on a map with several slicks: (a) geographical location
of the spill and initial position of agents, (b) distribution of agents at time 𝑡 = 15000 s, and (c) distribution of agents at time 𝑡 = 30000 s.
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Figure 6: Percentage of agents on an oil slick with respect to time (in seconds) for a complex slick. Ten different experiments have been
carried out, showing the average and variance.

the average and variance of these simulations. In this graph a
series of steps produced artificially by the simulator (because
of the sudden change from one state to the next) can be seen.

Nonetheless, the evolution of the swarm is correct. The
swarm is able to track the spill and mark each of the slicks.

5. Macroscopic Model

Once the microscopic behaviour has been described, it is
interesting to see the global behaviour of the swarm. There
are several techniques used to analyse this behaviour [18]
such as the use of recurrence equations, generated from a
microscopic behaviour defined by a PFSM or the definition
of differential equations. However, most of these methods
allow only the analysis of the evolution of the state transitions
globally.

In this work, we consider the framework proposed in [19]
in order to obtain the probability distribution of the swarm

position for any time 𝑡. This will enable us to predict, in great
detail, the behaviour of the overall system. As described by
[19], once the microscopic behaviour has been defined, the
global behaviour of the system can be calculated using the
Fokker-Planck equation:

𝜕𝜌 (r, 𝑡)
𝜕𝑡

= −∇ (A (r, 𝑡) 𝜌 (r, 𝑡)) +
1

2
𝑄∇
2

(𝐵
2

(r, 𝑡) 𝜌 (r, 𝑡)) ,

(11)

where 𝑄 is the displacement by a collision. 𝜌(r, 𝑡)𝑑𝑟
𝑥
𝑑𝑟
𝑦
is

the probability of encountering a robot at position 𝑟 within
the rectangle defined by 𝑑𝑟

𝑥
and 𝑑𝑟

𝑦
at time t.

This equation provides a method to statistically model
a swarm of robots based on modelling techniques of multi-
particle systems from the field of quantum physics. From a
Langevin equation that represents the behaviour of a single
particle, the Fokker-Planck equation is derived for all the
system.
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Figure 7: Origin and temporal evolution of the spill. Several snapshots that show the position of the spill at different instants, measured in
hours from the beginning of the spill, are shown.

As we have already seen in [20], the Fokker-Planck
equation implements the necessary abstraction of micro-
scopic details as described above and treats rapidly changing
parameters such as noise. The equation is still exact if this
noise is generated by a Gaussian process, that is, if it is fully
determined by the first two moments. It gives the temporal
evolution of the probability density describing the positions
of the agents.

Initially, the swarm designer must specify the functions
A and 𝐵 of (11), in accordance with the desired microscopic
behaviour. Function A is a direction and describes the
deterministic motion based on information provided by the
environment and the information indirectly provided by
other robots via the environment. Function 𝐵 describes the
random component of the motion.A and 𝐵 are characterized
by the underlying control algorithm. 𝐵 typically incorporates
influences by other robots that disturb the robot, for example,
by the need of collision avoidance. A might incorporate an
external influence such as a light gradient.

Themost difficult task is the definition of these functions.
This design is not unique and it requires finding two functions
that correctly describe the behaviour of the swarm. These
functions will be analytically presented and their perfor-
mance will be tested in following sections.

A function determines the displacement of the swarm. A
depends primarily on a vector representing the directional
information. A potential field 𝑃 is commonly used to define
it. In our case, we need to establish a function that takes

into account the following things based on the proposed
microscopic model: the random motion states of the robot,
the probability that a movement of an agent fails in its
execution (e.g., due to a collision), and the potential field
where the robots move. Although it is possible to model a
probability distribution for each state, as our microscopic
model has no interaction between agents (except purely
physical, as collisions) and the behaviour of states is relatively
simple, the macroscopic behaviour of the swarm can be
comprised in a single distribution:

