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The equilibrium network signal control problem is represented as a Stackelberg game. Due to the characteristics of a Stackelberg
game, solving the upper-level problem and lower-level problem iteratively cannot be expected to converge to the solution. The
reaction function of the lower-level problem is the key information to solve a Stackelberg game. Usually, the reaction function is
approximated by the network sensitivity information. This paper firstly presents the general form of the second-order sensitivity
formula for equilibrium network flows. The second-order sensitivity information can be applied to the second-order reaction
function to solve the network signal control problem efficiently. Finally, this paper also demonstrates two numerical examples
that show the computation of second-order sensitivity and the speed of convergence of the nonlinear approximation algorithm.

1. Introduction

The network signal control problem (NSCP) is to find the
optimal signal setting which improves the performance of
existing facilities in a transportation network. Conventional
methods for optimizing signal settings can be divided into
two types: stage-based and group-based approaches [1–
6]. The stage-based approach divided the signal cycle into
separate stages and solved the optimal signal settings for
each group of compatible traffic movements in stages. This
approach is regarded as superior in the concern for safety and
loss of capacity with phase switching [6]. The group-based
approach considered each group of traffic streams having
right-of-way in the time domain directly. Compared with the
stage-based approach, the group-based approach has a higher
degree of flexibility in signal timing arrangement [3, 7]. How-
ever, the most optimization models proposed so far usually
converged to a local optimal solution and without taking
traffic rerouting effects into account when solving NSCP [5].
The equilibrium network signal control problem (ENSCP)
is used to find an optimal network signal design when the
network flow pattern is constrained to be equilibrium. Friesz
[8] points out that this is a problem of interest because of
Braess’ paradox [9]. This paradox shows that the congestion
of the network may be severer when adding capacity to

a congested network without taking the reaction of network
users into consideration. Hence, in practice, the equilibrium
network signal design problem must be solved by constrain-
ing the network flow pattern to meet user equilibrium. The
user equilibrium network design with fixed transportation
demandhas been studied in both discrete [10] and continuous
[11] versions. To help solve the signal control problem, Allsop
[12] pointed out that the route choices of road users should be
considered the impacts of signal settings changing. Gartner
et al. [13] and Fisk [14] described the signal control problem as
a Stackelberg or leader-follower game between road users and
the administration.The Stackelberg game can be represented
as a bilevel problem, where the upper-level problem aims to
find the optimal signal setting or link capacity expansions
which maximizes system performance, and the lower-level
problem aims to solve the user equilibrium (UE) flows,
respectively [15, 16].

Marcotte [17], Sheffi and Powell [18], Heydecker and
Khoo [19], Smith and van Vuren [20], Tan et al. [21], Canta-
rella et al. [22], Gartner et al. [13], Smith et al. [23], van Vuren
and van Vliet [24], and others proposed algorithms to solve
the network problem. However, when calculating optimal
settings in general road networks, there were no efficient
solution algorithms that are combined with anticipating the
reactions of road users. Moreover, the iterative optimization
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assignment (IOA) procedure which solves signal settings and
equilibrium flows cannot be expected to converge to the true
solution and might lead to a decline in network performance
[14, 25]. The sensitivity analysis-based algorithm evaluates
the influence factors as the derivatives of the reaction
functions with respect to the upper-level decision variables.
The derivative information is obtained by implementing
sensitivity analysis for a given solution of the user equilibrium
problem [26–30]. For the singularity, algorithms can only
solve a small network problem. Cho [31] proposed a
generalized inverse method, Cho et al. [32] proposed a row
reduction method, Patriksson [33], Josefsson, and Patriksson
[34] proposed directional derivative method, and Yang and
Bell [35] proposed a column reduction method to overcome
the singularity problem. In the sensitivity analysis-based
linear approximation algorithm, the sensitivity information is
used to create a linear approximation of the reaction function
and is then inserted into the upper-level problem, iterated
until the solutions converge [34, 36, 37]. Recently, Chiou has
conducted several studies related to optimal design of area
traffic control with equilibrium network flows and proposed
a number of computational algorithms to solve the problem,
such as the projected Quasi-Newton method and the bundle
subgradient projection method [38–41]. Moreover, the
ENSCP, combined with an explicit traffic model, TRANSYT,
was proposed to evaluate the performance index of the
system more precisely [4, 38, 42–44].

The remainder of this paper is organized as follows:
Section 2 introduces the equilibrium network flow models
and the first-order sensitivity formula obtained by row
reduction method. Section 3 introduces the matrix calculus
theory and the second-order sensitivity formula.Thenetwork
signal control model and solution algorithm are presented in
Section 4. Finally, a numerical example and conclusion are
presented in Sections 5 and 6, respectively.

2. Sensitivity Analysis of Equilibrium
Network Flows

2.1. Equilibrium Network Flow Models. Consider a trans-
portation network consisting of a finite set of nodes 𝑖 ∈ 𝑁

and a finite set of arcs 𝑎 ∈ 𝐴 together with a nonempty set of
origin-destination (OD) pairs𝑤 ∈ 𝑊. For each𝑤 ∈ 𝑊, there
is a nonempty finite set of paths, 𝑝 ∈ 𝑃

𝑤
. Let real numbers,

nonnegative reals, and positive reals be denoted by𝑅,𝑅
+
, and

𝑅
++
, respectively. The path flow vector, ℎ, arc flow vector, 𝑓,

and travel demand vector, 𝑇, are denoted in the following
equations:

ℎ = (ℎ
𝑝
: 𝑝 ∈ 𝑃, 𝑃 = ⋃

𝑤∈𝑊

𝑃
𝑤
) ∈ 𝑅

|𝑃|

+
,

𝑓 = (𝑓
𝑎
: 𝑎 ∈ 𝐴) ∈ 𝑅

|𝐴|

+
,

𝑇 = (𝑇
𝑤
: 𝑤 ∈ 𝑊) ∈ 𝑅

|𝑊|

++
,

(1)

where |𝑃|, |𝐴|, and |𝑊| denote the cardinalities of 𝑃, 𝐴, and
𝑊, respectively. The relationship between arc flow, path flow,
and travel demand is given by

Δℎ = 𝑓, Λℎ = 𝑇, (2)

where Δ is a |𝐴| × |𝑃| matrix, with Δ
𝑎𝑝

= 1, if arc 𝑎 belongs
to path 𝑝 and Δ

𝑎𝑝
= 0 otherwise; Λ is a |𝑊| × |𝑃| matrix,

with Λ
𝑤𝑝

= 1, if OD pair 𝑤 belongs to path 𝑝 and Λ
𝑤𝑝

= 0

otherwise. In general, Δ is called arc/path incidence matrix
and Λ is called OD/path incidence matrix.

