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Extensive research in the field of telecommunications has been done on the techniques of multipath routing, as they offer many
advantages over conventional single-path routing methods. Some of these techniques make use of the so-called Destination-
Oriented Directed Acyclic Graphs (DODAGs) which are constructed on the networks, usually in a distributed way. However,
while defining methods of forming DODAGs, the authors of multipath algorithms tend to overlook a possibly significant issue
which could, in a way, define the quality of a given DODAG in the context of multipath routing, namely, providing an equitable
distribution of the paths between the nodes in the newly created DODAG. In this paper, a few requirements for constructing a
“fair” DODAG are identified in the context of multipath routing. An optimization algorithm that tries to find an equitable solution
according to these requirements is also presented. Three DODAG-creation algorithms that appear in the literature are simulated
and compared against this equitable solution, and none of them is getting close to it in terms of fairness in the distribution of the
paths. Moreover, two interesting properties of equitable solutions are revealed in the simulations.

1. Introduction

A Destination-Oriented Directed Acyclic Graph (DODAG)
is a term used in [1] to describe a directed acyclic graph
with exactly one root, where a root is a node which has no
outgoing edges. Diverse multipath routing algorithms make
use of DODAGs, such as [2–8]. While conventional single-
path routing techniques form directed spanning trees rooted
at the destination, multipath algorithms use DODAGs to
provide one or more paths between a node-root pair (A
directed tree is also a DODAG, but of a more restricted
form.). The networks and DODAGs considered in this paper
are simple graphs. As an example, a simple DODAG is shown
in Figure 1.

It is worth noting that in a full multipath routing
procedure two different tasks have to be performed: (1)
determining a set of paths per node-destination pair and
(2) distributing the flow on these paths. In some algorithms
these tasks are easily separable, like in the case of equal-
cost multi-path (ECMP), where the demand from the source
to the destination is split uniformly between all equal-cost

shortest paths. In other algorithms, such as iterative gradient
minimization algorithms [9], these two steps merge and
cannot be executed separately.

In scenarios where network topology changes are infre-
quent and the amount of energy is limited, for example,
in wireless sensor networks for environmental monitoring,
separating these two tasks could yield better overall per-
formance, considering the energy consumed for calcula-
tions and transmission. By neglecting small changes in the
topology, CPU cycles required for recalculating the set of
paths (first task) can be spared and the number of signaling
messages exchanged between the nodes can be reduced. In
addition, total node’s memory requirements can be reduced,
as only one task needs to be tackled at a time. Therefore,
smaller chipsets (with less energy consumption per cycle) can
be employed.

Still, which of the two strategies, that is, executing both
tasks jointly or separately, performs better, depends much
on the particular application and is left out of the scope
of this paper. Here, we consider such applications where
both tasks can be solved separately without a substantial
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Figure 1: An example DODAG with the root at node 𝑅.

decrease in performance. In particular, we assume that a
set of paths is fixed for long periods of time and flow
reallocation procedures are executedmore often, for example,
once link qualities, nodes’ capabilities or congestion state in
the network change. As a considerable amount of literature
has already been published on flow allocation algorithms, in
this paper, we focus on the first task: how to find a large set
of paths that can be used for long periods of time and which
provides enough flexibility, taking into account possible flow
reallocations. This can be achieved by maintaining a once-
constructed DODAG in the network, with occasional local
and global repairs when needed, as in [1].

Many different DODAGs might be constructed in the
network for multipath routing. Hence, an obvious ques-
tion arises; that is, what properties should the constructed
DODAG have? The objectives of multipath routing include,
among other things, providing resilience against node/link
failures, minimizing the risk of link overload, or balancing
the energy consumption of battery-powered nodes in case of
Low-Power and LossyNetworks (LLNs). On the basis of these
(and other) objectives, a conclusion can be made that during
the lifetime of a single DODAG, a node would probably need
a few paths for path switching, flow splitting, or introducing
flow redundancy. This means that, when considering two
nodes with a similar distance to the destination, it is better
when both have several paths to the root in the DODAG
than one having tens of paths and the other with only
one or two paths available. This observation leads to an
objective for the DODAG construction algorithm, which is
to provide a fair distribution of paths per node-root pair in
theDODAG.Obviously, this objective is strongly constrained
by the network topology; in particular, it is never possible to
obtain equal, other than one, number of paths in every node.
This is due to the fact that in a simple DODAG there always
exists at least one node which has exactly one path to the root.
This is stated as Proposition 1 in the next section and proved
in Appendix B.

There are more reasons why the fairness objective men-
tioned above does not simply mean trying to equalize the
numbers of paths per node in the resulting DODAG. First
of all, leveling down is undesired, which means that apart
from equalizing the numbers of paths, their simultaneous

maximization is required. Second, in most cases, the average
number of paths of a node in the DODAG depends on its
distance from the root. Typically, it grows as the distance
increases (unless many long roundabout paths exist in the
DODAG that lead from nodes closer to the root through
nodes farther from the root).Third, the quality of considered
paths is important. In particular, it could be of great advantage
to reduce the length/cost of the paths used for routing and/or
to provide node/link disjointness of the paths in the path
sets [10]. Moreover, the number of paths in a graph grows
exponentially as a function of the number of links. Merely
enumerating all the pathswould pose a serious computational
problem, even for relatively small networks (e.g., of less than
50 nodes), which means that it is not feasible to consider all
of them in reasonable time.