A (r, 𝑡) = (1 − 𝑏
𝑟
) ⋅ (1 − 𝜌 (r, 𝑡))𝜇4

⋅ (Γ (𝑃 (r, 𝑡)) ⋅ 𝐾 (∇𝑃 (r, 𝑡))) ,
(12)

where 𝑃 is directly related to the sensor readings in point r at
time 𝑡 and 𝜇

5
is a normalization term:

𝑃 (r, 𝑡) = 𝜇
5
⋅ 𝑠 (r, 𝑡) . (13)

In (12), a function A that takes into account previous
aspects is proposed. When the density of agents increases,
the probability of collision also increases and, therefore,
this situation reduces the rate at which robots are directed
by vector specified by A. More specifically, consider the
following.

𝑏
𝑟
is the probability that comprises the influences of all

states that develop a random or pseudorandom state.
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Figure 8: Evolution of the swarm with respect to the oil slick. Multiple snapshots at different instants in time (measured in hours) are shown.

𝑃(r, 𝑡) as commented before, is defined as the proba-
bility of encountering a robot at position r at time 𝑡.
Γ is a function applied to the potential field that
produces, for each position of 𝑃, the direction to
be taken by drones, as a single agent would do
using the function 𝛾 In our case, we use a “sliding-
neighbourhood” filter as commented, for example,
in [21] to perform the same calculation on 𝑃 as
on the microscopic model, changing the sign of
the displacement when a ratio greater than 80% of
pollutant is detected.

𝐾 is a convolution operator. Being𝐺 a square gaussian
kernel of size 𝑑, generated with 𝜎 = 4 ⋅ |𝑆|, and
assuming two-dimensional coordinates so that r =

(𝑖, 𝑗), the sum of the components of this kernel is
∑
𝑑

𝑖=1
∑
𝑑

𝑗=1
𝐺(𝑖, 𝑗). 𝐹 is defined as this sum if it is

different from 0; otherwise, it will be defined as 1. In
this way,

𝐾
𝑖,𝑗

=
1

𝐹
⋅

𝑑

∑

𝑖=1

𝑑

∑

𝑗=1

𝐺 (𝑖, 𝑗) ⋅ ∇𝑃 ((𝑖, 𝑗) , 𝑡) . (14)
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Figure 9: Percentage of agents over an oil slick with respect to time (in seconds). Ten different experiments have been carried out, showing
the average and variance.

Function 𝐵 describes the nondeterministic motion and,
therefore, it takes into account the randommotion of agents.
Two forces, which must be considered, take part in the
microscopic behaviour. On the one hand, some influences
derived from agents that are on Wander and InResource
states. These states have a random motion, depending on
the intensity of parameters 𝜇

1
, 𝜇
3
. On the other hand, the

behaviour itself causes that the environment has areas with
a higher density of agents. In these areas the probability of
collision can be increased depending on the density of agents
at a given time:

𝐵 (r, 𝑡) = 𝑏
𝑟
⋅ 𝜌(r, 𝑡)𝜇4 . (15)

Thus, in (15) two terms can be observed: 𝑏
𝑟
comprises the

influences of all states that develop a random or pseudoran-
dom state, as previously commented, and 𝜌(r, 𝑡)𝜇4 is a term
that defines the connection between the density of robots and
their probability of collision.

5.1. Spill Detection. The operation of the microscopic
behaviour has been analysed in the previous section. It
has been shown that the swarm is able to locate and mark
the perimeter of an oil spill with relatively simple rules.
Several tests have been developed to verify the validity of the
presented model in various cases.

In addition to the tests above, it is possible to establish,
for a given discharge, the areas of the map with the highest
probability of containing a robot, independently of the num-
ber of agents (on condition that you use enough of them), by
using the macroscopic model. This provides a more accurate
visualization of the behaviour for large swarms without being
limited by the number of agents to be simulated.