In sensitivity analysis, a vector of perturbation parameters
with dimension 𝜌, 𝑠 ∈ 𝑅𝜌, is introduced.The arc cost function
and travel demand function are supposed to be influenced by
𝑠. Let 𝑡(𝑓, 𝑠) be the arc cost function vector and let 𝑇(𝑠) be the
travel demand function vector. The path cost function vector
is given by 𝑐(ℎ, 𝑠) = Δ

𝑇

𝑡(𝑓, 𝑠). When the network equilibrium
is reached, the following equations must be satisfied:

ℎ
𝑝
> 0 ⇒ 𝑐

𝑝
(ℎ, 𝑠) = 𝜇

𝑤
, 𝑝 ∈ 𝑃

𝑤
, 𝑤 ∈ 𝑊,

ℎ
𝑝
= 0 ⇒ 𝑐

𝑝
(ℎ, 𝑠) ≥ 𝜇

𝑤
, 𝑝 ∈ 𝑃

𝑤
, 𝑤 ∈ 𝑊,

(3)

where𝜇
𝑤
is the equilibriumpath cost ofODpair𝑤. Equations

(3) are recognized as Wardrop equilibrium conditions; say,
there is no traveler can change path unilaterally to improve
his travel time [45]. Generally, the equilibrium network flow
problem can be written in the form of variational inequality
(VI) problem as follows [46]. Find 𝑓 ∈ Ω(𝑠) such that

𝑡(𝑓 (𝑠) , 𝑠)
𝑇

(𝑢 − 𝑓) ≥ 0, ∀𝑢 ∈ Ω (𝑠) ,

Ω (𝑠) = {𝑓 | Δℎ = 𝑓, Λℎ = 𝑇 (𝑠) , ℎ ≥ 0} ,

(4)

where Ω is the feasible arc flow solution set of the network
flow problems.

An equivalent VI can be written with the cost function in
terms of path flow variable ℎ rather than arc flow variable 𝑓
as follows. Find ℎ ∈ Γ(𝑠) such that

𝑐(ℎ, 𝑠)
𝑇

(𝑢 − ℎ) ≥ 0, ∀𝑢 ∈ Γ (𝑠) ,

Γ (𝑠) = {ℎ | Λℎ = 𝑇 (𝑠) , ℎ ≥ 0} ,

(5)

where Γ is the feasible path flow solution set of the network
flow problems.

2.2. First-Order Sensitivity Formula for Equilibrium Network
Flows. The classical first-order sensitivity analysis for equi-
libriumnetwork flowswas proposed byTobin and Friesz [47].
However, Tobin and Friesz method had a strong requirement
on the topology of network which may not hold in practical
networks [48]. Cho et al. proposed the row reductionmethod
to overcome this issue [32]. In this paper, we only summarize
the key results of the row reduction method, and the readers
are encouraged to refer to the original paper [32] for more
details.

In the row reductionmethod, a maximal set of rows from
Δ, sayΔ

1
, is selected for which the combinedmatrix [Δ

1
, Λ]
𝑇

is of full row rank. Hence, Δ can be partitioned as [Δ
1
; Δ
2
].

Assume that the number of independent arcs is 𝛼
1
and the

number of dependent arcs is 𝛼
2
, respectively.Therefore, |𝐴| =

𝛼 = 𝛼
1
+ 𝛼
2
. For a differentiable function, 𝑓 : 𝑆 → 𝑅

𝑚,
let the partial derivative of 𝑓 with respect to 𝑠 (the Jacobian
matrix of 𝑓) be denoted by𝐷

𝑠
𝑓. Let the second-order partial
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derivative of 𝑓with respect to 𝑠 be denoted by𝐻
𝑠
𝑓. The first-

order sensitivity formula can be expressed as

[
𝐷
𝑠
𝑓 (𝑠)

𝐷
𝑠
𝜇 (𝑠)

] = [
𝐷
𝑓
𝑡 (𝑓, 𝑠) −𝑀

𝑇

𝑀 0
]

−1

[
−𝐷
𝑠
𝑡 (𝑓, 𝑠)

Δ
2
𝑁
2
𝐷
𝑠
𝑇 (𝑠)

] , (6)

where

𝑀 = [Δ
2
𝑁
1
−𝐼] ,

𝑁
1
= Δ
𝑇

1
𝑀
11
+ Λ
𝑇

𝑀
21
,

𝑁
2
= Δ
𝑇

1
𝑀
12
+ Λ
𝑇

𝑀
22
,

([
Δ
1

Λ
] [

Δ
1

Λ
]

𝑇

)

−1

= [
𝑀
11

𝑀
12

𝑀
21

𝑀
22

] .

(7)

3. Second-Order Sensitivity Formula for
Equilibrium Network Flows

The sensitivity analysis-based nonlinear approximation
heuristic algorithm (NLAA) was firstly proposed by Cho and
Lin [37].With the first-order and the second-order sensitivity
information, the reaction function of the lower-level problem
can be approximated by a nonlinear function. However, Cho
and Lin did not provide the general form of the second-order
sensitivity information. In this section, we will introduce the
preliminary of matrix calculus theory and derive the general
form of the second-order sensitivity formula for equilibrium
network flows.

3.1. Preliminary Definitions andTheorems. To derive the sec-
ond-order sensitivity formula, we introduce some definitions
and theorems of matrix calculus as follows [49, 50].

Definition 1 (Kronecker product). Let 𝑈 be an 𝑚 × 𝑛 matrix
and let 𝑉 be a 𝑝 × 𝑞matrix; then the Kronecker product of 𝑈
and 𝑉, denoted by 𝑈 ⊗ 𝑉, is an𝑚𝑝 × 𝑛𝑞matrix defined by

𝑈 ⊗ 𝑉 =
[
[

[

𝑢
11
𝑉 ⋅ ⋅ ⋅ 𝑢

1𝑛
𝑉

... d
...

