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The purpose of this paper is to introduce and analyze hybrid viscosity methods for a general system of variational inequalities
(GSVI) with hierarchical fixed point problem constraint in the setting of real uniformly convex and 2-uniformly smooth Banach
spaces. Here, the hybrid viscosity methods are based on Korpelevich’s extragradient method, viscosity approximation method, and
hybrid steepest-descent method. We propose and consider hybrid implicit and explicit viscosity iterative algorithms for solving
the GSVI with hierarchical fixed point problem constraint not only for a nonexpansive mapping but also for a countable family of
nonexpansive mappings inX, respectively.We derive some strong convergence theorems under appropriate conditions. Our results
extend, improve, supplement, and develop the recent results announced by many authors.

1. Introduction

Let 𝑋 be a real Banach space whose dual space is denoted by
𝑋
∗. Let 𝑈 = {𝑥 ∈ 𝑋 : ‖𝑥‖ = 1} denote the unit sphere of 𝑋.

A Banach space 𝑋 is said to be uniformly convex if, for each
𝜖 ∈ (0, 2], there exists 𝛿 > 0 such that, for all 𝑥, 𝑦 ∈ 𝑈,

𝑥 − 𝑦
 ≥ 𝜖 ⇒

𝑥 + 𝑦


2
≤ 1 − 𝛿. (1)

It is known that a uniformly convex Banach space is reflexive
and strictly convex. The normalized duality mapping 𝐽 :

𝑋 → 2
𝑋
∗

is defined by

𝐽 (𝑥) = {𝑥
∗

∈ 𝑋
∗

: ⟨𝑥, 𝑥
∗

⟩ = ‖𝑥‖
2

=
𝑥
∗

2

} , ∀𝑥 ∈ 𝑋,

(2)

where ⟨⋅, ⋅⟩ denotes the generalized duality pairing. It is an
immediate consequence of the Hahn-Banach theorem that
𝐽(𝑥) is nonempty for each 𝑥 ∈ 𝑋.

Let𝐶 be a nonempty closed convex subset of a real Banach
space 𝑋. A mapping 𝑇 : 𝐶 → 𝐶 is said to be 𝐿-Lipschitzian

if there exists a constant 𝐿 > 0 such that ‖𝑇𝑥 − 𝑇𝑦‖ ≤

𝐿‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ 𝐶. In particular, if 𝐿 = 1, then 𝑇

is said to be nonexpansive. The set of fixed points of 𝑇 is
denoted by Fix(𝑇). We use the notation ⇀ to indicate the
weak convergence and the one → to indicate the strong
convergence. A mapping 𝐴 : 𝐶 → 𝑋 is said to be

(i) accretive if, for each 𝑥, 𝑦 ∈ 𝐶, there exists 𝑗(𝑥 − 𝑦) ∈

𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 0, (3)

where 𝐽 is the normalized duality mapping of 𝑋,
(ii) 𝛼-inverse-strongly accretive if, for each 𝑥, 𝑦 ∈ 𝐶,

there exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 𝛼
𝑥 − 𝑦



2

, (4)

for some 𝛼 ∈ (0, 1),
(iii) pseudocontractive if, for each 𝑥, 𝑦 ∈ 𝐶, there exists

𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤
𝑥 − 𝑦



2

, (5)
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(iv) 𝛽-strongly pseudocontractive if, for each 𝑥, 𝑦 ∈ 𝐶,
there exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤ 𝛽
𝑥 − 𝑦



2 (6)

for some 𝛽 ∈ (0, 1),
(v) 𝜆-strictly pseudocontractive if, for each 𝑥, 𝑦 ∈ 𝐶,

there exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤
𝑥 − 𝑦



2

− 𝜆
𝑥 − 𝑦 − (𝐴𝑥 − 𝐴𝑦)



2

(7)

for some 𝜆 ∈ (0, 1).
It is worth emphasizing that the definition of the inverse-

strongly accretive mapping is based on that of the inverse-
strongly monotone mapping, which was studied by so many
authors; see, for example, [1–7].

A Banach space 𝑋 is said to be smooth if the limit

lim
𝑡→0

𝑥 + 𝑡𝑦
 − ‖𝑥‖

𝑡

(8)

exists for all 𝑥, 𝑦 ∈ 𝑋; in this case, 𝑋 is also said to
have a Gateaux differentiable norm. Moreover, it is said to
be uniformly smooth if this limit is attained uniformly for
𝑥, 𝑦 ∈ 𝑈; in this case, 𝑋 is also said to have a uniformly Fre-
chet differentiable norm. The norm of 𝑋 is said to be the
Frechet differential if, for each 𝑥 ∈ 𝑈, this limit is attained
uniformly for 𝑦 ∈ 𝑈. In the meantime, we define a function
𝜌 : [0,∞) → [0,∞) called the modulus of smoothness of𝑋
as follows:

𝜌 (𝜏) = sup {
1

2
(
𝑥 + 𝑦

 +
𝑥 − 𝑦

) − 1 : 𝑥, 𝑦 ∈ 𝑋,

‖𝑥‖ = 1,
𝑦

 = 𝜏} .

(9)

It is known that 𝑋 is uniformly smooth if and only if
lim
𝜏→0

𝜌(𝜏)/𝜏 = 0. Let 𝑞 be a fixed real number with 1 < 𝑞 ≤

2. Then a Banach space𝑋 is said to be 𝑞-uniformly smooth if
there exists a constant 𝑐 > 0 such that 𝜌(𝜏) ≤ 𝑐𝜏

𝑞, for all 𝜏 > 0.
As pointed out in [8], no Banach space is 𝑞-uniformly smooth
for 𝑞 > 2. In addition, it is also known that 𝐽 is single-valued
if and only if𝑋 is smooth, whereas, if𝑋 is uniformly smooth,
then the mapping 𝐽 is norm-to-norm uniformly continuous
on bounded subsets of 𝑋.

In a real smooth Banach space𝑋, we say that an operator
𝐴 is strongly positive (see [9]), if there exists a constant 𝛾 > 0

with the property

⟨𝐴𝑥, 𝐽 (𝑥)⟩ ≥ 𝛾‖𝑥‖
2

,

‖𝑎𝐼 − 𝑏𝐴‖ = sup
‖𝑥‖≤1

|⟨(𝑎𝐼 − 𝑏𝐴) 𝑥, 𝐽 (𝑥)⟩| ,

𝑎 ∈ [0, 1] , 𝑏 ∈ [−1, 1] ,

(10)

where 𝐼 is the identity mapping.

Proposition CB (see [9, Lemma 2.5]). Let 𝐶 be a nonempty
closed convex subset of a uniformly smooth Banach space𝑋. Let

𝑇 : 𝐶 → 𝐶 be a continuous pseudocontractive mapping with
Fix(𝑇) ̸= 0 and let 𝑓 : 𝐶 → 𝐶 be a fixed Lipschitzian strongly
pseudocontractive mapping with pseudocontractive coefficient
𝛽 ∈ (0, 1) and Lipschitzian constant 𝐿 > 0. Let 𝐴 : 𝐶 → 𝐶

be a strongly positive linear bounded operator with coefficient
𝛾 > 0. Assume that 𝐶 ± 𝐶 ⊂ 𝐶 and 0 < 𝛽 < 𝛾. Let {𝑥

𝑡
} be

defined by

𝑥
𝑡
= 𝑡𝑓 (𝑥

𝑡
) + (𝐼 − 𝑡𝐴) 𝑇𝑥

𝑡
. (11)

Then, as 𝑡 → 0, {𝑥
𝑡
} converges strongly to some fixed point 𝑝

of 𝑇 such that 𝑝 is the unique solution in Fix(𝑇) to the VIP:

⟨(𝐴 − 𝑓) 𝑝, 𝐽 (𝑝 − 𝑢)⟩ ≤ 0, ∀𝑢 ∈ Fix (𝑇) . (12)

On the other hand, Cai and Bu [10] considered the follo-
wing general system of variational inequalities (GSVI) in
a real smooth Banach space 𝑋, which involves finding
(𝑥
∗

, 𝑦
∗

) ∈ 𝐶 × 𝐶 such that

⟨𝜇
1
𝐵
1
𝑦
∗

+ 𝑥
∗

− 𝑦
∗

, 𝐽 (𝑥 − 𝑥
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

⟨𝜇
2
𝐵
2
𝑥
∗

+ 𝑦
∗

− 𝑥
∗

, 𝐽 (𝑥 − 𝑦
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

(13)

where 𝐶 is a nonempty, closed, and convex subset of 𝑋,
𝐵
1
, 𝐵
2

: 𝐶 → 𝑋 are two nonlinear mappings, and 𝜇
1
and

𝜇
2
are two positive constants. Here the set of solutions of

GSVI (13) is denoted by GSVI(𝐶, 𝐵
1
, 𝐵
2
). Very recently, Cai

and Bu [10] constructed an iterative algorithm for solving
GSVI (13) and a common fixed point problem of an infinite
family of nonexpansive mappings in a uniformly convex and
2-uniformly smooth Banach space. They proved the strong
convergence of the proposed algorithm by virtue of the
following inequality in a 2-uniformly smooth Banach space
𝑋.

Lemma 1 (see [11]). Let 𝑋 be a 2-uniformly smooth Banach
space.Then, there exists a best smooth constant 𝜅 > 0 such that

𝑥 + 𝑦


2

≤ ‖𝑥‖
2

+ 2 ⟨𝑦, 𝐽 (𝑥)⟩ + 2
𝜅𝑦

 , ∀𝑥, 𝑦 ∈ 𝑋,

(14)

where 𝐽 is the normalized duality mapping from 𝑋 into 𝑋
∗.