These observations imply that a solution is needed as
follows:

(i) it tries to equalize, without leveling down, the num-
bers of paths per node at the same minimum hop
count distance from the root (at the same “level”);

(ii) when trying to provide an equitable distribution of
the paths, it does not take all of them into considera-
tion but reasonably selects subsets of all possible paths
instead based on their properties, for example, their
length.

Which properties of the paths selected for equalization
are themost important depends on the particular application.
Therefore, a solution is proposed in this paper which does
not define a priori the desired path sets per node but allows
potential users to define their own candidate path sets, one
set per node, which are appropriate in a particular situation.
An equitable distribution of the paths per nodewould then be
provided, only taking into account the given path sets. These
path sets might satisfy some predefined requirements; for
example, they might represent shortest paths sets or disjoint
paths sets or include other paths which are, for some reason,
of interest to the user.

It is proved in Appendix A that even a simple problem
of maximizing the number of paths from a single node
to the DODAG root is NP-complete. Therefore, to achieve
an equitable and yet efficient distribution of given paths,
an IP optimization problem with a lexicographic maximin
objective has been formulated, and an appropriate algorithm
from [11] for solving this problem has been chosen. Solving
the optimization problem results in a simple DODAG rooted
at the destination node, with equitable distribution of input
paths among all the nodes.

Of course, a constructed DODAG will typically contain
more paths than just the ones belonging to the set pro-
vided by the user for optimization. These additional paths
might be used for flow allocation as well if needed; for
example, they might serve as backup paths when all of the
input paths defined for a node are affected by a link/node
failure. However, it is assumed that since they were not
included by the user in the input path sets, they might be
of “worse quality” (e.g., greater cost). In any case, since the
number of additional paths of a node is not controlled by
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the optimization algorithm, their distribution will probably
be random and no fairness will be achieved in general. On
the other hand, for high enough levels, so many paths will
be available per node that trying to obtain a general fair
distribution makes little sense, since each node will get more
paths than it will need anyway.What is important is providing
each node with the best paths, as far as possible, which, again,
justifies the approach taken in this paper. As for the nodes
at lowest levels, if the input path sets are reasonably chosen,
any additional paths in the DODAGwill be very roundabout,
therefore not very useful.

Authors of some of the DODAG-creation algorithms
appearing in the literature, like LMR and TORA [5, 6],
ignore the number and properties of paths available in the
resulting DODAGs. In the IDAGs approach [8], two node-
or link-independent DAGs are constructed, guaranteeing
each node to have at least two node- or link-disjoint paths.
MARA-MC [7] is proved by the authors to compute a large
number of paths for a large fraction of source-destination
pairs, when executing a DODAG construction procedure for
every destination node. Authors of the MDVA algorithm
[2] only check its performance (i.e., message overhead and
convergence time) and do not consider properties like the
number of paths at all. However, MDVA and other LFI-
based algorithms by the same authors [3, 4] are compared to
MARA-MC in [7] and proved to yield worse results regarding
the average number of paths in the constructed DODAGs.

The remaining part of the paper is organized as follows.
Section 2 describes the formulation of the optimization
problem and the algorithm chosen for its solution. Section 3
presents the simulations and a comparison of three algo-
rithms from the literature with the solution obtained by
solving the lexicographic problem when providing sets of 𝑘
shortest paths per node. Moreover, additional properties of
the most equitable solutions are shown. Section 4 concludes
the paper. Proofs for statements included in the paper are
presented in Appendices A and B. Appendix C contains
parameter values of the algorithm used for the generation of
test networks.

2. Optimization Problem with
Lexicographic Maximin Objective:
Formulation and Algorithm

The problem of equitable distribution of the paths among the
nodes in the graph corresponds in fact to a resource allocation
problem [11], where different activities compete over limited
resources which have to be allocated fairly among them. In
this case, nodes correspond to activities and a single objective
function of a node expresses the number of paths “allocated”
to that node. The resources which are limited, or rather
constrained by the network topology, are the directions of the
links.Theway of assigning these directions determines the set
of paths available in the DODAG.

A lexicographic maximin objective [11] has been chosen
for this problem. It can be viewed as an extension of a simple
maximin objective. In this approach, first the number of
paths for the node with fewest paths is maximized. Then,

the number of paths for the node with second fewest paths
is maximized, but without decreasing the smallest value
calculated in the first step. Next, the number of paths for
the node with third fewest paths is maximized, without
decreasing the value of the first two and so forth. Hence,
solving a lexicographic maximin problem means finding a
solution vector (of numbers of paths of the nodes) which
is lexicographically largest of all feasible vectors, when the
values in the vectors are sorted in a nondecreasing order.
It is not known in advance which node will occupy which
lexicographic position in the solution vector. A lexicographic
maximin (or minimax) solution is Pareto optimal.

It is worth mentioning here that a simple maximin
objective would achieve nothing due to the following fact.

Proposition 1. In a simple DODAG, there will always exist at
least one node with exactly one path to the root.