𝑢
𝑚1
𝑉 ⋅ ⋅ ⋅ 𝑢

𝑚𝑛
𝑉

]
]

]

. (8)

Definition 2 (Vector operator). Let𝑈 be an𝑚× 𝑛matrix and
𝑈
𝑗
is the 𝑗th column of 𝑈; then vec𝑈 is the𝑚𝑛 × 1 vector:

vec𝑈 =

[
[
[
[

[

𝑈
1

𝑈
2

...
𝑈
𝑛

]
]
]
]

]

. (9)

Definition 3. Let𝑈 be an𝑚×𝑛 real matrix function of a 𝑝×𝑞
matrix of real variables 𝑠. The derivative of 𝑈 with respect to
𝑠 is the𝑚𝑛 × 𝑝𝑞matrix:

𝐷
𝑠
𝑈 =

𝜕 vec𝑈
𝜕(vec 𝑠)𝑇

. (10)

Theorem 4 (chain rule for matrix functions, Magnus and
Neudecker, 1985 [49]). Let 𝑆 be a subset of 𝑅𝑚×𝑛 and assume
that 𝑈 : 𝑆 → 𝑅

𝑝×𝑞 is differentiable at an interior point 𝑦 of 𝑆.
Let 𝑃 be a subset of 𝑅𝑝×𝑞 such that 𝑈(𝑥) ∈ 𝑃 for all 𝑥 ∈ 𝑆 and
assume that 𝑉 : 𝑃 → 𝑅

𝑟×𝑠 is differentiable at an interior point
𝑧 = 𝑈(𝑦) of 𝑃. Then the composite function 𝐹 : 𝑆 → 𝑅

𝑟×𝑠

defined by 𝐹(𝑥) = 𝑉(𝑈(𝑥)) is differentiable at 𝑦 and

𝐷
𝑦
𝐹 = (𝐷

𝑧
𝑉) (𝐷

𝑦
𝑈) . (11)

Theorem 5 (Magnus andNeudecker, 1985 [49]). Let𝑈 : 𝑆 →

𝑅
𝑚×𝑟 and 𝑉 : 𝑆 → 𝑅

𝑟×𝑛 be two matrix functions defined and
differentiable on an open set 𝑆 in 𝑅𝑝×𝑞.Then the simple product
𝑈𝑉 is differentiable on 𝑆 and the Jacobianmatrix is the𝑚𝑛×𝑝𝑞
matrix:

𝐷
𝑠
(𝑈𝑉) =

𝜕 vec𝑈𝑉
𝜕(vec 𝑠)𝑇

= (𝑉
𝑇

⊗ 𝐼
𝑚
)𝐷
𝑠
𝑈 + (𝐼

𝑛
⊗ 𝑈)𝐷

𝑠
𝑉,

(12)

where 𝐼
𝑚
and 𝐼

𝑛
are the identity matrices of size 𝑚 and 𝑛,

respectively.

Theorem 6 (Magnus and Neudecker, 1999 [50]). Let 𝑓 : 𝑆 →

𝑅
𝑚 be a function defined on a set 𝑆 in 𝑅𝑛. Let 𝑟 be an interior

point of 𝑆 and let 𝐵(𝑠
0
; 𝑟) be an 𝑛-ball lying in 𝑆. Let 𝑠 be a

point in 𝑅𝑛 with ‖𝑠‖ < 𝑟, so that 𝑠
0
+ 𝑠 ∈ 𝐵(𝑠

0
; 𝑟). If 𝑓 is twice

differentiable at 𝑠
0
, then the second-order Taylor expansion of

function 𝑓 at 𝑠
0
+ 𝑠 is

𝑓 (𝑠
0
+ 𝑠) = 𝑓 (𝑠

0
) + 𝑑𝑓 (𝑠

0
; 𝑠) +

1

2
𝑑
2

𝑓 (𝑠
0
; 𝑠) , (13)

where 𝑑𝑓(𝑠
0
; 𝑠) and 𝑑2𝑓(𝑠

0
; 𝑠) are the first differential and the

second differential of 𝑓 at 𝑠
0
, respectively, and

𝑑𝑓 (𝑠
0
; 𝑠) = 𝐷

𝑠
𝑓 (𝑠
0
) ⋅ (𝑠 − 𝑠

0
) ,

𝑑
2

𝑓 (𝑠
0
; 𝑠) = ((𝑠 − 𝑠

0
)
𝑇

⊗ 𝐼
𝑚
) ⋅ 𝐻
𝑠
𝑓 (𝑠
0
) ⋅ (𝑠 − 𝑠

0
) .

(14)

3.2. Second-Order Sensitivity Formula for Equilibrium Net-
work Flows. To derive the second-order sensitivity formula
for equilibrium network flows, it is intuitive to take derivative
of (6) with respect to 𝑠. For convenience, let

[
𝐷
𝑓
𝑡 (𝑓 (𝑠) , 𝑠) −𝑀

𝑇

𝑀 0
]

−1

= 𝑈 (𝑓 (𝑠) , 𝑠) ,

[
−𝐷
𝑠
𝑡 (𝑓 (𝑠) , 𝑠)

Δ
2
𝑁
2
𝐷
𝑠
𝑇 (𝑠)

] = 𝑉 (𝑓 (𝑠) , 𝑠) ,

(15)

where𝑈 is an (𝛼+𝛼
2
)×(𝛼+𝛼

2
)matrix and𝑉 is an (𝛼+𝛼

2
)×𝜌

matrix, respectively.

Lemma 7. The second-order sensitivity for equilibrium net-
work flows is

[
𝐻
𝑠
𝑓

𝐻
𝑠
𝜇
] = (𝑉

𝑇

⊗ 𝐼
(𝛼+𝛼
2
)
)𝐷
𝑠
𝑈 + (𝐼

𝑘
⊗ 𝑈)𝐷

𝑠
𝑉, (16)
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where

𝑈 (𝑓 (𝑠) , 𝑠) = [
𝐷
𝑓
𝑡 (𝑓 (𝑠) , 𝑠) −𝑀

𝑇

𝑀 0
]

−1

,

𝑉 (𝑓 (𝑠) , 𝑠) = [
−𝐷
𝑠
𝑡 (𝑓 (𝑠) , 𝑠)

Δ
2
𝑁
2
𝐷
𝑠
𝑇 (𝑠)

] .

(17)

Proof. Since the first-order sensitivity is the product of
(17), the second-order sensitivity can be obtained by taking
derivative of the product with respect to 𝑠 directly. According
to Theorem 5, the formula of the second-order sensitivity is
expressed as (16) and the proof is complete.