The authors [10] have used the following inequality in a
real smooth and uniform convex Banach space 𝑋.

Proposition 2 (see [12]). Let𝑋 be a real smooth and uniform
convex Banach space and let 𝑟 > 0. Then, there exists a strictly
increasing, continuous, and convex function 𝑔 : [0, 2𝑟] → R,
𝑔(0) = 0 such that

𝑔 (
𝑥 − 𝑦

) ≤ ‖𝑥‖
2

− 2 ⟨𝑥, 𝐽 (𝑦)⟩ +
𝑦



2

, ∀𝑥, 𝑦 ∈ 𝐵
𝑟
,

(15)

where 𝐵
𝑟
= {𝑥 ∈ 𝑋 : ‖𝑥‖ ≤ 𝑟}.

2. Preliminaries

We list some lemmas that will be used in the sequel. Lemma 3
can be found in [13]. Lemma 4 is an immediate consequence
of the subdifferential inequality of the function (1/2)‖ ⋅ ‖

2.
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Lemma 3. Let {𝑎
𝑛
} be a sequence of nonnegative real numbers

such that

𝑎
𝑛+1

≤ (1 − 𝑏
𝑛
) 𝑎
𝑛
+ 𝑏
𝑛
𝑐
𝑛
, ∀𝑛 ≥ 0, (16)

where {𝑏
𝑛
} and {𝑐

𝑛
} are sequences of real numbers satisfying the

following conditions:

(i) {𝑏
𝑛
} ⊂ [0, 1] and ∑

∞

𝑛=0
𝑏
𝑛
= ∞;

(ii) either lim sup
𝑛→∞

𝑐
𝑛
≤ 0 or ∑∞

𝑛=0
|𝑏
𝑛
𝑐
𝑛
| < ∞.

Then, lim
𝑛→∞

𝑎
𝑛
= 0.

Lemma 4. In a smooth Banach space 𝑋, there holds the
inequality

‖𝑥‖
2

+ 2 ⟨𝑦, 𝐽 (𝑥)⟩ ≤
𝑥 + 𝑦



2

≤ ‖𝑥‖
2

+ 2 ⟨𝑦, 𝐽 (𝑥 + 𝑦)⟩ , ∀𝑥, 𝑦 ∈ 𝑋,

(17)

where 𝐽 is the normalized duality mapping of 𝑋.

Let 𝜇 be a mean if 𝜇 is a continuous linear functional on
𝑙
∞ satisfying ‖𝜇‖ = 1 = 𝜇(1). Then, we know that 𝜇 is a mean
on N if and only if

inf {𝑎
𝑛
: 𝑛 ∈ N} ≤ 𝜇 (𝑎) ≤ sup {𝑎

𝑛
: 𝑛 ∈ N} (18)

for every 𝑎 = (𝑎
1
, 𝑎
2
, . . .) ∈ 𝑙

∞. According to time and circu-
mstances, we use 𝜇

𝑛
(𝑎
𝑛
) instead of 𝜇(𝑎). A mean 𝜇 on N is

called a Banach limit if and only if

𝜇
𝑛
(𝑎
𝑛
) = 𝜇
𝑛
(𝑎
𝑛+1

) (19)

for every 𝑎 = (𝑎
1
, 𝑎
2
, . . .) ∈ 𝑙

∞. We know that, if 𝜇 is a Banach
limit, then

lim inf
𝑛→∞

𝑎
𝑛
≤ 𝜇
𝑛
(𝑎
𝑛
) ≤ lim sup
𝑛→∞

𝑎
𝑛 (20)

for every 𝑎 = (𝑎
1
, 𝑎
2
, . . .) ∈ 𝑙

∞. So, if 𝑎 = (𝑎
1
, 𝑎
2
, . . .), 𝑏 =

(𝑏
1
, 𝑏
2
, . . .) ∈ 𝑙

∞, and 𝑎
𝑛

→ 𝑐 (resp., 𝑎
𝑛
−𝑏
𝑛

→ 0), as 𝑛 → ∞,
we have

𝜇
𝑛
(𝑎
𝑛
) = 𝜇 (𝑎) = 𝑐 (resp., 𝜇

𝑛
(𝑎
𝑛
) = 𝜇
𝑛
(𝑏
𝑛
)) . (21)

Further, it is well known that there holds the following
result.

Lemma 5 (see [14]). Let𝐶 be a nonempty closed convex subset
of a uniformly smooth Banach space 𝑋. Let {𝑥

𝑛
} be a bounded

sequence of 𝑋; let 𝜇 be a mean on N and let 𝑧 ∈ 𝐶. Then,

𝜇
𝑛

𝑥𝑛 − 𝑧


2

= min
𝑦∈𝐶

𝜇
𝑛

𝑥𝑛 − 𝑦


2

(22)

if and only if

𝜇
𝑛
⟨𝑦 − 𝑧, 𝐽 (𝑥

𝑛
− 𝑧)⟩ ≤ 0, ∀𝑦 ∈ 𝐶, (23)

where 𝐽 is the normalized duality mapping of 𝑋.

Lemma 6 (see [9, Lemma 2.6]). Let 𝐶 be a nonempty closed
convex subset of a real Banach space 𝑋 which has uniformly
Gateaux differentiable norm. Let 𝑇 : 𝐶 → 𝐶 be a continuous
pseudocontractive mapping with Fix(𝑇) ̸= 0 and let 𝑓 : 𝐶 →

𝐶 be a fixed Lipschitzian strongly pseudocontractive mapping
with pseudocontractive coefficient 𝛽 ∈ (0, 1) and Lipschitzian
constant 𝐿 > 0. Let 𝐴 : 𝐶 → 𝐶 be a 𝛾-strongly positive linear
bounded operator with coefficient 𝛾 > 0. Assume that 𝐶 ± 𝐶 ⊂

𝐶 and that {𝑥
𝑡
} converges strongly to 𝑝 ∈ Fix(𝑇) as 𝑡 → 0,

where 𝑥
𝑡
is defined by 𝑥

𝑡
= 𝑡𝑓(𝑥

𝑡
) + (𝐼 − 𝑡𝐴)𝑇𝑥

𝑡
. Suppose that

{𝑥
𝑛
} ⊂ 𝐶 is bounded and that lim

𝑛→∞
‖𝑥
𝑛
− 𝑇𝑥
𝑛
‖ = 0. Then,

lim sup
𝑛→∞

⟨(𝑓 − 𝐴)𝑝, 𝐽(𝑥
𝑛
− 𝑝)⟩ ≤ 0.

Lemma 7. Let 𝐶 be a nonempty closed convex subset of a real
smooth Banach space 𝑋. Let 𝐹 : 𝐶 → 𝑋 be an 𝛼-strongly
accretive and 𝜆-strictly pseudocontractive with 𝛼 + 𝜆 ≥ 1.
Then, 𝐼 −𝐹 is nonexpansive and 𝐹 is Lipschitz continuous with
constant (1+√(1 − 𝛼)/𝜆). Further, for any fixed 𝜏 ∈ (0, 1), 𝐼−

𝜏𝐹 is contractive with coefficient 1 − 𝜏(1 − √(1 − 𝛼)/𝜆).

Proof. From the 𝜆-strictly pseudocontractivity and 𝛼-
strongly accretivity of 𝐹, we have, for all 𝑥, 𝑦 ∈ 𝐶,

𝜆
(𝐼 − 𝐹) 𝑥 − (𝐼 − 𝐹) 𝑦



2

≤
𝑥 − 𝑦



2

− ⟨𝐹 (𝑥) − 𝐹 (𝑦) , 𝐽 (𝑥 − 𝑦)⟩

≤ (1 − 𝛼)
𝑥 − 𝑦



2

,

(24)

which implies that

(𝐼 − 𝐹) 𝑥 − (𝐼 − 𝐹) 𝑦
 ≤ √

1 − 𝛼

𝜆

𝑥 − 𝑦
 . (25)

Because 𝛼 + 𝜆 ≥ 1 ⇔ √(1 − 𝛼)/𝜆 ≤ 1, we know that 𝐼 − 𝐹 is
nonexpansive. Also note that

𝐹 (𝑥) − 𝐹 (𝑦)
 ≤

(𝐼 − 𝐹) 𝑥 − (𝐼 − 𝐹) 𝑦
 +

𝑥 − 𝑦


≤ (1 + √
1 − 𝛼

𝜆
)

𝑥 − 𝑦
 .

(26)

Now, take a fixed 𝜏 ∈ (0, 1) arbitrarily. Observe that, for all
𝑥, 𝑦 ∈ 𝐶,

(𝐼 − 𝜏𝐹) 𝑥 − (𝐼 − 𝜏𝐹) 𝑦


=
(1 − 𝜏) (𝑥 − 𝑦) + 𝜏 [(𝐼 − 𝐹) 𝑥 − (𝐼 − 𝐹) 𝑦]



≤ (1 − 𝜏)
𝑥 − 𝑦

 + 𝜏
(𝐼 − 𝐹) 𝑥 − (𝐼 − 𝐹) 𝑦



≤ (1 − 𝜏)
𝑥 − 𝑦

 + 𝜏(√
1 − 𝛼

𝜆
)

𝑥 − 𝑦


= (1 − 𝜏(1 − √
1 − 𝛼

𝜆
))

𝑥 − 𝑦
 .