It will be one of the root’s neighbours. Therefore, the
minimum number of paths of all nodes in the DODAG will
always be equal to one. If only predefined sets of paths are
considered, the minimum number of input paths of all nodes
in the DODAG will never be more than one. The proof of
Proposition 1 is presented in Appendix B.

Applying lexicographic maximization to the DODAG
construction problem with input path sets ensures that at
least one candidate path per node survives in the DODAG,
as long as the following two conditions are met:

(i) at least one path per node is inserted into the formu-
lation;

(ii) in the provided path sets, there is at least one combi-
nation of paths containing at least one path per node
where no paths exclude each other due to conflicting
edge directions; that is, all these paths can coexist in a
DODAG.

At least one path per nodewill be included in theDODAG
due to the fact that lexicographic maximization will not allow
a zero value in the first position in the solution vector, if
it is possible to obtain a minimum equal to 1. The above
conditions are met, for example, when providing nodes’
shortest paths to the root (as they form a tree).

2.1. The Formulation. The generic network inserted into
the formulation (No specific type of network is of interest,
although the simulations were performed on random ad
hoc networks.) is modeled as a simple, strongly connected
directed graph 𝐺 = (𝑁, 𝐸), where 𝑁 is the set of nodes
and 𝐸 is the set of links. In addition, if there exists an edge
from vertex 𝑚 to vertex 𝑛, there also exists an edge in the
reverse direction (from vertex 𝑛 to vertex 𝑚); that is, the
graph is symmetric. A set of candidate paths 𝑝 = 1, 2, . . . , 𝑃

is provided, each path represented a sequence of 𝐶𝑝 directed
edges.The identifier of the destination (root) node is denoted
by 𝑟. Neighbours of node 𝑚 or 𝑟 are indexed by 𝑛. The
following variables are present in the formulation:

(i) 𝑦𝑚𝑛 = 1 if the (𝑚, 𝑛) edge is included in the solution
(output DODAG), 0 otherwise;
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(ii) 𝑌𝑝 = 1 if a candidate path 𝑝 is included in the
DODAG, 0 otherwise;

(iii) 𝑈𝑚 is an integer variable representing the number of
paths from a node 𝑚 to the root in the DODAG but
only counting the paths included in the 𝑃 set inserted
into the formulation. No other paths available in the
DODAG are counted by this variable.

The problem is formulated as follows:

lexmax {𝑈
(𝑚)

(𝑌) = [𝑈𝑚1 (𝑌) , 𝑈𝑚2 (𝑌) , . . . , 𝑈𝑚|𝑁|−1 (𝑌)]} ,

(1)

where

𝑈𝑚1 (𝑌) ≤ 𝑈𝑚2 (𝑌) ≤ ⋅ ⋅ ⋅ ≤ 𝑈𝑚|𝑁|−1 (𝑌) . (2)

(i) Apart from the root, each node has at least one
outgoing edge:

∑

𝑛

𝑦𝑚𝑛 ≥ 1 for each 𝑚 ∈ 𝑁, 𝑚 ̸= 𝑟. (3)

(ii) All edges incoming to the root are included in the
DODAG:

𝑦𝑛𝑟 = 1 for each neighbour 𝑛 ∈ 𝑁. (4)

(iii) At the same time, all edges outgoing from the root are
excluded from the DODAG:

𝑦𝑟𝑛 = 0 for each neighbour 𝑛 ∈ 𝑁. (5)

Note 1. Instead of constraints (4) and (5) and variables 𝑦𝑛𝑟
and 𝑦𝑟𝑛, binary constants might be inserted.

(iv) Of each edge pair (𝑚, 𝑛) and (𝑛,𝑚) not adjacent to the
root, not more than one should be selected:

𝑦𝑚𝑛 + 𝑦𝑛𝑚 ≤ 1 for each pair of neighbouring

nodes 𝑚, 𝑛 ∈ 𝑁, 𝑚 ̸= 𝑟, 𝑛 ̸= 𝑟.

(6)

Note 2. In the case of maximizing the number of paths, there
will always be one direction selected; that is, the constraint
will always be met with equality.

(v) All possible cycles have to be eliminated. Cycles of
length 1 do not exist in the network graph, as it is
assumed to be simple. Cycles of length 2 are already
eliminated by constraints (6). Hence, it is required to
eliminate cycles of length 𝐾 = 3, 4, . . . , |𝑁|. For this
purpose, the following constraints can be formulated:

𝑦𝑘1𝑘2 + 𝑦𝑘2𝑘3 + ⋅ ⋅ ⋅ + 𝑦𝑘𝐾𝑘1 ≤ 𝐾 − 1

for each 𝐾 interconnected nodes, 𝑘1, 𝑘2, . . . , 𝑘𝐾 ∈ 𝑁.
(7)

(vi) If any of the edge variables belonging to a path 𝑝 is
equal to 0, then the variable 𝑌𝑝 is also equal to 0,
which gives 𝐶𝑝 − 1 constraints (8) per path (not 𝐶𝑝
as, due to constraints (4), edges incoming to the root
are always included in the DODAG):

𝑌𝑝 ≤ 𝑦𝑚𝑛 for each pair of consecutive

nodes𝑚, 𝑛 ∈ 𝑁 on the path𝑝, except 𝑟 (𝑛 ̸= 𝑟) .