4. Network Signal Control Model
and Solution Algorithm

4.1. Network Signal Control Model. Consider the signal opti-
mization problem, where the aim of the regulating agency is
to minimize a network performance function 𝑍(𝑠) such as
total travel time or gas consumption, with fixed OD travel
demand, where travelers select routes on the network in an
optimal user fashion. Notably, 𝑆 denotes the set of feasible
signal control variables. For any given 𝑠 ∈ 𝑆, a user optimal arc
flow solution𝑓(𝑠) ∈ Ω exists and the problem of the regulator
is to solve

𝑃
1
: min
𝑠∈𝑋
1

𝑍 (𝑠) = 𝑃 (𝑓 (𝑠) , 𝑠)

s.t. user equilibrium.
(18)

In the general problem, the signal variable that can be set
by the controlling agent is green time. By specifying the cost
functions 𝑡

𝑎
for each network arc 𝑎 in terms of these variables

and assuming that the behavioral hypothesis for route choice
follows the first principle ofWardrop [45], problem 𝑃

1
can be

presented as

𝑃
2
: min
𝑠∈𝑋
1

𝑍 (𝑠) = ∑

𝑎∈𝐴

𝑡
𝑎
(𝑓 (𝑠) , 𝑠) 𝑓

𝑎
(𝑠) (19)

s.t. 𝑡 (𝑓 (𝑠) , 𝑠) ⋅ (𝑢 − 𝑓) ≥ 0, ∀𝑢 ∈ Ω.

(20)

If 𝑡(𝑠, 𝑓) is strictly monotone, then, for each 𝑠 ≥ 0, (20)
has a unique solution and function 𝑓(𝑠) is (continuously)
differentiable at every point 𝑠 ≥ 0. Thus, 𝑃

2
can be rewritten

as 𝑃
3
:

𝑃
3
: min
𝑠∈𝑋
1

𝑍 (𝑠) = ∑

𝑎

𝑡
𝑎
(𝑓 (𝑠) , 𝑠) 𝑓

𝑎
(𝑠)

s.t. 𝑠 ≥ 0.

(21)

Also, given 𝑅(𝑠, 𝑓(𝑠)) = min 𝑡(𝑓(𝑠), 𝑠) ⋅ (𝑢 − 𝑓), then 𝑃
2
is

equivalent to 𝑃
4
:

𝑃
4
: min
𝑠∈𝑋
1

𝑍 (𝑠) = ∑

𝑎

𝑡
𝑎
(𝑓 (𝑠) , 𝑠) 𝑓

𝑎
(𝑠)

s.t. 𝑅 (𝑓 (𝑠) , 𝑠) = 0.

(22)

4.2. Solution Algorithms. The iterative optimization assign-
ment (IOA) method described by Tan et al. [21] is proceeded
as follows. First, fix 𝑠 and solve (20) for 𝑓; then fix 𝑓 and
solve (19) for 𝑠, continuing this process until 𝑠𝑘+1 − 𝑠𝑘 → 0 or
𝑓
𝑘+1

−𝑓
𝑘

→ 0.The final solution (𝑓𝑁, 𝑠𝑁) is termed theNash
solution. Notably, that the solution obtained using the IOA
algorithm is not necessarily an optimal solution of the equi-
libriumnetwork control problem [14].The sensitivity analysis
of equilibrium network flows [32, 47] was used to solve the
equilibrium network signal design problem [26, 36, 51].

4.2.1. A Sensitivity Analysis-Based Linear ApproximationHeu-
ristic Algorithm. The challenge in solving problem 𝑃

2
is that,

since the lower level of the problem cannot be represented
in closed form, it is impossible to obtain an explicit reac-
tion function that can be plugged into the upper level. In
the sensitivity analysis-based linear approximation heuristic
algorithm, the sensitivity information is used to create a linear
approximation of the reaction function and is then inserted
into the upper-level problem, iterated until the solutions
converge (abbreviated as LAA) [36].

The heuristic is detailed as follows.
Algorithm A1.

Step 0. Determine a fixed small value 𝛿 > 0 and an initial
value 𝑠0. Set 𝑘 = 0.

Step 1. Solve (18) given 𝑠𝑘 and yielding 𝑓𝑘.

Step 2. Calculate the sensitivity information𝐷
𝑠
𝑓 by (6).

Step 3. Using𝐷
𝑠
𝑓, Taylor expansion andTheorem 6 form the

linear approximation𝑓𝑘+1, 𝑓𝑘+1 = 𝑓
𝑘

+𝐷
𝑠
𝑓⋅(𝑠
𝑘+1

−𝑠
𝑘

). Since
𝑓
𝑘, 𝑠𝑘, and𝐷

𝑠
𝑓 are known,𝑓𝑘+1 can be replaced by a function

of 𝑠𝑘+1. Thus, 𝑓𝑘+1 = 𝐴 + 𝐵𝑠
𝑘+1.

Step 4. Reformulate (21) as

min
𝑠

∑

𝑎

𝑡
𝑎
(𝐴 + 𝐵𝑠

𝑘+1

, 𝑠) ⋅ (𝐴 + 𝐵𝑠
𝑘+1

)

s.t. 𝑠 ≥ 0.

(23)

Step 5. Solve the problem in Step 4 using any software
package which can solve the optimal solution for 𝑠𝑘+1. If
|𝑠
𝑘+1

− 𝑠
𝑘

| ≤ 𝛿, then stop; otherwise set 𝑘 = 𝑘 + 1 and go
to Step 1.

4.2.2. A Sensitivity Analysis-Based Nonlinear Approximation
Heuristic Algorithm. In the sensitivity analysis-based linear
approximation heuristic algorithm, the reaction function of
the lower level is based on approximation by a linear function.
In this section, the reaction function of the lower-level
problem is based on approximation by a nonlinear function
and is plugged into the upper-level problem and is iterated
until the solutions converge (abbreviated as NLAA) [37].
Algorithm A2.

Step 0. Determine a fixed small value 𝛿 > 0 and an initial
value 𝑠0. Set 𝑘 = 0.
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Step 1. Solve (20) given 𝑠𝑘 and yielding 𝑓𝑘.

Step 2. Calculate the sensitivity information𝐷
𝑠
𝑓 and𝐻

𝑠
𝑓 by

(6) and (16).