(27)

Because 𝛼 + 𝜆 > 1 ⇔ √(1 − 𝛼)/𝜆 < 1, we know that 𝐼 − 𝜏𝐹 is
contractive with coefficient 1 − 𝜏(1 − √(1 − 𝛼)/𝜆).
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Let 𝐷 be a subset of 𝐶 and let Π be a mapping of 𝐶 into
𝐷. Then, Π is said to be sunny if

Π [Π (𝑥) + 𝑡 (𝑥 − Π (𝑥))] = Π (𝑥) , (28)

whenever Π(𝑥) + 𝑡(𝑥 − Π(𝑥)) ∈ 𝐶 for 𝑥 ∈ 𝐶 and 𝑡 ≥ 0. A
mapping Π of 𝐶 into itself is called a retraction if Π2 = Π. If
a mappingΠ of 𝐶 into itself is a retraction, thenΠ(𝑧) = 𝑧 for
every 𝑧 ∈ 𝑅(Π) where 𝑅(Π) is the range of Π. A subset 𝐷 of
𝐶 is called a sunny nonexpansive retract of 𝐶 if there exists a
sunny nonexpansive retraction from𝐶 onto𝐷.The following
lemma concerns the sunny nonexpansive retraction.

Lemma 8 (see [15]). Let𝐶 be a nonempty closed convex subset
of a real smooth Banach space 𝑋. Let 𝐷 be a nonempty subset
of 𝐶. LetΠ be a retraction of 𝐶 onto𝐷. Then, the following are
equivalent:

(i) Π is sunny and nonexpansive;
(ii) ‖Π(𝑥) − Π(𝑦)‖

2

≤ ⟨𝑥 − 𝑦, 𝐽(Π(𝑥) − Π(𝑦))⟩, for all
𝑥, 𝑦 ∈ 𝐶;

(iii) ⟨𝑥 − Π(𝑥), 𝐽(𝑦 − Π(𝑥))⟩ ≤ 0, for all 𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷.

It is well known that, if 𝑋 = 𝐻 is a Hilbert space, then
a sunny nonexpansive retraction Π

𝐶
is coincident with the

metric projection from 𝑋 onto 𝐶; that is, Π
𝐶

= 𝑃
𝐶
. If 𝐶

is a nonempty closed convex subset of a strictly convex and
uniformly smooth Banach space 𝑋 and if 𝑇 : 𝐶 → 𝐶 is
a nonexpansive mapping with the fixed point set Fix(𝑇) ̸= 0,
then the set Fix(𝑇) is a sunny nonexpansive retract of 𝐶.

Lemma 9. Let 𝐶 be a nonempty closed convex subset of a
smooth Banach space 𝑋. Let Π

𝐶
be a sunny nonexpansive

retraction from𝑋 onto𝐶 and let 𝐵
1
, 𝐵
2
: 𝐶 → 𝑋 be nonlinear

mappings. For given 𝑥
∗

, 𝑦
∗

∈ 𝐶, (𝑥
∗

, 𝑦
∗

) is a solution of
GSVI (13) if and only if 𝑥∗ = Π

𝐶
(𝑦
∗

− 𝜇
1
𝐵
1
𝑦
∗

), where 𝑦
∗

=

Π
𝐶
(𝑥
∗

− 𝜇
2
𝐵
2
𝑥
∗

).

Proof. We can rewrite GSVI (13) as

⟨𝑥
∗

− (𝑦
∗

− 𝜇
1
𝐵
1
𝑦
∗

) , 𝐽 (𝑥 − 𝑥
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

⟨𝑦
∗

− (𝑥
∗

− 𝜇
2
𝐵
2
𝑥
∗

) , 𝐽 (𝑥 − 𝑦
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

(29)

which is obviously equivalent to

𝑥
∗

= Π
𝐶
(𝑦
∗

− 𝜇
1
𝐵
1
𝑦
∗

) ,

𝑦
∗

= Π
𝐶
(𝑥
∗

− 𝜇
2
𝐵
2
𝑥
∗

) ,

(30)

because of Lemma 8. This completes the proof.

In terms of Lemma 9, define the mapping 𝐺 : 𝐶 → 𝐶 as
follows:

𝐺 (𝑥) := Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) 𝑥, ∀𝑥 ∈ 𝐶. (31)

Then, we observe that

𝑥
∗

= Π
𝐶
[Π
𝐶
(𝑥
∗

− 𝜇
2
𝐵
2
𝑥
∗

) − 𝜇
1
𝐵
1
Π
𝐶
(𝑥
∗

− 𝜇
2
𝐵
2
𝑥
∗

)] ,

(32)

which implies that 𝑥
∗ is a fixed point of the mapping 𝐺.

Throughout this paper, the set of fixed points of the mapping
𝐺 is denoted by Ω.

Lemma 10 (see [16]). Let 𝐶 be a nonempty closed convex
subset of a strictly convex Banach space 𝑋. Let {𝑇

𝑛
}
∞

𝑛=0

be a sequence of nonexpansive mappings on 𝐶. Suppose
⋂
∞

𝑛=0
Fix(𝑇
𝑛
) is nonempty. Let {𝜆

𝑛
} be a sequence of positive

numbers with ∑
∞

𝑛=0
𝜆
𝑛

= 1. Then, a mapping 𝑇 on 𝐶 defined
by 𝑇𝑥 = ∑

∞

𝑛=0
𝜆
𝑛
𝑇
𝑛
𝑥 for 𝑥 ∈ 𝐶 is well-defined, nonexpansive

and Fix(𝑇) = ⋂
∞

𝑛=0
Fix(𝑇
𝑛
) holds.

Lemma 11 (see [17]). Let𝐶 be a nonempty closed convex subset
of a Banach space 𝑋. Let 𝑆

1
, 𝑆
2
, . . . be a sequence of mappings

of𝐶 into itself. Suppose that∑∞
𝑛=1

sup{‖𝑆
𝑛+1

𝑥−𝑆
𝑛
𝑥‖ : 𝑥 ∈ 𝐶} <

∞.Then, for each𝑦 ∈ 𝐶, {𝑆
𝑛
𝑦} converges strongly to some point

of 𝐶. Moreover, let 𝑆 be a mapping of 𝐶 into itself defined by
𝑆𝑦 = lim

𝑛→∞
𝑆
𝑛
𝑦, for all 𝑦 ∈ 𝐶. Then, lim

𝑛→∞
sup{‖𝑆𝑥 −

𝑆
𝑛
𝑥‖ : 𝑥 ∈ 𝐶} = 0.

3. GSVI with Hierarchical Fixed
Point Problem Constraint for
a Nonexpansive Mapping

In this section, we introduce our hybrid implicit viscosity
scheme for solving theGSVI (13) with hierarchical fixed point
problem constraint for a nonexpansivemapping and show the
strong convergence theorem. First, we list several useful and
helpful lemmas.

Lemma 12 (see [10, Lemma 2.8]). Let 𝐶 be a nonempty closed
convex subset of a real 2-uniformly smooth Banach space 𝑋.
Let the mapping 𝐵

𝑖
: 𝐶 → 𝑋 be 𝛼

𝑖
-inverse-strongly accretive.

Then, one has

(𝐼 − 𝜇
𝑖
𝐵
𝑖
) 𝑥 − (𝐼 − 𝜇

𝑖
𝐵
𝑖
) 𝑦



2

≤
𝑥 − 𝑦



2

+ 2𝜇
𝑖
(𝜇
𝑖
𝜅
2

− 𝛼
𝑖
)
𝐵𝑖𝑥 − 𝐵

𝑖
𝑦


2

, ∀𝑥, 𝑦 ∈ 𝐶,

(33)

for 𝑖 = 1, 2, where 𝜇
𝑖
> 0. In particular, if 0 < 𝜇

𝑖
≤ 𝛼
𝑖
/𝜅
2

(where 𝜅 is the best constant of𝑋 as in Lemma 1), then 𝐼−𝜇
𝑖
𝐵
𝑖

is nonexpansive for 𝑖 = 1, 2.

Lemma 13 (see [10, Lemma 2.9]). Let 𝐶 be a nonempty closed
convex subset of a real 2-uniformly smooth Banach space 𝑋.
LetΠ
𝐶
be a sunny nonexpansive retraction from𝑋 onto 𝐶. Let

the mapping 𝐵
𝑖
: 𝐶 → 𝑋 be 𝛼

𝑖
-inverse-strongly accretive for

𝑖 = 1, 2. Let 𝐺 : 𝐶 → 𝐶 be the mapping defined by

𝐺𝑥 = Π
𝐶
[Π
𝐶
(𝑥 − 𝜇

2
𝐵
2
𝑥) − 𝜇

1
𝐵
1
Π
𝐶
(𝑥 − 𝜇

2
𝐵
2
𝑥)] ,

∀𝑥 ∈ 𝐶.

(34)

If 0 < 𝜇
𝑖
≤ 𝛼
𝑖
/𝜅
2, for 𝑖 = 1, 2, then 𝐺 : 𝐶 → 𝐶 is none-

xpansive.

Lemma 14 (see [18]). Let𝑋 be a Banach space, 𝐶 a nonempty
closed and convex subset of 𝑋, and 𝑇 : 𝐶 → 𝐶 a continuous
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and strong pseudocontraction.Then,𝑇 has a unique fixed point
in 𝐶.