(8)

On the other hand, if a path 𝑝 is included in the
DODAG due to maximization (𝑌𝑝 = 1), then all of
its edges will be included in the DODAG; that is, all
𝑦𝑚𝑛 variables of this path will be equal to 1.

(vii) The last expression represents the number of paths
from node𝑚 to the root:

𝑈𝑚 = ∑

𝑝

𝑌𝑝 for each 𝑚 ̸= 𝑟 and paths 𝑝

originating at node 𝑚.
(9)

2.2. Proof of Correctness. Constraints presented in the previ-
ous subsection are sufficient to construct a valid DODAGdue
to the following facts:

(i) all cycles are eliminated due to constraints (6) and (7);
(ii) each node has at least one path to the root. This

path does not necessarily belong to the candidate
paths set inserted into the formulation. It might be
one of the additional paths resulting from the edge
orientation of the solution.This requirement basically
means that no other root than the one given is created
in the resulting graph; therefore, it is a DODAG.
This can be proved in the following way: due to the
constraints (3), any arbitrary node different than the
root has at least one outgoing edge. Following one
of the outgoing edges, it is possible to reach either
the root or another node, which also has at least one
outgoing edge. Due to the fact that no cycles exist,
which means that it is impossible to come back to any
of the nodes traversed previously, and the fact that by
applying constraints (3) and (5) the root is the only
node with no outgoing edges, the whole process can
finish only at the root.

2.3. The Lexicographic Algorithm. The presented DODAG
construction problem belongs to the class of equitable
resource allocation problems with integer decisions, where
the number of possible distinct outcomes of the performance
functions is limited and relatively small. Here, a single
performance function, that is, a𝑈𝑚𝑖(𝑌) function representing
the number of paths of a single node,might assume all integer
values from 0 to 𝑘𝑚, where 𝑘𝑚 is the number of candidate
paths inserted into the formulation for this node. Hence, the
set of possible distinct outcomes of all performance functions
contains all integer values between 0 and 𝑘max, where 𝑘max is
the largest number of candidate paths inserted for any node.
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An algorithm designed for solving this class of problems
is presented in [11], Section 7.2.3 Lexicographic Minimiza-
tion of Counting Functions. The algorithm in its original
form solves the problem of lexicographic minimization.
The number of performance functions’ possible distinct
outcomes determines themaximumnumber of lexicographic
iterations. The basic idea of this algorithm is the following.
The set of all possible distinct outcomes has to be provided.
Special counting functions are then constructed, each of
them representing the number of times that a single dis-
tinct outcome appears in the solution. These functions are
then iteratively minimized in the following way. First, the
number of occurrences of the largest possible outcome is
minimized. Then, the number of occurrences of the second
largest outcome is minimized without increasing the first
one and so forth. The algorithm terminates after reaching
the last (smallest) distinct outcome or in an earlier iteration,
if a unique solution is found. Due to the fact that the
counting functions are represented as optimization problems,
additional constraints and continuous variables have to be
inserted in each lexicographic iteration, extending the prob-
lem and transforming it from an IP to a MIP problem.

The lexicographic maximization objective can be trans-
formed into lexicographic minimization objective, similar to
themaximin-minimax conversion given in Section 1.2 of [11]:

lexmax {𝑈(𝑚) (𝑌) = [𝑈𝑚1 (𝑌) , 𝑈𝑚2 (𝑌) , . . . , 𝑈𝑚|𝑁|−1 (𝑌)]}

= −lexmin {−𝑈(𝑚) (𝑌)

= [−𝑈𝑚1 (𝑌) ,−𝑈𝑚2 (𝑌) , . . . , −𝑈𝑚|𝑁|−1 (𝑌)]} ,

(10)

where

−𝑈𝑚1 (𝑌) ≥ −𝑈𝑚2 (𝑌) ≥ ⋅ ⋅ ⋅ ≥ −𝑈𝑚|𝑁|−1 (𝑌) . (11)

2.4. The Exact Number of Distinct Outcomes. As mentioned
already, the set containing all integers between 0 and 𝑘max
can be used as the set of all possible distinct outcomes of
the performance functions in this formulation. This method
is approximate and results in an overhead, since it is very
likely that two or more paths inserted into the formulation
for a single node will exclude each other from the resulting
DODAG because of using one or more edges of opposite
direction between the same pair of nodes. To obtain the
minimal upper bound on the possible distinct outcomes set,
a maximum independent set count problem would have to
be solved for every node, as proved in Appendix A, and the
maximum of the obtained values should be used as the upper
bound. However, due to the NP-hardness of the maximum
independent set problem, itmight be of advantage to omit the
exact computation of the maximum distinct outcome value,
even though a crude approximation increases the maximum
number of lexicographic iterations.

2.5. Size of the Formulation: Reduction of the Number of Cycle
Elimination Constraints. The cycle elimination constraints
(7), due to their numerosity, incur heavy computational load

while solving the formulation. Maximally 2 ⋅ ((𝑁3 ) + (𝑁4 ) +
⋅ ⋅ ⋅ + (

𝑁
𝑁
)) (in the case of a complete graph) constraints

(7) could appear in the problem. Although on average this
number will be smaller, the number of cycles in a graph,
ergo the number of constraints, grows exponentially as a
function of the size of the graph (in terms of edges). To reduce
the number of inserted cycle elimination constraints, the
following method has been employed (based on a suggestion
of A. Tomaszewski):

(i) the formulation is solved without constraints (7);
(ii) if cycles exist in the resulting graph, appropriate (7)

cycle elimination constraints are inserted. Only a few
cycles are searched for (e.g., up to 5);

(iii) the extended formulation is solved again, until the
output graph is a DODAG; that is, it does not contain
any cycles.