Step 3. Using𝐷
𝑠
𝑓 and𝐻

𝑠
𝑓, Taylor expansion andTheorem 6

form the nonlinear approximation 𝑓𝑘+1:

𝑓
𝑘+1

= 𝑓
𝑘

+ 𝐷
𝑠
𝑓 ⋅ (𝑠
𝑘+1

− 𝑠
𝑘

) +
1

2
⋅ ((𝑠
𝑘+1

− 𝑠
𝑘

)
𝑇

⊗ 𝐼
𝑚
)

⋅ 𝐻
𝑠
𝑓 ⋅ (𝑠
𝑘+1

− 𝑠
𝑘

) .

(24)

Since 𝑓𝑘, 𝑠𝑘, 𝐷
𝑠
𝑓, and𝐻

𝑠
𝑓 are known, 𝑓𝑘+1 can be replaced

by a function of 𝑠𝑘+1. Thus, 𝑓𝑘+1 = 𝐴 + 𝐵𝑠
𝑘+1

+ 𝐶(𝑠
𝑘+1

)
2

.

Step 4. Reformulate (21) as

min
𝑠

∑

𝑎

𝑡
𝑎
(𝐴 + 𝐵𝑠

𝑘+1

+ 𝐶(𝑠
𝑘+1

)
2

, 𝑠)

⋅ (𝐴 + 𝐵𝑠
𝑘+1

+ 𝐶(𝑠
𝑘+1

)
2

)

s.t. 𝑠 ≥ 0.

(25)

Step 5. Solve the problem in Step 4 using any software
package which can solve the optimal solution for 𝑠𝑘+1. If
|𝑠
𝑘+1

− 𝑠
𝑘

| ≤ 𝛿; then stop; otherwise set 𝑘 = 𝑘 + 1 and go
to Step 1.

In addition to describing the algorithm in more detail,
we will provide a proof that if this algorithm converges, it
converges to an optimal solution of problem 𝑃

2
.

Lemma 8. If algorithm A2 converges, it converges to a critical
point of 𝑃

2
.

Proof. If the sequence 𝑠𝑘 converges to 𝑠∗, 𝑠𝑘 → 𝑠
∗, then we

know that
(1) if we set 𝑠0 = 𝑠

∗, 𝑓0 = 𝑓
∗, then 𝑠1 = 𝑠

∗, 𝑓1 = 𝑓
∗; and

(2) let

𝑍 (𝑠) = ∑

𝑎∈𝐴

𝑡
𝑎
(𝐴 + 𝐵𝑠 + 𝐶𝑠

2

, 𝑠) 𝑓
𝑎
(𝑠) . (26)

Then, by the Karush-Kuhn-Tucker necessary conditions for
optimality of vectors 𝑠∗ ≥ 0, we know that the followingmust
be true:

(i)

𝜕𝑍 (𝑠
∗

)

𝜕𝑠𝑖
= 0 if 𝑠∗𝑖 > 0, 𝑖 = 1, . . . , 𝑛, (27)

(ii)

𝜕𝑍 (𝑠
∗

)

𝜕𝑠𝑖
≥ 0 if 𝑠∗𝑖 = 0, 𝑖 = 1, . . . , 𝑛. (28)

So, taking the derivative with respect to 𝑠, we get

𝜕

𝜕𝑠𝑖
[∑

𝑎

𝑡
𝑎
(𝐴 + 𝐵𝑠 + 𝐶𝑠

2

, 𝑠) (𝐴 + 𝐵𝑠 + 𝐶𝑠
2

)]

𝑠=𝑠∗

= ∑

𝑎

𝑡
𝑎
(𝐴 + 𝐵𝑠 + 𝐶𝑠

2

, 𝑠) ⋅ (𝐵 + 2𝐶𝑠)

𝑠=𝑠∗

+∑

𝑎

[

𝜕𝑡
𝑎
(𝐴 + 𝐵𝑠 + 𝐶𝑠

2

, 𝑠)

𝜕 (𝐴 + 𝐵𝑠 + 𝐶𝑠2)
⋅ (𝐵 + 2𝐶𝑠)

+

𝜕𝑡
𝑎
(𝐴 + 𝐵𝑠 + 𝐶𝑠

2

, 𝑠)

𝜕𝑠
] ⋅ (𝐴 + 𝐵𝑠 + 𝐶𝑠

2

)

𝑠=𝑠∗

.

(29)

Further, we know

𝐵 = 𝐷
𝑠
𝑓
𝑠=𝑠∗

,

𝐶 =
1

2
⋅ 𝐻
𝑠
𝑓
𝑠=𝑠∗ ,

𝑓 (𝑠) = 𝐴 + 𝐵𝑠 + 𝐶𝑠
2

.

(30)

So, substituting (29), we know

𝜕

𝜕𝑠𝑖
[∑

𝑎

𝑡
𝑎
(𝐴 + 𝐵𝑠 + 𝐶𝑠

2

, 𝑠) (𝐴 + 𝐵𝑠 + 𝐶𝑠
2

)]

𝑠=𝑠∗

= ∑

𝑎

𝑡
𝑎
(𝑓 (𝑠) , 𝑠) ⋅ (𝐷

𝑠
𝑓 + 𝐻

𝑠
𝑓 ⋅ 𝑠)

𝑠=𝑠∗

+∑

𝑎

[
𝜕𝑡
𝑎
(𝑓 (𝑠) , 𝑠)

𝜕𝑓
⋅ (𝐷
𝑠
𝑓 + 𝐻

𝑠
𝑓 ⋅ 𝑠)

+
𝜕𝑡
𝑎
(𝑓 (𝑠) , 𝑠)

𝜕𝑠
] ⋅ 𝑓
𝑎

𝑠=𝑠∗ ,𝑓=𝑓∗

= ∑

𝑎

𝑡
𝑎
(𝑓 (𝑠) , 𝑠) ⋅ 𝐷

𝑠
𝑓 (𝑠)

𝑠=𝑠∗

+∑

𝑎

[
𝜕𝑡
𝑎
(𝑓 (𝑠) , 𝑠)

𝜕𝑓
⋅ 𝐷
𝑠
𝑓 (𝑠)

+
𝜕𝑡
𝑎
(𝑓 (𝑠) , 𝑠)

𝜕𝑠
] ⋅ 𝑓
𝑎

𝑠=𝑠∗ ,𝑓=𝑓∗

=
𝜕

𝜕𝑠
[∑

𝑎

𝑡
𝑎
(𝑓 (𝑠) , 𝑠) ⋅ 𝑓

𝑎
(𝑠)]

𝑠=𝑠∗ ,𝑓=𝑓∗
.