Lemma 15 (see [19]). Assume that 𝐴 is a strongly positive lin-
ear bounded operator on a smooth Banach space𝑋with coeffi-
cient 𝛾 > 0 and 0 < 𝜌 ≤ ‖𝐴‖

−1. Then, ‖𝐼 − 𝜌𝐴‖
2

≤ 1 − 𝜌𝛾.

We now state and prove our first result.

Theorem 16. Let 𝐶 be a nonempty closed convex subset of
a uniformly convex and 2-uniformly smooth Banach space 𝑋

such that 𝐶 ± 𝐶 ⊂ 𝐶. Let Π
𝐶
be a sunny nonexpansive

retraction from 𝑋 onto 𝐶. Let the mapping 𝐵
𝑖
: 𝐶 → 𝑋 be

𝛼
𝑖
-inverse-strongly accretive for 𝑖 = 1, 2. Let 𝑇 : 𝐶 → 𝐶

be a nonexpansive mapping such that Λ = Fix(𝑇) ∩ Ω ̸= 0

where Ω is the fixed point set of the mapping 𝐺 = Π
𝐶
(𝐼 −

𝜇
1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) with 0 < 𝜇

𝑖
< 𝛼
𝑖
/𝜅
2 for 𝑖 = 1, 2. Let

𝑓 : 𝐶 → 𝐶 be a fixed Lipschitzian strongly pseudocontractive
mapping with pseudocontractive coefficient 𝛽 ∈ (0, 1) and
Lipschitzian constant 𝐿 > 0, let 𝐹 : 𝐶 → 𝐶 be 𝛼-strongly
accretive and 𝜆-strictly pseudocontractive with 𝛼 + 𝜆 > 1, and
let𝐴 : 𝐶 → 𝐶 be a 𝛾-strongly positive linear bounded operator
with 0 < 𝛾 − 𝛽 ≤ 1. Let {𝑥

𝑡
} be defined by

𝑥
𝑡
= 𝑡𝑓 (𝑥

𝑡
) + (𝐼 − 𝑡𝐴) [𝐺 (𝑇𝑥

𝑡
) − 𝜃
𝑡
𝐹𝐺 (𝑇𝑥

𝑡
)] , (35)

where {𝜃
𝑡
: 𝑡 ∈ (0, 1)} ⊂ [0, 1) with lim

𝑡→0
𝜃
𝑡
/𝑡 = 0. Then, as

𝑡 → 0, {𝑥
𝑡
} converges strongly to a point 𝑝 ∈ Λ, which is the

unique solution in Λ to the VIP,

⟨(𝐴 − 𝑓) 𝑝, 𝐽 (𝑝 − 𝑢)⟩ ≤ 0, ∀𝑢 ∈ Λ. (36)

Proof. First, let us show that the net {𝑥
𝑡
} is defined well. As a

matter of fact, define the mapping 𝑆
𝑡
: 𝐶 → 𝐶 as follows:

𝑆
𝑡
𝑥 = 𝑡𝑓 (𝑥) + (𝐼 − 𝑡𝐴) [𝐺 (𝑇𝑥) − 𝜃

𝑡
𝐹𝐺 (𝑇𝑥)] , ∀𝑥 ∈ 𝐶.

(37)

We may assume, without loss of generality, that 𝑡 ≤ ‖𝐴‖
−1.

Utilizing Lemmas 7, 13, and 15, we have

⟨𝑆
𝑡
𝑥 − 𝑆
𝑡
𝑦, 𝐽 (𝑥 − 𝑦)⟩

= 𝑡 ⟨𝑓 (𝑥) − 𝑓 (𝑦) , 𝐽 (𝑥 − 𝑦)⟩

+ ⟨(𝐼 − 𝑡𝐴) [(𝐼 − 𝜃
𝑡
𝐹)𝐺 (𝑇𝑥) − (𝐼 − 𝜃

𝑡
𝐹)𝐺 (𝑇𝑦)] ,

𝐽 (𝑥 − 𝑦)⟩

≤ 𝑡𝛽
𝑥 − 𝑦



2

+ (1 − 𝑡𝛾)

×
(𝐼 − 𝜃

𝑡
𝐹)𝐺 (𝑇𝑥) − (𝐼 − 𝜃

𝑡
𝐹)𝐺 (𝑇𝑦)



𝑥 − 𝑦


≤ 𝑡𝛽
𝑥 − 𝑦



2

+ (1 − 𝑡𝛾) (1 − 𝜃
𝑡
(1 − √

1 − 𝛼

𝜆
))

×
𝐺 (𝑇𝑥) − 𝐺 (𝑇𝑦)



𝑥 − 𝑦


≤ 𝑡𝛽
𝑥 − 𝑦



2

+ (1 − 𝑡𝛾)
𝑇𝑥 − 𝑇𝑦



𝑥 − 𝑦


≤ 𝑡𝛽
𝑥 − 𝑦



2

+ (1 − 𝑡𝛾)
𝑥 − 𝑦



2

= (1 − 𝑡 (𝛾 − 𝛽))
𝑥 − 𝑦



2

.

(38)

Hence, it is known that 𝑆
𝑡

: 𝐶 → 𝐶 is a continuous and
strongly pseudocontractive mapping with pseudocontractive
coefficient 1−𝑡(𝛾−𝛽) ∈ (0, 1)Thus, by Lemma 14, we deduce
that there exists a unique fixed point in 𝐶, denoted by 𝑥

𝑡
,

which uniquely solves the fixed point equation

𝑥
𝑡
= 𝑡𝑓 (𝑥

𝑡
) + (𝐼 − 𝑡𝐴) [𝐺 (𝑇𝑥

𝑡
) − 𝜃
𝑡
𝐹𝐺 (𝑇𝑥

𝑡
)] . (39)

Let us show the uniqueness of the solution of VIP (36).
Suppose that both 𝑝

1
∈ Λ and 𝑝

2
∈ Λ are solutions to VIP

(36). Then, we have

⟨(𝐴 − 𝑓) 𝑝
1
, 𝐽 (𝑝
1
− 𝑝
2
)⟩ ≤ 0,

⟨(𝐴 − 𝑓) 𝑝
2
, 𝐽 (𝑝
2
− 𝑝
1
)⟩ ≤ 0.

(40)

Adding up the above two inequalities, we obtain

⟨(𝐴 − 𝑓) 𝑝
1
− (𝐴 − 𝑓) 𝑝

2
, 𝐽 (𝑝
1
− 𝑝
2
)⟩ ≤ 0. (41)

Note that

⟨(𝐴 − 𝑓) 𝑝
1
− (𝐴 − 𝑓) 𝑝

2
, 𝐽 (𝑝
1
− 𝑝
2
)⟩

= ⟨𝐴 (𝑝
1
− 𝑝
2
) , 𝐽 (𝑝

1
− 𝑝
2
)⟩

− ⟨𝑓 (𝑝
1
) − 𝑓 (𝑝

2
) , 𝐽 (𝑝

1
− 𝑝
2
)⟩

≥ 𝛾
𝑝1 − 𝑝

2



2

− 𝛽
𝑝1 − 𝑝

2



2

= (𝛾 − 𝛽)
𝑝1 − 𝑝

2



2

≥ 0.

(42)

Consequently, we have𝑝
1
= 𝑝
2
, and the uniqueness is proved.

Next, let us show that, for some 𝑎 ∈ (0, 1), {𝑥
𝑡
: 𝑡 ∈ (0, 𝑎]}

is bounded. Indeed, since {𝜃
𝑡

: 𝑡 ∈ (0, 1)} ⊂ [0, 1) with
lim
𝑡→0

(𝜃
𝑡
/𝑡) = 0, there exists some 𝑎 ∈ (0, 1) such that

0 ≤ 𝜃
𝑡
/𝑡 < 1 for all 𝑡 ∈ (0, 𝑎]. Take a fixed 𝑝 ∈ Fix(Λ)

arbitrarily. Utilizing Lemma 7, we have

𝑥𝑡 − 𝑝


2

= ⟨𝑡 (𝑓 (𝑥
𝑡
) − 𝑓 (𝑝)) + (𝐼 − 𝑡𝐴) [𝐺 (𝑇𝑥

𝑡
) − 𝜃
𝑡
𝐹𝐺 (𝑇𝑥

𝑡
) − 𝑝]

−𝑡 (𝐴𝑝 − 𝑓 (𝑝)) , 𝐽 (𝑥
𝑡
− 𝑝)⟩

= 𝑡 ⟨𝑓 (𝑥
𝑡
) − 𝑓 (𝑝) , 𝐽 (𝑥

𝑡
− 𝑝)⟩

+ ⟨(𝐼 − 𝑡𝐴) [𝐺 (𝑇𝑥
𝑡
) − 𝜃
𝑡
𝐹𝐺 (𝑇𝑥

𝑡
) − 𝑝] , 𝐽 (𝑥

𝑡
− 𝑝)⟩

− 𝑡 ⟨(𝐴 − 𝑓) 𝑝, 𝐽 (𝑥
𝑡
− 𝑝)⟩
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≤ 𝑡𝛽
𝑥𝑡 − 𝑝



2

+ (1 − 𝑡𝛾)
𝐺 (𝑇𝑥

𝑡
) − 𝜃
𝑡
𝐹𝐺 (𝑇𝑥

𝑡
) − 𝑝



×
𝑥𝑡 − 𝑝

 + 𝑡
(𝐴 − 𝑓) 𝑝



𝑥𝑡 − 𝑝


≤ 𝑡𝛽
𝑥𝑡 − 𝑝



2

+ (1 − 𝑡𝛾)