This method trades solving one large IP problem for
iterative solving of several smaller IP problems. In the last of
the solved problems, all possible cycles will be eliminated, yet
avoiding inclusion of unnecessary constraints. When solving
the whole lexicographic formulation, all cycle elimination
constraints added in the 𝑖th iteration are transferred to the
𝑖 + 1th lexicographic iteration.

3. Simulations and Results

3.1. Generated Networks. Random ad hoc networks were
generated for the simulations. WPA ad hoc network gen-
eration algorithm presented in [12] was used, with a small
modification andwith values of the parameters chosen so that
generated networks were always connected and of reasonable
density (limiting the density limits the number of existing
paths in the network graphs). All values for parameters used
in the WPA algorithm as well as a short remark about the
modification are given in Appendix C.

The output of the WPA is an undirected graph, where
the length of each edge represents the distance between
the two nodes placed on a 2D surface. In the simulations,
each undirected edge was replaced by a pair of inverse
directed edges. For one of the tested algorithms, a weight was
assigned to each directed edge, representing 2.45GHz signal
attenuation in free space (This frequency is used, for example,
in Zigbee technology.). The weight was calculated according
to (7) in [13] and length of the edge used as the distance,
assuming meters as units. A random deviation of ±10% was
also added to each link weight.

Networks comprising 5 to 50 nodes were generated, with
a step of 5. For each network size, 50 random networks were
generated.The first generated node in the networkwas always
selected as the root node.

3.2. Input Paths. Sets of 𝑘 shortest paths, one set per node
other than the root, were inserted into the formulation,
where shortest means of least hop count. Yen’s 𝑘 shortest
path algorithm was used for calculating these sets [14]. BFS
algorithm was used as the shortest path subalgorithm. 𝑘
values were equal for every node in the network. They were
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Table 1: Comparison of four tested algorithms: average number of paths per node at different levels 1–6 for 50-node networks. Levels (1–6)
were present in most (47–50 out of 50) networks.

Level Shortest-multipath TORA MARA-MC 𝑘-shortest-lex-maximin
1 2.17 2.25 3.22 3.72
2 4.67 4.39 5.50 5.85
3 7.00 6.32 6.97 7.06
4 8.57 7.69 7.66 8.00
5 9.65 8.42 8.04 8.72
6 10.46 9.44 8.55 9.43

Table 2: Comparison of four tested algorithms: average variance in numbers of paths per node at different levels 1–6 for 50-node networks.

Level Shortest-multipath TORA MARA-MC 𝑘-shortest-lex-maximin
1 1.64 2.24 4.12 4.08
2 5.77 5.27 4.28 2.56
3 9.02 8.36 4.65 2.59
4 9.25 8.29 6.12 3.01
5 10.29 11.93 7.72 3.70
6 9.93 10.83 11.39 5.32

dependent on the size of the network and equal to 5 for
networks of sizes 5 to 10, 10 for 15 to 30-node networks, and
15 for 35 to 50-node networks.

3.3. Tests. DODAGs formed by three distributed algo-
rithms that appear in the literature were compared against
the 𝑘-shortest-lexicographic solution: the Shortest-multipath
DODAG as in MDVA [2], using link costs as given in
Section 3.1, the MARA-MC DODAG [7], and a DODAG
approximating the output graph of the TORA ad hoc mul-
tipath routing algorithm [6]. The approximation mentioned
above avoids random irregularities specific to the graphs
constructed by the TORA algorithm. Hence, to form a
DODAG, the nodes are simply ordered by the hop count
metric (edges are directed from the node with the greater
hop count to the node with the smaller hop count), which,
in fact, makes the resulting DODAG similar to a Shortest-
multipath DODAG when link costs are equal to 1. Ties
in hop counts are resolved using nodes’ unique identifiers.
This simplification might incur slightly different results than
TORA would achieve in reality, but it is required to provide
the possibility of performing the simulations in a simple way
(i.e., without employing more complex network simulators).

An especially interesting algorithm is MARA-MC [7],
which solves an all-to-onemaximum edge connectivity prob-
lem with optimality. The authors’ simulations show that this
algorithm obtains significantly more paths in the resulting
DAGs than other compared algorithms and that it calculates
a large number of paths for a large fraction of source-
destination pairs. It is therefore interesting to check how well
it performs in comparison to the lexicographic algorithm. It
is worth noting that the all-to-one maximum connectivity
objective as defined in Section 4.A of their paper does not
have any meaning in the case of nonmultigraphs, as the
minimum connectivity between a node and a simple DAG
rootwill always be equal to 1, regardless of the algorithmused.

This is an implication of Proposition 1. A possibly significant
drawback of the MARA-MC algorithm is that it completely
ignores the length of the resulting paths.