(31)

So, we know if conditions (i) and (ii) are satisfied, then the
following should also be satisfied:

(iii)

𝜕𝑍 (𝑠
∗

)

𝜕𝑠𝑖
= 0 if 𝑠∗𝑖 > 0, 𝑖 = 1, . . . , 𝑛, (32)

(iv)

𝜕𝑍 (𝑠
∗

)

𝜕𝑠𝑖
≥ 0 if 𝑠∗𝑖 = 0, 𝑖 = 1, . . . , 𝑛. (33)
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5. Numerical Example

This section provides two numerical examples which illus-
trate the computation of second-order sensitivity and the
performance of NLAA. The first example demonstrates the
computation of second-order sensitivity in detail.The second
example focuses on the speed of convergence between LAA
and NLAA.

Example 1. The first example is chosen from Dickson [25]
and Fisk [14]. The network topology is shown in Figure 1.
The set of OD pairs is {(1, 2), (3, 4)} and a signal exists at the
intersection of arcs 1 and 3. The cost functions used are

𝑡
1
=
𝑓
1

𝑠
1

, 𝑡
2
= 2𝑓
2
, 𝑡

3
=
2𝑓
3

𝑠
3

, (34)

where 𝑠
𝑎
denotes the green time on arc 𝑎 and the cycle time,

𝑠
1
+ 𝑠
3
, is equal to 20.

Additionally, the travel demand 𝑇
1
from node 1 to node

2 is 10 and the travel demand 𝑇
2
from node 3 to node 4 is

10. Table 1 lists the arc cost functions 𝑡
𝑎
(𝑓
𝑎
, 𝑠
𝑎
) and the system

objective function 𝑍(𝑠).

5.1. First-Order and Second-Order Sensitivity Formulas. In
this example, 𝑠

3
can be replaced by 20-𝑠

1
, and 𝑠

1
that is

the only perturbation parameter (control variable) should
be considered. Therefore, 𝜌 is equal to 1. Together with (6)
and (15), the first-order sensitivity with respect to 𝑠

1
can be

rewritten as

[
𝐷
𝑠
𝑓

𝐷
𝑠
𝜇
] = 𝑈 ⋅ 𝑉

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑠
1

1 + 2𝑠
1

−𝑠
1

1 + 2𝑠
1

0
−2𝑠
1

1 + 2𝑠
1

0

−𝑠
1

1 + 2𝑠
1

𝑠
1

1 + 2𝑠
1

0
−𝑠
1

1 + 2𝑠
1

0

0 0 0 0 −1

2𝑠
1

1 + 2𝑠
1

1

1 + 2𝑠
1

0
2

1 + 2𝑠
1

0

0 0 1 0
−1

−20 + 𝑠
1

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

×

[
[
[
[
[
[
[
[
[
[

[

𝑓
1

𝑠
2

1

0

−2𝑓
3

(20 − 𝑠
1
)
2

0

0

]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑓
1

𝑠
1
(1 + 2𝑠

1
)

−𝑓
1

𝑠
1
(1 + 2𝑠

1
)

0

2𝑓
1

𝑠
1
(1 + 2𝑠

1
)

−2𝑓
3

(20 − 𝑠
1
)
2

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(35)

Table 1: Arc cost functions and the system objective function in
Example 1.

𝑡
𝑎
(𝑓
𝑎
, 𝑠
𝑎
) = 𝑃
𝑎
+ 𝑄
𝑎
(𝑓
𝑎
/𝑠
𝑎
)

𝑍(𝑠) = ∑
𝑎
(𝑡
𝑎
(𝑓
𝑎
, 𝑠
𝑎
) ⋅ 𝑓
𝑎
)

Arc number 𝑃
𝑎

𝑄
𝑎

1 2 1
2 0 2
3 0 2

1 2

3

4

2

1

3
1 2

3

4

2

1

3

Figure 1: The network topology in Example 1.

where

𝐷
𝑠
𝑓 =

[
[
[
[
[
[

[

𝑓
1

𝑠
1
(1 + 2𝑠

1
)

−𝑓
1

𝑠
1
(1 + 2𝑠

1
)

0

]
]
]
]
]
]

]

, 𝐷
𝑠
𝜇 =

[
[
[
[

[

2𝑓
1

𝑠
1
(1 + 2𝑠

1
)

−2𝑓
3

(20 − 𝑠
1
)
2

]
]
]
]

]

. (36)

In (36), the sensitivity information of arc flow represents
the change of arc flow on arc 𝑎, respectively, when the control
variable 𝑠

1
increases one unit. Since 𝑓

1
≥ 0 and 𝑠

1
> 0, the

equilibrium flow on arc 1 will increase when 𝑠
1
increases one

unit. In the meanwhile, the equilibrium flow on arc 2 will
decrease. Because OD pair (3, 4) has only one path (arc 3),
𝑠
1
will not affect the equilibrium flow on arc 3.
From Lemma 7, the second-order sensitivity with respect

to control variable is

[
𝐻
𝑠
𝑓

𝐻
𝑠
𝜇
] = (𝑉

𝑇

⊗ 𝐼
(𝛼+𝛼
2
)
)𝐷
𝑠
𝑈 + (𝐼

𝑘
⊗ 𝑈)𝐷

𝑠
𝑉. (37)

By Theorem 4, 𝐷
𝑠
𝑈 can be derived by the chain rule for

matrix functions as follows:

𝐷
𝑠
𝑈 = (𝐷

𝑓,𝜇
𝑈)[

𝐷
𝑠
𝑓

𝐷
𝑠
𝜇
] + (𝐷

𝑠
𝑈)

= [
𝜕 vec𝑈
𝜕 vec𝑓

𝜕 vec𝑈
𝜕 vec𝜇 ] [

𝐷
𝑠
𝑓

𝐷
𝑠
𝜇
] + [

𝜕 vec𝑈
𝜕 vec 𝑠

1

] .

(38)
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In this example, the matrix 𝑈 is only dependent on 𝑠
1
.