× [
(𝐼 − 𝜃

𝑡
𝐹)𝐺 (𝑇𝑥

𝑡
) − (𝐼 − 𝜃

𝑡
𝐹)𝐺 (𝑇𝑝)



+
(𝐼 − 𝜃

𝑡
𝐹)𝐺 (𝑇𝑝) − 𝑝

]
𝑥𝑡 − 𝑝



+ 𝑡
(𝐴 − 𝑓) 𝑝



𝑥𝑡 − 𝑝


≤ 𝑡𝛽
𝑥𝑡 − 𝑝



2

+ (1 − 𝑡𝛾) (1 − 𝜃
𝑡
(1 − √

1 − 𝛼

𝜆
))

×
𝐺 (𝑇𝑥

𝑡
) − 𝐺 (𝑇𝑝)



𝑥𝑡 − 𝑝


+ (1 − 𝑡𝛾) 𝜃
𝑡

𝐹𝑝


𝑥𝑡 − 𝑝
 + 𝑡

(𝐴 − 𝑓) 𝑝


𝑥𝑡 − 𝑝


≤ 𝑡𝛽
𝑥𝑡 − 𝑝



2

+ (1 − 𝑡𝛾) (1 − 𝜃
𝑡
(1 − √

1 − 𝛼

𝜆
))

×
𝑇𝑥𝑡 − 𝑇𝑝



𝑥𝑡 − 𝑝


+ 𝜃
𝑡

𝐹𝑝


𝑥𝑡 − 𝑝
 + 𝑡

(𝐴 − 𝑓) 𝑝


𝑥𝑡 − 𝑝


≤ 𝑡𝛽
𝑥𝑡 − 𝑝



2

+ (1 − 𝑡𝛾)
𝑥𝑡 − 𝑝



2

+ 𝜃
𝑡

𝐹𝑝


𝑥𝑡 − 𝑝
 + 𝑡

(𝐴 − 𝑓) 𝑝


𝑥𝑡 − 𝑝


= (1 − 𝑡 (𝛾 − 𝛽))
𝑥𝑡 − 𝑝



2

+ 𝜃
𝑡

𝐹𝑝


𝑥𝑡 − 𝑝


+ 𝑡
(𝐴 − 𝑓) 𝑝



𝑥𝑡 − 𝑝
 ,

(43)

and, hence, for all 𝑡 ∈ (0, 𝑎],

𝑥𝑡 − 𝑝
 ≤

1

𝛾 − 𝛽
(
(𝐴 − 𝑓) 𝑝

 +
𝜃
𝑡

𝑡

𝐹𝑝
)

≤
1

𝛾 − 𝛽
(
(𝐴 − 𝑓) 𝑝

 +
𝐹𝑝

) .

(44)

Thus, this implies that {𝑥
𝑡
: 𝑡 ∈ (0, 𝑎]} is bounded and so are

{𝑓(𝑥
𝑡
) : 𝑡 ∈ (0, 𝑎]}, {𝑇𝑥

𝑡
: 𝑡 ∈ (0, 𝑎]}, and {𝐺(𝑇𝑥

𝑡
) : 𝑡 ∈ (0, 𝑎]}.

Let us show that ‖𝑇𝑥
𝑡
− 𝐺(𝑇𝑥

𝑡
)‖ → 0 as 𝑡 → 0.

Indeed, for simplicity, we put 𝑞 = Π
𝐶
(𝐼−𝜇
2
𝐵
2
)𝑝,𝑥
𝑡
= 𝑇𝑥
𝑡
,

𝑢
𝑡
= Π
𝐶
(𝐼−𝜇
2
𝐵
2
)𝑥
𝑡
, and V

𝑡
= Π
𝐶
(𝐼−𝜇
1
𝐵
1
)𝑢
𝑡
.Then, it is clear

that𝑝 = Π
𝐶
(𝐼−𝜇
1
𝐵
1
)𝑞 and V

𝑡
= 𝐺(𝑥

𝑡
) = 𝐺(𝑇𝑥

𝑡
). Hence, from

(43), it follows that

𝑥𝑡 − 𝑝


2

≤ 𝑡𝛽
𝑥𝑡 − 𝑝



2

+ (1 − 𝑡𝛾) (1 − 𝜃
𝑡
(1 − √

1 − 𝛼

𝜆
))

×
𝐺 (𝑇𝑥

𝑡
) − 𝐺 (𝑇𝑝)



𝑥𝑡 − 𝑝


+ (1 − 𝑡𝛾) 𝜃
𝑡

𝐹𝑝


𝑥𝑡 − 𝑝
 + 𝑡

(𝐴 − 𝑓) 𝑝


𝑥𝑡 − 𝑝


≤ 𝑡𝛽
𝑥𝑡 − 𝑝



2

+ (1 − 𝑡𝛾)
V𝑡 − 𝑝



𝑥𝑡 − 𝑝


+ 𝜃
𝑡

𝐹𝑝


𝑥𝑡 − 𝑝
 + 𝑡

(𝐴 − 𝑓) 𝑝


𝑥𝑡 − 𝑝
 .

(45)

From Lemma 12, we have
𝑢𝑡 − 𝑞



2

=
Π𝐶 (𝑥𝑡 − 𝜇

2
𝐵
2
𝑥
𝑡
) − Π
𝐶
(𝑝 − 𝜇

2
𝐵
2
𝑝)



2

≤
𝑥𝑡 − 𝑝 − 𝜇

2
(𝐵
2
𝑥
𝑡
− 𝐵
2
𝑝)



2

≤
𝑥𝑡 − 𝑝



2

− 2𝜇
2
(𝛼
2
− 𝜅
2

𝜇
2
)
𝐵2𝑥𝑡 − 𝐵

2
𝑝


2

,

V𝑡 − 𝑝


2

=
Π𝐶(𝑢𝑡 − 𝜇

1
𝐵
1
𝑢
𝑡
) − Π
𝐶
(𝑞 − 𝜇

1
𝐵
1
𝑞)



2

≤
𝑢𝑡 − 𝑞 − 𝜇

1
(𝐵
1
𝑢
𝑡
− 𝐵
1
𝑞)



2

≤
𝑢𝑡 − 𝑞



2

− 2𝜇
1
(𝛼
1
− 𝜅
2

𝜇
1
)
𝐵1𝑢𝑡 − 𝐵

1
𝑞


2

.

(46)

From the last two inequalities, we obtain
V𝑡 − 𝑝



2

≤
𝑥𝑡 − 𝑝



2

− 2𝜇
2
(𝛼
2
− 𝜅
2

𝜇
2
)

×
𝐵2𝑥𝑡 − 𝐵

2
𝑝


2

− 2𝜇
1
(𝛼
1
− 𝜅
2

𝜇
1
)

×
𝐵1𝑢𝑡 − 𝐵

1
𝑞


2

≤
𝑥𝑡 − 𝑝



2

− 2𝜇
2
(𝛼
2
− 𝜅
2

𝜇
2
)
𝐵2𝑥𝑡 − 𝐵

2
𝑝


2

− 2𝜇
1
(𝛼
1
− 𝜅
2

𝜇
1
)
𝐵1𝑢𝑡 − 𝐵

1
𝑞


2

,

(47)

which together with (45) implies that
𝑥𝑡 − 𝑝



2

≤ 𝑡𝛽
𝑥𝑡 − 𝑝



2

+ (1 − 𝑡𝛾)
V𝑡 − 𝑝



𝑥𝑡 − 𝑝
 + 𝜃
𝑡

𝐹𝑝


×
𝑥𝑡 − 𝑝

 + 𝑡
(𝐴 − 𝑓) 𝑝



𝑥𝑡 − 𝑝


≤ 𝑡𝛽
𝑥𝑡 − 𝑝



2

+ 𝑡
(𝐴 − 𝑓) 𝑝



𝑥𝑡 − 𝑝
 + (1 − 𝑡𝛾)

×
1

2
(
𝑥𝑡 − 𝑝



2

+
V𝑡 − 𝑝



2

) + 𝜃
𝑡

𝐹𝑝


𝑥𝑡 − 𝑝


≤ 𝑡𝛽
𝑥𝑡 − 𝑝



2

+ 𝑡
(𝐴 − 𝑓) 𝑝



𝑥𝑡 − 𝑝


+ (1 − 𝑡𝛾)
1

2
{
𝑥𝑡 − 𝑝



2

+
𝑥𝑡 − 𝑝



2

− 2𝜇
2
(𝛼
2
− 𝜅
2

𝜇
2
)
𝐵2𝑥𝑡 − 𝐵

2
𝑝


2

− 2𝜇
1
(𝛼
1
− 𝜅
2

𝜇
1
)

×
𝐵1𝑢𝑡 − 𝐵

1
𝑞


2

} + 𝜃
𝑡

𝐹𝑝


𝑥𝑡 − 𝑝


= (1 − 𝑡 (𝛾 − 𝛽))
𝑥𝑡 − 𝑝



2

+ 𝑡
(𝐴 − 𝑓) 𝑝



𝑥𝑡 − 𝑝


− (1 − 𝑡𝛾) [𝜇
2
(𝛼
2
− 𝜅
2

𝜇
2
)
𝐵2𝑥𝑡 − 𝐵

2
𝑝


2

+𝜇
1
(𝛼
1
− 𝜅
2

𝜇
1
)
𝐵1𝑢𝑡 − 𝐵

1
𝑞


2

]
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+ 𝜃
𝑡

𝐹𝑝


𝑥𝑡 − 𝑝


≤
𝑥𝑡 − 𝑝



2

+ 𝑡
(𝐴 − 𝑓) 𝑝



𝑥𝑡 − 𝑝
 − (1 − 𝑡𝛾)

× [𝜇
2
(𝛼
2
− 𝜅
2

𝜇
2
)
𝐵2𝑥𝑡 − 𝐵

2
𝑝


2

+𝜇
1
(𝛼
1
− 𝜅
2

𝜇
1
)
𝐵1𝑢𝑡 − 𝐵

1
𝑞


2

] + 𝜃
𝑡

𝐹𝑝


𝑥𝑡 − 𝑝
 .