3.4. Results. Tables 1 and 2 present the average value and the
average variance in the number of candidate (shortest) paths
per node at different levels, in the DODAGs constructed
by the three algorithms from the literature and by the
lexicographic algorithm, when testing 50-node networks. At
level 1, one node with the number of paths equal to 1 was
excluded from the calculations, since, due to Proposition 1, it
is always present, regardless of the algorithm used (as its only
path is the shortest one (hop count = 1), it is always included
in the input path set).

While for levels 2–6 no substantial differences in the
average values can be observed, Table 2 shows that for these
levels the equitable solution achieves significantly smaller
variance values than the three other algorithms. These two
observations mean that, for these levels, the numbers of
shortest paths of different nodes in the equitable solution
are much more balanced. The closest to it is the MARA-
MC algorithm, which has also outperformed the other two
algorithms considerably as regards variance values at levels
2–5. At level 1, the relation between the variance values and
average values is similar for all the algorithms, although
the equitable solution and MARA-MC obtain larger average
numbers of paths.

Another interesting observation is that the Shortest-
multipath algorithm, with the link costs calculated basing on
the 2D distance, obtains greater average numbers of shortest
hop count paths than the TORA approximation algorithm,
which is based on the hop count metric. This happens
probably because, in the simulated Shortest-multipath, a
node of a smaller cost wouldmost likely have paths of smaller
hop count lengths than a node of a greater cost. In the case of
the TORA algorithm, no additional information is available
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Figure 2: Relative comparison of the three algorithms for 10-node
networks using the lexicographic 𝑘-shortest solution as a reference.
Δ𝑈 values are relative to the reference (lexicographic) solution.

to grade the nodes at the same hop count distance from
the root; hence, a significant fraction of edges is assigned at
random (using node identifiers).

Figure 2 shows a comparison of the three algorithms on
10-node networks, with the lexicographic 𝑘-shortest solution
used as a reference. The Δ𝑈 value reflects the average gap to
the reference solution on individual lexicographic positions
and is defined as follows:

(i) let 𝑈𝑖 ref = the number of paths (only taking into
account the input 𝑘 shortest paths) in a given position
in the equitable solution vector of the 𝑖th network, and
let𝑈𝑖 alg = the number of paths in the same position in
the vector obtained by the tested algorithm for the 𝑖th
network (previously sorted in a nondecreasing order
so that a lexicographic comparison using individual
positions is possible), 𝑖 = 1, 2, . . . , 50;

(ii) let Δ𝑈𝑖 = ((𝑈𝑖 ref − 𝑈𝑖 alg)/𝑈𝑖 ref) × 100[%];
(iii) then, Δ𝑈 = (∑𝑖 Δ𝑈𝑖)/50.

Figure 2 shows, again, that the MARA-MC algorithm
is the best of the three algorithms in terms of equitability
in the distribution of shortest paths, as it has, on average,
vectors whose values in the lowest positions are closest to the
equitable solution vectors.

An interesting observation can be made that all algo-
rithms achieve a 0% gap in the first lexicographic position.
This is due to the fact mentioned previously, namely, that one
of the root’s neighbours in every simple DODAG will always
have exactly one path to the root, with this path being one of
this node’s shortest paths (hop count = 1).This node probably
always occupies the first lexicographic position in the case of
10-node networks.

However, this is clearly not always the case when dealing
with 50-node networks, as shown in Figure 3. It can be
observed that the MARA-MC algorithm sometimes happens
to have a nonzero gap in the first position, which means that,
in some cases, there exists at least one node in the DODAG
obtained by MARA-MC which has no paths available from
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Figure 3: Relative comparison of the three algorithms for 50-node
networks using the 𝑘-shortest lexicographic solution as a reference:
first 25 positions in the sorted solution vectors.
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Figure 4: Average sum of all paths in the DODAGs.

the set inserted into the formulation for that node—which
means that this node has only longer paths than the 𝑘 = 15

shortest possible paths and occupies the first lexicographic
position instead of the root’s 1-path neighbour. Moreover,
althoughMARA-MC performs better in the overall compari-
son to the two other algorithms, it is still far from equitability
achieved by the lexicographic algorithm (∼20%–38% gaps in
positions 2–10).

Figure 4 shows the average sums of all paths in the
obtainedDODAGs; this time, all possible pathswere enumer-
ated (not only the candidate paths from the shortest path sets
inserted into the lexicographic formulation but also the addi-
tional paths resulting from the obtained edge orientation).
It can be concluded from the plot that the most balanced
solutions, like the 𝑘-shortest lexicographic solution and the
MARA-MC solution, also achieve the greatest numbers of
paths in general.
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Figure 5: Average DODAG-to-network shortest path length gap in
function of the size of the network.

Figure 5 shows the average gap between the hop count
length of the shortest path of a single node available in the
formed DODAG and the length of this node’s actual shortest
path, that is, this node’s shortest path in the network. Hence,
the Δ𝐿 value is defined as follows:

(i) let 𝐿 in opt = the length of the shortest path of a node
𝑛 in 𝑖th network, and let 𝐿 in alg = the length of the
shortest path for this node in the DODAG obtained
by the algorithm;

(ii) let Δ𝐿 in = ((𝐿in alg − 𝐿 in opt)/𝐿 in opt) × 100[%];
(iii) hence, Δ𝐿 = (∑𝑖∑𝑛 Δ𝐿 in)/(50(𝑁 − 1)), where 𝑁 −

1 = the number of nodes in the network excluding
the root.