This section, using the previously presented macroscopic
definition, presents how the swarm is able to locate andmark,
in a given time, an oil spill:

Robots = 200

𝜇
4
= 5

𝜇
5
= 0.95

𝑏
𝑟
= 0.5.

(16)

The previous equation shows default parameters used in
simulations for the macroscopic model. These parameters
have been adjusted taking into account the microscopic
behaviour experiments. We will present the analysis of the
macroscopic behaviour of the swarm for two time instants
𝑡 = (140 h, 168 h).

The simulation process is simple, once the functions A
and 𝐵 of Fokker-Planck equation have been defined. Initially,
an origin point for the swarm must be established. Although
in microscopic simulations it is possible to establish different
origin points (as setting randomly the position of agents),
Fokker-Planck equation requires a single point. Nonetheless,
several simulations for different origin points have been
performed, observing that the results for large values of 𝑡 are
very similar: only slight variations can be seen if the origin
point is located just on an oil slick. In this case, the probability
of this slick in relation to the rest of the spill can be higher.

The sameorigin point has been used for all tests, discretiz-
ing the simulation area in 100 × 100 units. The origin point is
established in Fokker-Planck equation as (𝑥, 𝑦) = (40, 25).

Once the Fokker-Planck equation has been defined, the
probability distribution that a certain agent is in a position
of the environment at a given time can be obtained in an
iterative way. This distribution can be calculated iterating for
each instant of time 𝑡 all the positions of themap, updating for
each position the new probability described by the equation.
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Figure 10: (a) Map (𝑀) generated from GNOME data for 𝑡 = 140 h. (b) Probability that a robot is in a certain position of the space at
𝑡 = 140 h. Sampled using the macroscopic model of the swarm with the Fokker-Planck equation.

The macroscopic state of the swarm is presented in
Figure 10 for 𝑡 = 140 h. A clear convergence in the perimeter
of the spill can be observed. A three-dimensional represen-
tation of the probability distribution that an agent is in a
certain position of the environment at 𝑡 = 168 h is presented
in Figure 11. As it can be observed, the macroscopic model
correctly predicts the behaviour presented at the microscopic
level of the swarm.

5.2. Model Comparison. In the previous section the
behaviour of the macroscopic model and how this model
predicts the overall behaviour of the swarm have been
presented. Now, we will compare predictions of microscopic
model and macroscopic model for a specific case.

Figure 12(a) shows a probability distribution obtained
from the microscopic model. In order to do this, we have
discretized the simulation environment and, with the same
parameters used in previous sections, we have developed a
simulationwith 200 agents at 𝑡 = 140 h.Along the simulation,
we save the number of agents that pass on a discrete cell (in
order to compare it with the macroscopic model that we have
also discretized in 100 × 100 units) and then we calculate the
probability that an agent is in this cell at a given time.

In the same way, Figure 12(b) shows the probability
distribution that predicts the macroscopic model. In this
figure it can be seen that the area of interest is covered in
both models. There are minor differences within the models,
due to the deficiencies of microscopic simulation that, among
other things, depends on the number of agents used in the
simulation.

Nevertheless, we can compare both approaches by multi-
plying both distributions. In this way only high probabilities
remain and, therefore, it is easier to observe if the areas of the
spill are correctly identified in both models. Bearing this in
mind, we have slightly rectified the microscopic distribution.
Whenwe use a limited number of agents in the simulation, we
discover, in some cases, that high probabilities hide important
information in the distribution. In order to avoid this loss of

information, we have used the square root of the distribution
in order to compare both models.

The product of macroscopic distribution and the square
root ofmicroscopic distribution are presented in Figure 12(c).
This figure shows how themost important parts of the spill are
detected with both distributions, predicting the macroscopic
model the same perimeter areas detected by the microscopic
model.