(48)

So, it immediately follows that

(1 − 𝑡𝛾) [𝜇
2
(𝛼
2
− 𝜅
2

𝜇
2
)
𝐵2𝑥𝑡 − 𝐵

2
𝑝


2

+ 𝜇
1
(𝛼
1
− 𝜅
2

𝜇
1
)

×
𝐵1𝑢𝑡 − 𝐵

1
𝑞


2

]

≤ 𝑡
(𝐴 − 𝑓) 𝑝



𝑥𝑡 − 𝑝
 + 𝜃
𝑡

𝐹𝑝


𝑥𝑡 − 𝑝
 .

(49)

Since 0 < 𝜇
𝑖
< 𝛼
𝑖
/𝜅
2, for 𝑖 = 1, 2, we have

lim
𝑡→0

𝐵2𝑥𝑡 − 𝐵
2
𝑝
 = 0, lim

𝑡→0

𝐵1𝑢𝑡 − 𝐵
1
𝑞
 = 0. (50)

Utilizing Proposition 2 and Lemma 8, we have that there
exists 𝑔

1
such that

𝑢𝑡 − 𝑞


2

=
Π𝐶 (𝑥𝑡 − 𝜇

2
𝐵
2
𝑥
𝑡
) − Π
𝐶
(𝑝 − 𝜇

2
𝐵
2
𝑝)



2

≤ ⟨𝑥
𝑡
− 𝜇
2
𝐵
2
𝑥
𝑡
− (𝑝 − 𝜇

2
𝐵
2
𝑝) , 𝐽 (𝑢

𝑡
− 𝑞)⟩

= ⟨𝑥
𝑡
− 𝑝, 𝐽 (𝑢

𝑡
− 𝑞)⟩ + 𝜇

2
⟨𝐵
2
𝑝 − 𝐵
2
𝑥
𝑡
, 𝐽 (𝑢
𝑡
− 𝑞)⟩

≤
1

2
[
𝑥𝑡 − 𝑝



2

+
𝑢𝑡 − 𝑞



2

−𝑔
1
(
𝑥𝑡 − 𝑢

𝑡
− (𝑝 − 𝑞)

) ]

+ 𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑡



𝑢𝑡 − 𝑞
 ,

(51)

which implies that

𝑢𝑡 − 𝑞


2

≤
𝑥𝑡 − 𝑝



2

− 𝑔
1
(
𝑥𝑡 − 𝑢

𝑡
− (𝑝 − 𝑞)

)

+ 2𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑡



𝑢𝑡 − 𝑞
 .

(52)

In the same way, we derive that there exists 𝑔
2
:

V𝑡 − 𝑝


2

=
Π𝐶 (𝑢𝑡 − 𝜇

1
𝐵
1
𝑢
𝑡
) − Π
𝐶
(𝑞 − 𝜇

1
𝐵
1
𝑞)



2

≤ ⟨𝑢
𝑡
− 𝜇
1
𝐵
1
𝑢
𝑡
− (𝑞 − 𝜇

1
𝐵
1
𝑞) , 𝐽 (V

𝑡
− 𝑝)⟩

= ⟨𝑢
𝑡
− 𝑞, 𝐽 (V

𝑡
− 𝑝)⟩ + 𝜇

1
⟨𝐵
1
𝑞 − 𝐵
1
𝑢
𝑡
, 𝐽 (V
𝑡
− 𝑝)⟩

≤
1

2
[
𝑢𝑡 − 𝑞



2

+
V𝑡 − 𝑝



2

−𝑔
2
(
𝑢𝑡 − V

𝑡
+ (𝑝 − 𝑞)

) ]

+ 𝜇
1

𝐵1𝑞 − 𝐵
1
𝑢
𝑡



V𝑡 − 𝑝
 ,

(53)

which implies that

V𝑡 − 𝑝


2

≤
𝑢𝑡 − 𝑞



2

− 𝑔
2
(
𝑢𝑡 − V

𝑡
+ (𝑝 − 𝑞)

)

+ 2𝜇
1

𝐵1𝑞 − 𝐵
1
𝑢
𝑡



V𝑡 − 𝑝
 .

(54)

Substituting (52) for (54), we get

V𝑡 − 𝑝


2

≤
𝑥𝑡 − 𝑝



2

− 𝑔
1
(
𝑥𝑡 − 𝑢

𝑡
− (𝑝 − 𝑞)

)

− 𝑔
2
(
𝑢𝑡 − V

𝑡
+ (𝑝 − 𝑞)

)

+ 2𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑡



𝑢𝑡 − 𝑞


+ 2𝜇
1

𝐵1𝑞 − 𝐵
1
𝑢
𝑡



V𝑡 − 𝑝


≤
𝑥𝑡 − 𝑝



2

− 𝑔
1
(
𝑥𝑡 − 𝑢

𝑡
− (𝑝 − 𝑞)

)

− 𝑔
2
(
𝑢𝑡 − V

𝑡
+ (𝑝 − 𝑞)

)

+ 2𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑡



𝑢𝑡 − 𝑞


+ 2𝜇
1

𝐵1𝑞 − 𝐵
1
𝑢
𝑡



V𝑡 − 𝑝
 ,

(55)

which together with (45) implies that

𝑥𝑡 − 𝑝


2

≤ 𝑡𝛽
𝑥𝑡 − 𝑝



2

+ (1 − 𝑡𝛾)
V𝑡 − 𝑝



𝑥𝑡 − 𝑝
 + 𝜃
𝑡

𝐹𝑝


×
𝑥𝑡 − 𝑝

 + 𝑡
(𝐴 − 𝑓) 𝑝



𝑥𝑡 − 𝑝


≤ 𝑡𝛽
𝑥𝑡 − 𝑝



2

+ 𝑡
(𝐴 − 𝑓) 𝑝



𝑥𝑡 − 𝑝
 + (1 − 𝑡𝛾)

×
1

2
(
𝑥𝑡 − 𝑝



2

+
V𝑡 − 𝑝



2

) + 𝜃
𝑡

𝐹𝑝


𝑥𝑡 − 𝑝


≤ 𝑡𝛽
𝑥𝑡 − 𝑝



2

+ 𝑡
(𝐴 − 𝑓) 𝑝



𝑥𝑡 − 𝑝
 + (1 − 𝑡𝛾)

×
1

2
{
𝑥𝑡 − 𝑝



2

+
𝑥𝑡 − 𝑝



2

− 𝑔
1
(
𝑥𝑡 − 𝑢

𝑡
− (𝑝 − 𝑞)

)

− 𝑔
2
(
𝑢𝑡 − V

𝑡
+ (𝑝 − 𝑞)

)

+ 2𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑡



𝑢𝑡 − 𝑞


+ 2𝜇
1

𝐵1𝑞 − 𝐵
1
𝑢
𝑡



V𝑡 − 𝑝
}

+ 𝜃
𝑡

𝐹𝑝


𝑥𝑡 − 𝑝


= (1 − 𝑡 (𝛾 − 𝛽))
𝑥𝑡 − 𝑝



2

+ 𝑡
(𝐴 − 𝑓) 𝑝



𝑥𝑡 − 𝑝


− (1 − 𝑡𝛾)

×
1

2
[𝑔
1
(
𝑥𝑡 − 𝑢

𝑡
− (𝑝 − 𝑞)

)

+ 𝑔
2
(
𝑢𝑡 − V

𝑡
+ (𝑝 − 𝑞)

)] + (1 − 𝑡𝛾)

× [𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑡



𝑢𝑡 − 𝑞


+𝜇
1

𝐵1𝑞 − 𝐵
1
𝑢
𝑡



V𝑡 − 𝑝
]
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+ 𝜃
𝑡

𝐹𝑝


𝑥𝑡 − 𝑝


≤
𝑥𝑡 − 𝑝



2

+ 𝑡
(𝐴 − 𝑓) 𝑝



𝑥𝑡 − 𝑝
 − (1 − 𝑡𝛾)

×
1

2
[𝑔
1
(
𝑥𝑡 − 𝑢

𝑡
− (𝑝 − 𝑞)

)

+𝑔
2
(
𝑢𝑡 − V

𝑡
+ (𝑝 − 𝑞)

)]

+ 𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑡



𝑢𝑡 − 𝑞


+ 𝜇
1

𝐵1𝑞 − 𝐵
1
𝑢
𝑡



V𝑡 − 𝑝
 + 𝜃
𝑡

𝐹𝑝


𝑥𝑡 − 𝑝
 .