An interesting observation can be made, namely, both
MARA-MC and the lexicographic 𝑘-shortest maximin algo-
rithmdo not achieve zeroΔ𝐿 values for networks greater than
5 nodes, whichmeans that the outputDODAGsdonot always
include the whole shortest path trees.This in turn means that
to achieve fairness in terms of the numbers of input paths per
node in a DODAG, even when considering sets of shortest
paths as it has been done in the simulations, a trade-off has
to be made between the equitability and availability of the
shortest paths of some nodes.

4. Conclusions

A lexicographic optimization formulation has been proposed
in this paper, solution ofwhich achieves an equitable distribu-
tion of the paths available per node in a constructedDODAG.
This property could be important in the context of multipath
routing, where network topology changes are infrequent.The
formulation allows insertion of the user’s own sets of paths
per node. This property makes the mechanism adjustable to
particular requirements imposed by the application on the
structure of paths, although a well-thought-out choice of the
input path sets is necessary to obtain reasonable results.

A comparison of three distributed algorithms that appear
in the literature:MARA-MC, Shortest-multipath, andTORA,
and the lexicographic algorithm has been presented, with 𝑘

shortest paths per node being inserted into the formulation.
The lexicographic solution has been proved to obtain the best
results in terms of providing a fair distribution of the shortest
paths of the nodes at the same minimum hop count distance
from the root (at the same level).

Two interesting properties of the 𝑘-shortest equitable
solution have been observed. First, it has been shown that
providing efficient maximin fairness in the numbers of paths
per node increases the overall number of paths in the
resultingDODAG. Second, even though sets of shortest paths
were included in the optimization problem, the resulting
DODAGs did not always contain full shortest path trees.

It has been shown that of the three distributed algorithms,
MARA-MC achieves the best results, although it still does
not get close to the 𝑘-shortest equitable solution in low
lexicographic positions. Moreover, it turns out that, in some
cases of 50-node networks, a node could be found in the
MARA-MC DODAG whose shortest path available in the
graphwas longer than its first 15 shortest paths in the network.
These observations lead to a conclusion that designing a
distributed algorithm to construct a fair DODAG, that is,
with equitable distribution of the paths per node, is still an
open question.

Appendices

A. Proof of NP-Completeness of
the Simplified Problem

The simplified problem is stated as follows. Given a simple
directed graph 𝐺 = (𝑁, 𝐸), two nodes 𝑠, 𝑡 ∈ 𝑁 and a list of
paths 𝑝1, 𝑝2, . . . , 𝑝𝑃 ∈ 𝑃, from node 𝑠 to node 𝑡, find a subset
of edges such that no two edges between the same pair of
nodes are included (i.e., no edges of conflicting directions are
included) and the number of available paths between 𝑠 and
𝑡 is maximized. Let the simplified problem be called MAX-
PATHS.

It is possible that two or more paths from the 𝑃 set
will exclude each other because of using one or more edges
of opposite directions between the same pair of nodes. For
example, if, for the network shown in Figure 6, the following
three paths belong to the 𝑃 set: (1) s-a-t, (2) s-a-b-t and (3) s-
b-a-t, then the maximum possible number of paths from 𝑠 to
𝑡 for the given set will be equal to 2, as paths s-a-b-t and s-b-
a-t cannot both be included due to the conflict in assignment
of the direction of edge ab.

There might be more than two counter-direction paths.
This problem can be modeled as shown in Figure 7. Vertices
𝑝1 − 𝑝5 represent an example set of paths between 𝑠 and 𝑡.
An edge exists between a pair of vertices if the corresponding
paths cannot be picked together due to at least one edge
conflict.Therefore, themaximumnumber of paths fromnode
𝑠 to 𝑡 that can be chosen together is equal to the size of
the maximum independent set of this graph. The vertices
in Figure 7 that belong to the maximum independent set of
the graph have been marked green. Hence, in this case, the
objective value is equal to 3, although 5 paths were considered
originally.
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Figure 6: If for node 𝑠, paths s-a-b-t (red solid) and s-b-a-t (green
dotted) are given, then these paths will not both be included due to
the conflict in the used direction of edge ab.

p1

p2
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Figure 7: An edge exists between a pair of vertices, if the cor-
responding paths cannot coexist. For example, path 𝑝3 cannot
exist together with path 𝑝2. Paths belonging to the maximum
independent set have beenmarked green. In this case, themaximum
set of paths that can be picked together is equal to 3.

Therefore, to show that the MAX-PATHS problem is NP-
complete, instances of the maximum independent set (MIS)
problem can be mapped to the MAX-PATHS problem. It can
be shown that a valid solution to MIS is also a valid solution
toMAX-PATHS problem and that a nonvalid solution toMIS
is not a valid solution to MAX-PATHS.

Consider anMIS problem instance,modeledwith a graph
𝐺

(𝑁

, 𝐸

). A corresponding instance of the MAX-PATHS

problem, modeled by a network graph 𝐺(𝑁, 𝐸) and the set
𝑃 of paths, can be constructed in the following way.