6. Discussion

This paper describes a microscopic model that is able to
locate andmark the perimeter of an oil spill.Themicroscopic
behaviour presented does not require direct communication
between agents. This limitation can cause that the conver-
gence of the swarm on the spill takes more time, depending
on the number of drones and the size of the spill. How-
ever, this behaviour is versatile and easy to implement and
develop, even in areas without GPS coverage. It is important
to highlight that a swarm system, which requires direct
communication between agents, is a limited system because
of the maximum range of each agent and the saturation of
the radiofrequency space if the system needs a large number
of agents.

Moreover, we have demonstrated that the process of
locating and marking the perimeter of the spill without
communication is robust and efficient. We have shown that
the swarm system is able to completely delimit the spill if the
number of agents is sufficient. In order to achieve this task, an
agent must be able to detect drones that are nearby.There are
several ways, as, for example, using a camera or transmitting
the GPS position.

We propose the use of signal intensity (at a given
frequency) for obstacle avoidance tasks. This strategy may
show some problems (we have implemented it by using a
reactive behaviour); however, it has several advantages. Many
countries require that drones broadcast a continuous signal
indicating their position. Europe uses 433MHz frequency
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Figure 11: Three-dimensional representation of the probability that a robot is in a particular position at 𝑡 = 168 h. Sampled using the
macroscopic model of the swarm with the Fokker-Planck equation. A map for the probability 0.002 where the environment and the state
of the spill at 𝑡 = 168 h are represented is added.
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Figure 12: Comparison of the microscopic prediction and macroscopic model for the map 𝑀 at 𝑡 = 140 h. (a) (log(𝑃micro)) Logarithm of
the probability distribution obtained simulating 200 agents for 30,000 seconds. Logarithmic distribution is used to highlight the states with
low probability. (b) (𝑃macro) Probability distribution obtained with Fokker-Planck equation. (c) Product of both distributions, decreasing the
importance of high values in the microscopic simulation (specifically 𝑃macro × 𝑃

1/2

micro).
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for this purpose. The intensity of the signal in a particular
area can be detected by using the same infrastructure. If the
intensity of the signal grows with the movement of the agent,
this agent must change its direction. We emphasize that, as a
swarm approach, this is not a communication between agents
but simply a beacon that we can use, if necessary, to know the
position of drones.

The proposed macroscopic model demonstrates that the
tendency of the swarm, for a sufficient number of drones, is
the same that can be perceived in themicroscopicmodel.The
connection of bothmodels has been tested for a complex spill,
generated with GNOME.These experiments have shown that
the fundamental characteristics of the behaviour (detection
and monitoring) are reflected in both models. It is advisable
not to forget the differences between the two models.

The microscopic model defines the individual behaviour.
Because of this it is easy to understand at local level. However,
this model does not define the behaviour of all the swarm.
In order to analyse the global behaviour, a set of tests can be
defined for a large number of agents. However, these tests can
be expensive and difficult and are not exempt from problems.

The macroscopic model defines the global behaviour of
the swarm. It allows us to verify the emergent behaviour from
the interaction between all agents that run the microscopic
model.Themacroscopicmodel demonstrates the tendency of
the swarm for a large number of agents. The analysis of this
model is complex, because of the use of differential equations
that, for example, force us to choose a single point to start the
simulation. Even so, this model has remarkable advantages
[20], for example, continuous analysis for any point of the
environment, time of the probability that an agent is located
in a given location, and simulation time negligible compared
to microscopic model.

We are currently working on the implementation of this
system in a real swarm of drones. Our immediate future
research focuses on this real swarm, since it allows us to adjust
the algorithms for a real system.

We are already in the testing phase for small swarms
(5 drones), obtaining satisfactory results in our preliminary
tests. We are using low-cost, custom-developed hexacopters
to test this behaviour. The low computational needs required
by this behaviour make it possible to use cheap Arduino
control boards to control the UAVs. We have developed
several tests for our swarm behaviors using artificial color
landmarks. While flying our agents can localize (by wander-
ing) a landmark and follow it (if moving) in real time.
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