Hence,𝐷
𝑓,𝜇
𝑈 = 0 and (38) can be rewritten as

𝐷
𝑠
𝑈 = [

𝜕 vec𝑈
𝜕 vec 𝑠

1

] =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜕𝑈
1

𝜕𝑠
1

𝜕𝑈
2

𝜕𝑠
1

𝜕𝑈
3

𝜕𝑠
1

𝜕𝑈
4

𝜕𝑠
1

𝜕𝑈
5

𝜕𝑠
1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (39)

where 𝑈
𝑗
represents the 𝑗th column of matrix 𝑈, and

𝜕𝑈
1

𝜕𝑠
1

=

[
[
[
[
[
[
[
[
[
[
[
[

[

1

(1 + 2𝑠
1
)
2

−1

(1 + 2𝑠
1
)
2

0

2

(1 + 2𝑠
1
)
2

0

]
]
]
]
]
]
]
]
]
]
]
]

]

,
𝜕𝑈
2

𝜕𝑠
1

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−1

(1 + 2𝑠
1
)
2

1

(1 + 2𝑠
1
)
2

0

−2

(1 + 2𝑠
1
)
2

0

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝜕𝑈
3

𝜕𝑠
1

=

[
[
[
[
[

[

0

0

0

0

0

]
]
]
]
]

]

,
𝜕𝑈
4

𝜕𝑠
1

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−2

(1 + 2𝑠
1
)
2

2

(1 + 2𝑠
1
)
2

0

−4

(1 + 2𝑠
1
)
2

0

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝜕𝑈
5

𝜕𝑠
1

=

[
[
[
[
[
[
[
[
[

[

0

0

0

0

2

(−20 + 𝑠
1
)
2

]
]
]
]
]
]
]
]
]

]

.

(40)

Similarly,𝐷
𝑠
𝑉 can be derived as

𝐷
𝑠
𝑉 = (𝐷

𝑓,𝜇
𝑉) [

𝐷
𝑠
𝑓

𝐷
𝑠
𝜇
] + (𝐷

𝑠
𝑉)

= [
𝜕 vec𝑉
𝜕 vec𝑓

𝜕 vec𝑉
𝜕 vec𝜇 ] [

𝐷
𝑠
𝑓

𝐷
𝑠
𝜇
] + [

𝜕 vec𝑉
𝜕 vec 𝑠

1

]

=

[
[
[
[
[
[
[
[
[
[
[

[

1

𝑠
2

1

0 0 0 0

0 0 0 0 0

0 0
−2

(20 − 𝑠
1
)
2
0 0

0 0 0 0 0

0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑓
1

𝑠
1
(1 + 2𝑠

1
)

−𝑓
1

𝑠
1
(1 + 2𝑠

1
)

0

2𝑓
1

𝑠
1
(1 + 2𝑠

1
)

−2𝑓
3

(20 − 𝑠
1
)
2

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

+

[
[
[
[
[
[
[
[
[
[
[

[

−2𝑓
1

𝑠
3

1

0

−4𝑓
3

(20 − 𝑠
1
)
3

0

0

]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[

[

𝑓
1

𝑠
3

1
(1 + 2𝑠

1
)
−
2𝑓
1

𝑠
3

1

0

−4𝑓
3

(20 − 𝑠
1
)
3

0

0

]
]
]
]
]
]
]
]
]
]
]

]

.

(41)
According to Definition 1, (39), (40), and (38), (37) can be
rewritten as

[
𝐻
𝑠
𝑓

𝐻
𝑠
𝜇
] = (𝑉

𝑇

⊗ 𝐼
5
)𝐷
𝑠
𝑈 + (𝐼

1
⊗ 𝑈)𝐷

𝑠
𝑉

=

[
[
[
[
[
[
[
[
[
[
[

[

𝑓
1

𝑠
2

1

⋅ 𝐼
5

0 ⋅ 𝐼
5

−2𝑓
3

(20 − 𝑠
1
)
2
⋅ 𝐼
5

0 ⋅ 𝐼
5

0 ⋅ 𝐼
5

]
]
]
]
]
]
]
]
]
]
]

]

𝑇

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜕𝑈
1

𝜕𝑠
1

𝜕𝑈
2

𝜕𝑠
1

𝜕𝑈
3

𝜕𝑠
1

𝜕𝑈
4

𝜕𝑠
1

𝜕𝑈
5

𝜕𝑠
1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

+ (1 ⋅ 𝑈)

[
[
[
[
[
[
[
[
[
[

[

𝑓
1

𝑠
3

1
(1 + 2𝑠

1
)
−
2𝑓
1

𝑠
3

1

0

−4𝑓
3

(20 − 𝑠
1
)
3

0

0

]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−4𝑓
1

𝑠
1
(1 + 2𝑠

1
)
2

4𝑓
1

𝑠
1
(1 + 2𝑠

1
)
2

0

−8𝑓
1

𝑠
1
(1 + 2𝑠

1
)
2

4𝑓
3
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Therefore,
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5.2. Computational Results of LAA and NLAA. Based on (36)
and (43), the first differential and the second differential of
equilibrium arc flow 𝑓

𝑎
can be obtained by (14). At iteration
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In this example, both LAA and NLAA are implemented
in the MATLAB environment. Set 𝛿 = 0.001 and the initial
𝑠
1
= 10; Table 2 lists the computational results of LAA and

NLAA approaches, and it shows that NLAA is more efficient
than LAA.

Table 2: Computational results of LAA and NLAA in Example 1.

Iteration LAA NLAA
𝑓
1

𝑠
1

𝑍 𝑓
1

𝑠
1

𝑍

1 8.44693 7.63647 47.23792 8.45125 7.70052 47.23576
2 8.45366 7.73667 47.23553 8.45326 7.73055 47.23552
3 8.45323 7.73019 47.23552 8.45326 7.73056 47.23552
4 8.45325 7.73040 47.23552

Example 2. This example is a simplified real network which
represents the afternoon rush hour traffic between the work-
ing area Hsinchu Science-Based Industrial Park (HSIP) and
the residential area Jhubei city.The network topology follows
Figure 2. In this period, there is a large amount of travel
demand from HSIP (node 1) to Jhubei city (node 16). There
are two parallel paths from HSIP to Jhubei city. One is
a freeway (arc 2-arc 4-arc 16) and the other is a highway
with 5 signal-controlled intersections (arc 1-arc 6-arc 8-arc
10-arc 12-arc 14). The objective of this problem is to find
the optimal signal settings which minimize the system cost.
The arc cost functions 𝑡

𝑎
(𝑓
𝑎
, 𝑠
𝑎
) and the system objective

function 𝑍(𝑠) are listed in Table 3. Table 4 lists the origin-
destination demand. For the signal-controlled intersections,
the arcs entering the same intersection share the same cycle
time and theminimumgreen time for each approach is 10 sec.