(1) For every edge 𝑒 ∈ 𝐸
 adjacent to a pair of nodes

𝑛


1
, 𝑛


2
∈ 𝑁
 in the MIS problem, create two vertices

𝑛𝑒1, 𝑛𝑒2 ∈ 𝑁 in the MAX PATHS problem.
(2) In MAX PATHS, between each pair 𝑛𝑒1, 𝑛𝑒2, add

two edges 𝑒1, 𝑒2 ∈ 𝐸 of opposite directions, hence
obtaining a bipartite graph.

(3) In each MAX PATHS pair 𝑛𝑒1, 𝑛𝑒2, label one of the
𝑒1, 𝑒2 edges with node 𝑛



1
of the corresponding edge 𝑒

in MIS, and the other with the node 𝑛
2
.

A

a

B

b

C
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D

Figure 8:𝐺 graph of theMIS problem. Vertices𝐴,𝐶, and𝐷 belong
to the maximum independent set.

(4) In MAX PATHS, add the source and destination
nodes 𝑠, 𝑡 ∈ 𝑁.

(5) For each node 𝑛 ∈ 𝑁
 in MIS, build a path 𝑝𝑛 ∈

𝑃 from 𝑠 to 𝑡 in MAX PATHS, going through all the
edges labeled with 𝑛, and adding necessary edges 𝑒 ∈
𝐸: between 𝑠 and the 𝑁 \ {𝑠, 𝑡} set, between the 𝑁 \

{𝑠, 𝑡} set and 𝑡, and between the nodes in the𝑁\ {𝑠, 𝑡}

set, belonging to different pairs 𝑛𝑒1, 𝑛𝑒2. The order of
constructing the paths is arbitrary.

Proposition 2. An independent set in 𝐺 corresponds to a set
of nonconflicting paths in 𝐺.

In the MAX PATHS problem, there is one path 𝑝𝑛 ∈ 𝑃

from 𝑠 to 𝑡 for each node 𝑛 ∈ 𝑁
 in MIS. Each of these

paths goes through exactly 2𝑀𝑛 nodes, where 𝑀𝑛 is the
number of 𝑛’s neighbours in 𝐺

. More precisely, each path
crosses𝑀𝑛 pairs of 𝑛𝑒1, 𝑛𝑒2. Every time a path is selected, an
edge orientation between 𝑛𝑒1 and 𝑛𝑒2 is fixed, forbidding the
selection of a conflicting path.

(6) Notice that if an independent set on 𝐺 corresponds
to a set of paths that do not have conflicting edges
in 𝐺, the maximum independent set in MIS will cor-
respond to the maximum number of nonconflicting
paths from 𝑠 to 𝑡 in MAX PATHS.
The mapping process has been shown in Figures 8, 9,
10, and 11.

B. Proof of Proposition 1

Proposition 1 is proved as follows:

(i) consider a network comprising a single node which is
the root of the DODAG;

(ii) add a neighbouring node 𝐴 with a single edge
directed to the root. Node 𝐴 has exactly one path to
the root. To increase node 𝐴’s number of paths to the
root without cycles, another node has to be added that
has a connection both to the root (but not via node𝐴)
and from node 𝐴;

(iii) add a node 𝐵, with an edge directed to the root and
an edge incoming from node𝐴. Node𝐴 has now two
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Figure 9: 𝐺mapping after step 4.
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Figure 10: 𝐴, 𝐶, and 𝐷 paths belonging to the maximum indepen-
dent set. These paths do not have any conflicting edges.

paths to the root; however, node 𝐵 is now the one that
has only one path to the root;

(iv) adding an edge from node 𝐵 to node 𝐴 will result
in a cycle; therefore, the only way to provide node 𝐵
with a second path is to connect it to another node,
which has either a direct link to the root (is another
neighbour of the root) or has a path to the root which
goes through another neighbour of the root. This
neighbour will, again, either have only one path to the
root or its other paths will eventually lead to another
root’s neighbour with this property.

The proof is shown in Figures 12, 13, and 14.
The proof of this proposition implicates that

(i) the minimum number of paths of a single node to the
root in a simple DODAG is always equal to one;

(ii) theminimum connectivity between a single node and
the root in a simple DODAG is always equal to one;
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Figure 11: 𝐵 path, conflicting with the paths from the maximum
independent set due to different selection of edge directions.

a

R

Figure 12: Node 𝑎 has only one path to the root.

Table 3: Parameter values for the WPA algorithm.

Parameter Value
𝑟 12
𝑑0 6
𝑙 100

(iii) this one path is the shortest path of the node (hop
count = 1).

C. Parameter Values for the WPA Algorithm

Table 3 contains parameter values for the WPA algorithm.
The same values were used for networks of different sizes.

Change in the Generation Procedure. Instead of calculating the
transmission range after generating node positions according
to the length of resulting edges, it was assumed to be equal to
𝑟 to ensure connectivity and prevent repeated generation of
node positions.
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Figure 13: Node 𝑎 has now two paths to the root, but node 𝑏 has just
one. Creating a second path for node 𝑏 by adding an edge directed
to node 𝑎 will create a cycle.
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Figure 14: A similar situation happens when a third node is added.
And so on.
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