(56)

So, it immediately follows that

(1 − 𝑡𝛾)
1

2
[𝑔
1
(
𝑥𝑡 − 𝑢

𝑡
− (𝑝 − 𝑞)

)

+𝑔
2
(
𝑢𝑡 − V

𝑡
+ (𝑝 − 𝑞)

)]

≤ 𝑡
(𝐴 − 𝑓) 𝑝



𝑥𝑡 − 𝑝
 + 𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑡



𝑢𝑡 − 𝑞


+ 𝜇
1

𝐵1𝑞 − 𝐵
1
𝑢
𝑡



V𝑡 − 𝑝
 + 𝜃
𝑡

𝐹𝑝


𝑥𝑡 − 𝑝
 .

(57)

Hence, from (50), we conclude that

lim
𝑡→0

𝑔
1
(
𝑥𝑡 − 𝑢

𝑡
− (𝑝 − 𝑞)

) = 0,

lim
𝑡→0

𝑔
2
(
𝑢𝑡 − V

𝑡
+ (𝑝 − 𝑞)

) = 0.

(58)

Utilizing the properties of 𝑔
1
and 𝑔

2
, we get

lim
𝑡→0

𝑥𝑡 − 𝑢
𝑡
− (𝑝 − 𝑞)

 = 0,

lim
𝑡→0

𝑢𝑡 − V
𝑡
+ (𝑝 − 𝑞)

 = 0,

(59)

which leads to
𝑥𝑡 − V

𝑡

 ≤
𝑥𝑡 − 𝑢

𝑡
− (𝑝 − 𝑞)



+
𝑢𝑡 − V

𝑡
+ (𝑝 − 𝑞)

 → 0 as 𝑡 → 0.

(60)

That is,

lim
𝑡→0

𝑇𝑥𝑡 − 𝐺 (𝑇𝑥
𝑡
)
 = lim
𝑡→0

𝑥𝑡 − V
𝑡

 = 0. (61)

Note that {𝑥
𝑡
: 𝑡 ∈ (0, 𝑎]} is bounded and so are {𝑓(𝑥

𝑡
) :

𝑡 ∈ (0, 𝑎]}, {𝑇𝑥
𝑡
: 𝑡 ∈ (0, 𝑎]}, and {𝐺(𝑇𝑥

𝑡
) : 𝑡 ∈ (0, 𝑎]}. Hence,

we have
𝑥𝑡 − 𝐺 (𝑇𝑥

𝑡
)


= 𝑡



𝑓 (𝑥
𝑡
) − 𝐴𝐺 (𝑇𝑥

𝑡
) −

𝜃
𝑡

𝑡
(𝐼 − 𝑡𝐴) 𝐹𝐺 (𝑇𝑥

𝑡
)



→ 0,

(62)

as 𝑡 → 0. Also, observe that

𝑥𝑡 − 𝑇𝑥
𝑡

 ≤
𝑥𝑡 − 𝐺 (𝑇𝑥

𝑡
)
 +

𝐺 (𝑇𝑥
𝑡
) − 𝑇𝑥

𝑡

 . (63)

This together with (61) and (62) implies that

lim
𝑡→0

𝑥𝑡 − 𝑇𝑥
𝑡

 = 0. (64)

Utilizing the nonexpansivity of 𝐺, we obtain

𝑥𝑡 − 𝐺𝑥
𝑡

 ≤
𝑥𝑡 − 𝐺 (𝑇𝑥

𝑡
)
 +

𝐺 (𝑇𝑥
𝑡
) − 𝐺𝑥

𝑡



≤
𝑥𝑡 − 𝐺 (𝑇𝑥

𝑡
)
 +

𝑇𝑥𝑡 − 𝑥
𝑡

 ,

(65)

which together with (62) and (64) implies that

lim
𝑡→0

𝑥𝑡 − 𝐺𝑥
𝑡

 = 0. (66)

Now, let {𝑡
𝑘
} be a sequence in (0, 𝑎] that converges to 0 as 𝑘 →

∞, and define a function 𝑔 on 𝐶 by

𝑔 (𝑥) = 𝜇
𝑘

1

2


𝑥
𝑡
𝑘

− 𝑥


2

, ∀𝑥 ∈ 𝐶, (67)

where 𝜇 is a Banach limit. Define the set

𝐾 := {𝑤 ∈ 𝐶 : 𝑔 (𝑤) = min {𝑔 (𝑦) : 𝑦 ∈ 𝐶}} (68)

and the mapping

𝑊𝑥 = (1 − 𝜃) 𝑇𝑥 + 𝜃𝐺𝑥, ∀𝑥 ∈ 𝐶, (69)

where 𝜃 is a constant in (0, 1). Then, by Lemma 10, we know
that Fix(𝑊) = Fix(𝑇) ∩ Fix(𝐺) = Λ. We observe that

𝑥𝑡 − 𝑊𝑥
𝑡

 =
(1 − 𝜃) (𝑥

𝑡
− 𝑇𝑥
𝑡
) + 𝜃 (𝑥

𝑡
− 𝐺𝑥
𝑡
)


≤ (1 − 𝜃)
𝑥𝑡 − 𝑇𝑥

𝑡

 + 𝜃
𝑥𝑡 − 𝐺𝑥

𝑡

 .

(70)

So, from (64) and (66), we obtain

lim
𝑛→∞

𝑥𝑡 − 𝑊𝑥
𝑡

 = 0. (71)

Since𝑋 is a uniformly smooth Banach space,𝐾 is a nonempty
bounded closed convex subset of𝐶; for more details, see [14].
We claim that 𝐾 is also invariant under the nonexpansive
mapping 𝑊. Indeed, noticing (71), we have, for 𝑤 ∈ 𝐾,

𝑔 (𝑊𝑤) = 𝜇
𝑘

1

2


𝑥
𝑡
𝑘

− 𝑊𝑤


2

= 𝜇
𝑘

1

2


𝑊𝑥
𝑡
𝑘

− 𝑊𝑤


2

≤ 𝜇
𝑘

1

2


𝑥
𝑡
𝑘

− 𝑤


2

= 𝑔 (𝑤) .

(72)

Since every nonempty closed bounded convex subset of a
uniformly smooth Banach space 𝑋 has the fixed point prop-
erty for nonexpansive mappings and 𝑊 is a nonexpansive
mapping of 𝐾, 𝑊 has a fixed point in 𝐾, say 𝑝. Utilizing
Lemma 5, we get

𝜇
𝑘
⟨𝑥 − 𝑝, 𝐽 (𝑥

𝑡
𝑘

− 𝑝)⟩ ≤ 0, ∀𝑥 ∈ 𝐶. (73)

Putting 𝑥 = (𝑓 − 𝐴)𝑝 + 𝑝 ∈ 𝐶, we have

𝜇
𝑘
⟨(𝑓 − 𝐴) 𝑝, 𝐽 (𝑥

𝑡
𝑘

− 𝑝)⟩ ≤ 0, ∀𝑥 ∈ 𝐶. (74)
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Since 𝑥
𝑡
𝑘

− 𝑝 = 𝑡
𝑘
(𝑓(𝑥
𝑡
𝑘

) − 𝑓(𝑝)) + (𝐼 − 𝑡
𝑘
𝐴)[𝐺(𝑇𝑥

𝑡
𝑘

) − 𝜃
𝑡
𝑘

𝐹𝐺(𝑇𝑥
𝑡
𝑘

) − 𝑝] − 𝑡
𝑘
(𝐴 − 𝑓)𝑝, we get


𝑥
𝑡
𝑘

− 𝑝


2

= 𝑡
𝑘
⟨𝑓 (𝑥

𝑡
𝑘

) − 𝑓 (𝑝) , 𝐽 (𝑥
𝑡
𝑘

− 𝑝)⟩

+ ⟨(𝐼 − 𝑡
𝑘
𝐴) (𝐺 (𝑇𝑥

𝑡
𝑘

) − 𝑝) , 𝐽 (𝑥
𝑡
𝑘

− 𝑝)⟩

− 𝜃
𝑡
𝑘

⟨(𝐼 − 𝑡
𝑘
𝐴)𝐹𝐺 (𝑇𝑥

𝑡
𝑘

) , 𝐽 (𝑥
𝑡
𝑘

− 𝑝)⟩

− 𝑡
𝑘
⟨(𝐴 − 𝑓) 𝑝, 𝐽 (𝑥

𝑡
𝑘

− 𝑝)⟩

≤ 𝑡
𝑘
𝛽

𝑥
𝑡
𝑘

− 𝑝


2

+ 𝑡
𝑘
⟨(𝑓 − 𝐴) 𝑝, 𝐽 (𝑥

𝑡
𝑘

− 𝑝)⟩

+ (1 − 𝑡
𝑘
𝛾)


𝐺 (𝑇𝑥

𝑡
𝑘

) − 𝑝



𝑥
𝑡
𝑘

− 𝑝


+ (1 − 𝑡
𝑘
𝛾) 𝜃
𝑡
𝑘


𝐹𝐺 (𝑇𝑥

𝑡
𝑘

)



𝑥
𝑡
𝑘

− 𝑝


≤ 𝑡
𝑘
𝛽

𝑥
𝑡
𝑘

− 𝑝


2

+ 𝑡
𝑘
⟨(𝑓 − 𝐴) 𝑝, 𝐽 (𝑥

𝑡
𝑘

− 𝑝)⟩

+ (1 − 𝑡
𝑘
𝛾)


𝑥
𝑡
𝑘

− 𝑝


2

+ 𝜃
𝑡
𝑘


𝐹𝐺 (𝑇𝑥

𝑡
𝑘

)



𝑥
𝑡
𝑘

− 𝑝

.