In this example, we set 𝛿 = 0.1 and the initial 𝑠
𝑎
=

𝐶𝑦𝑐
𝑎
/2 for each signalized arc. Table 5 lists the computational

results of LAA and NLAA, respectively. Two parallel paths
from node 1 to node 16 (2-4-16 and 1-6-8-10-12-14) have the
same equilibrium travel time 13.4069min. Table 5 shows that
NLAAonly takes 6% iterations, comparedwith LAA, to attain
the same level of precision. Figure 3 shows the convergence
curves of LAA and NLAA, respectively. The convergence
rate of LAA is slower than NLAA due to the zigzag effect.
Compared with Example 1, NLAA has more improvement in
the speed of convergence than in Example 2. It may imply
that NLAA is more efficient to deal with more nonlinear
problems.

6. Conclusions

The key information to solve the equilibrium network signal
control problem (ENSCP) is the reaction function of the
lower-level problem. Because the reaction function cannot be
obtained explicitly, the sensitivity information of equilibrium
network flows is used to approximate it. Based on the
first-order sensitivity formula and the matrix calculus, this
paper first presents the general form of the second-order
sensitivity formula for equilibrium network flows. With the
second-order sensitivity formula, the reaction function can
be approximated more accurately by a nonlinear function.
From HSIP to Jhubei city, a simplified real network example
demonstrates the speed of convergence between LAA and
NLAA.TheNLAAhas significant improvement in solving the
ENSCP with complicated arc cost functions; in this example,
the NLAA only takes 6% iterations to attain the same level of
precision.
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Figure 2: The network topology in Example 2.

Table 3: Arc cost functions and the system objective function in Example 2.

Signalized arc cost function 𝑡
𝑎
(𝑓
𝑎
, 𝑠
𝑎
) = 𝑡
0𝑎
(1 + 𝛼

𝑎
(

𝑓
𝑎

𝐶
𝑎
(𝑠
𝑎
/Cyc
𝑎
)
)

𝛽𝑎

)

Nonsignalized arc cost function 𝑡
𝑎
(𝑓
𝑎
, 𝑠
𝑎
) = 𝑡
0𝑎
(1 + 𝛼

𝑎
(
𝑓
𝑎

𝐶
𝑎

)

𝛽𝑎

)

System objective function 𝑍(𝑠) = ∑
𝑎
(𝑡
𝑎
(𝑓
𝑎
, 𝑠
𝑎
) ⋅ 𝑓
𝑎
)

Arc number 𝑡
0𝑎
(min) 𝛼

𝑎
𝛽
𝑎

𝐶
𝑎
(veh/min) Cyc

𝑎
(sec)

1 1.8545 0.9200 3.5800 56.6667 300
2 0.8667 0.9200 3.5800 40.0000 —
3 1.8000 1.2700 3.9600 115.0000 —
4 2.2364 1.2700 3.9600 115.0000 —
5 0.2945 1.2100 2.3900 28.3333 300
6 0.1964 1.4200 2.3200 85.0000 300
7 0.3818 0.8600 4.3400 85.0000 300
8 1.0154 1.2700 3.9600 68.3333 —
9 1.0000 1.2100 2.3900 20.0000 —
10 1.0154 1.2700 3.9600 68.3333 180
11 0.3273 0.9200 3.5800 56.6667 180
12 0.9818 1.4200 2.3200 85.0000 150
13 0.6545 0.8600 4.3400 113.3333 150
14 1.2000 1.5000 2.4400 113.3333 150
15 3.8727 1.2700 3.9600 115.0000 —
16 0.4909 0.9200 3.5800 40.0000 150

Table 4: Origin-destination demand table in Example 2 (unit:
veh/hr).

Destination
4 6 8 11 13 14 16

Origin

1 50 275 475 400 1250 275 2250
2 0 0 0 0 2550 0 1400
5 0 150 250 200 0 150 250
7 0 0 500 400 0 300 450
9 0 0 0 325 0 225 350
12 0 0 0 0 0 125 175
15 0 0 0 0 0 0 900

This study focuses on the NLAA and a simplified delay
formula is adopted to reflect the influence of traffic con-
gestion. Practically, a traffic propagation model, such as
TRANSYT model, should be included when solving the
ENSCP. Since the derivatives of TRANSYT model have been
obtained explicitly [4, 42], it can be extended to second-order
derivatives and applied to NLAA in the future research.

Compared with LAA, the number of multiplications for
matrix multiplication is greatly increasing in NLAA due
to the Kronecker-product operation. NLAA has polyno-
mial complexity with the network size and the number
of perturbation parameters because of the property of the
Kronecker product. There is still opportunity to improve the
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Table 5: Computational results of LAA and NLAA in Example 2.

Arc number LAA NLAA
𝑠
𝑎
(sec) 𝑓

𝑎
(veh/min) 𝑡

𝑎
(min) 𝑠

𝑎
(sec) 𝑓

𝑎
(veh/min) 𝑡

𝑎
(min)

1 195.9103 31.4891 2.8118 195.8881 31.4901 2.8123
2 — 51.4275 2.8272 — 51.4266 2.8271
3 — 65.8333 2.0510 — 65.8333 2.0510
4 — 117.2609 5.3043 — 117.2599 5.3042
5 104.0897 16.6667 1.5529 104.1119 16.6667 1.5522
6 181.5056 47.3225 0.4263 181.4711 47.3234 0.4265
7 118.4944 27.5000 0.5199 118.5289 27.5000 0.5197
8 — 67.7391 2.2611 — 67.7401 2.2612
9 — 15.0000 1.6084 — 15.0000 1.6084
10 167.0451 62.3225 2.2192 167.0853 62.3234 2.2181
11 12.9549 5.0000 0.9517 12.9147 5.0000 0.9587
12 123.8799 45.2391 1.4849 123.8808 45.2401 1.4849
13 26.1201 15.0000 0.8256 26.1192 15.0000 0.8256
14 45.4083 42.3225 4.2042 45.4092 42.3234 4.2042
15 — 63.3333 4.3361 — 63.3333 4.3361
16 104.5917 53.9275 5.2760 104.5908 53.9266 5.2759
Iteration number 101 6
Objective value (𝑍) 2188.2886 2188.2404
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Figure 3: The convergence curves of LAA and NLAA in Example 2.

computing efficiency through adopting effective Kronecker-
product algorithms.
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