(75)

It follows that


𝑥
𝑡
𝑘

− 𝑝


2

≤
1

𝛾 − 𝛽
[⟨(𝑓 − 𝐴) 𝑝, 𝐽 (𝑥

𝑡
𝑘

− 𝑝)⟩

+

𝜃
𝑡
𝑘

𝑡
𝑘


𝐹𝐺 (𝑇𝑥

𝑡
𝑘

)



𝑥
𝑡
𝑘

− 𝑝

] .

(76)

Since lim
𝑘→∞

(𝜃
𝑡
𝑘

/𝑡
𝑘
) = 0, from (74) and the boundedness of

sequences {𝐹𝐺(𝑇𝑥
𝑡
𝑘

)}, {𝑥
𝑡
𝑘

}, it follows that

𝜇
𝑘


𝑥
𝑡
𝑘

−𝑝


2

≤
1

𝛾 − 𝛽
𝜇
𝑘
[⟨(𝑓 − 𝐴) 𝑝, 𝐽 (𝑥

𝑡
𝑘

− 𝑝)⟩

+

𝜃
𝑡
𝑘

𝑡
𝑘


𝐹𝐺 (𝑇𝑥

𝑡
𝑘

)



𝑥
𝑡
𝑘

− 𝑝

]

=
1

𝛾 − 𝛽
[𝜇
𝑘
⟨(𝑓 − 𝐴) 𝑝, 𝐽 (𝑥

𝑡
𝑘

− 𝑝)⟩

+𝜇
𝑘
(

𝜃
𝑡
𝑘

𝑡
𝑘


𝐹𝐺 (𝑇𝑥

𝑡
𝑘

)



𝑥
𝑡
𝑘

− 𝑝

)] ≤ 0.

(77)

Therefore, for the sequence {𝑥
𝑡
𝑘

} in {𝑥
𝑡

: 𝑡 ∈ (0, 𝑎]},
there exists a subsequence which is still denoted by {𝑥

𝑡
𝑘

} that
converges strongly to some fixed point 𝑝 of 𝑊.

Now, we claim that such a 𝑝 is the unique solution inΛ to
the VIP (36).

Indeed, from (35), it follows that for all𝑢 ∈ Λ = Fix(𝑇)∩Ω

𝑥𝑡 − 𝑢


2

= 𝑡 ⟨𝑓 (𝑥
𝑡
) − 𝑓 (𝑢) , 𝐽 (𝑥

𝑡
− 𝑢)⟩

+ ⟨(𝐼 − 𝑡𝐴) [𝐺 (𝑇𝑥
𝑡
) − 𝜃
𝑡
𝐹𝐺 (𝑇𝑥

𝑡
) − 𝑢] , 𝐽 (𝑥

𝑡
− 𝑢)⟩

− 𝑡 ⟨(𝐴 − 𝑓) 𝑢, 𝐽 (𝑥
𝑡
− 𝑢)⟩

= ⟨(𝐼 − 𝑡𝐴) [(𝐼 − 𝜃
𝑡
𝐹)𝐺 (𝑇𝑥

𝑡
) − (𝐼 − 𝜃

𝑡
𝐹) 𝑢

+ (𝐼 − 𝜃
𝑡
𝐹) 𝑢 − 𝑢] , 𝐽 (𝑥

𝑡
− 𝑢)⟩

+ 𝑡 ⟨𝑓 (𝑥
𝑡
) − 𝑓 (𝑢) , 𝐽 (𝑥

𝑡
− 𝑢)⟩ − 𝑡 ⟨(𝐴 − 𝑓) 𝑢, 𝐽 (𝑥

𝑡
− 𝑢)⟩

≤ (1 − 𝑡𝛾) [
(𝐼 − 𝜃

𝑡
𝐹)𝐺 (𝑇𝑥

𝑡
) − (𝐼 − 𝜃

𝑡
𝐹) 𝑢



+
(𝐼 − 𝜃

𝑡
𝐹) 𝑢 − 𝑢

]

×
𝑥𝑡 − 𝑢

 + 𝑡𝛽
𝑥𝑡 − 𝑢



2

− 𝑡 ⟨(𝐴 − 𝑓) 𝑢, 𝐽 (𝑥
𝑡
− 𝑢)⟩

≤ (1 − 𝑡𝛾) [(1 − 𝜃
𝑡
(1 − √

1 − 𝛼

𝜆
))

𝑥𝑡 − 𝑢
 + 𝜃
𝑡
‖𝐹𝑢‖]

×
𝑥𝑡 − 𝑢

 + 𝑡𝛽
𝑥𝑡 − 𝑢



2

− 𝑡 ⟨(𝐴 − 𝑓) 𝑢, 𝐽 (𝑥
𝑡
− 𝑢)⟩

≤ (1 − 𝑡𝛾) [
𝑥𝑡 − 𝑢

 + 𝜃
𝑡
‖𝐹𝑢‖]

𝑥𝑡 − 𝑢


+ 𝑡𝛽
𝑥𝑡 − 𝑢



2

− 𝑡 ⟨(𝐴 − 𝑓) 𝑢, 𝐽 (𝑥
𝑡
− 𝑢)⟩

≤ (1 − 𝑡 (𝛾 − 𝛽))
𝑥𝑡 − 𝑢



2

+ 𝜃
𝑡
‖𝐹𝑢‖

×
𝑥𝑡 − 𝑢

 − 𝑡 ⟨(𝐴 − 𝑓) 𝑢, 𝐽 (𝑥
𝑡
− 𝑢)⟩

≤
𝑥𝑡 − 𝑢



2

+ 𝜃
𝑡
‖𝐹𝑢‖

𝑥𝑡 − 𝑢
 − 𝑡 ⟨(𝐴 − 𝑓) 𝑢, 𝐽 (𝑥

𝑡
− 𝑢)⟩ ,

(78)

which hence implies that

⟨(𝐴 − 𝑓) 𝑢, 𝐽 (𝑥
𝑡
− 𝑢)⟩ ≤

𝜃
𝑡

𝑡
‖𝐹𝑢‖

𝑥𝑡 − 𝑢
 , ∀𝑢 ∈ Λ.

(79)

Since 𝑥
𝑡
𝑘

→ 𝑝 as 𝑡
𝑘

→ 0 and lim
𝑡→0

(𝜃
𝑡
/𝑡) = 0, we obtain

from the last inequality that

⟨(𝐴 − 𝑓) 𝑢, 𝐽 (𝑝 − 𝑢)⟩ ≤ 0, ∀𝑢 ∈ Λ. (80)

Utilizing the well-known Minty-type Lemma, we get

⟨(𝐴 − 𝑓) 𝑝, 𝐽 (𝑝 − 𝑢)⟩ ≤ 0, ∀𝑢 ∈ Λ. (81)

So, 𝑝 is a solution in Λ to the VIP (36).
In order to prove that the net {𝑥

𝑡
: 𝑡 ∈ (0, 𝑎]} converges

strongly to 𝑝 as 𝑡 → 0, suppose that there exists another
subsequence {𝑥

𝑠
𝑘

} ⊂ {𝑥
𝑡
} such that 𝑥

𝑠
𝑘

→ 𝑞 as 𝑠
𝑘

→ 0;
then we also have 𝑞 ∈ Fix(𝑊) = Fix(𝑇) ∩ Ω =: Λ due to
(71). Repeating the same argument as above, we know that
𝑞 is another solution in Λ to the VIP (36). In terms of the
uniqueness of solutions inΛ to the VIP (36), we immediately
get 𝑝 = 𝑞. This completes the proof.
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Remark 17. It is worth emphasizing that, in the assertion of
Theorem 16, “as 𝑡 → 0, {𝑥

𝑡
} converges strongly to a point

𝑝 ∈ Λ,” this 𝑝 depends on no one of the mappings 𝑓, 𝐴, and
𝐹. Indeed, although {𝑥

𝑡
} is defined by

𝑥
𝑡
= 𝑡𝑓 (𝑥

𝑡
)+(𝐼 − 𝑡𝐴) [𝐺 (𝑇𝑥

𝑡
) − 𝜃
𝑡
𝐹𝐺 (𝑇𝑥

𝑡
)] , ∀𝑡 ∈ (0, 1) ,

(82)

in the proof ofTheorem 16, it can be readily seen that 𝑝 is first
found out as a fixed point of the nonexpansive self-mapping
𝑊 of𝐾.This shows that𝑝 depends on no one of themappings
𝑓, 𝐴, and 𝐹.

Remark 18. Theorem 16 improves, extends, supplements, and
develops Cai and Bu [9, Lemma 2.5] in the following aspects.

(i) The GSVI (13) with hierarchical fixed point problem
constraint for a nonexpansive mapping is more general and
more subtle than the problem in Cai and Bu [9, Lemma 2.5]
because our problem is to find a point 𝑝 ∈ Λ = Fix(𝑇) ∩ Ω,
which is the unique solution in Λ to the VIP:

⟨(𝐴 − 𝑓) 𝑝, 𝐽 (𝑝 − 𝑢)⟩ ≤ 0, ∀𝑢 ∈ Λ. (83)

(ii) The iterative scheme in [9, Lemma 2.5] is extended
to develop the iterative scheme in Theorem 16 by virtue
of hybrid steepest-descent method. The iterative scheme in
Theorem 16 is more advantageous and more flexible than
the iterative scheme of [9, Lemma 2.5] because our iterative
scheme involves solving two problems: the GSVI (13) and the
fixed point problem of a nonexpansive mapping 𝑇.

(iii) The iterative scheme in Theorem 16 is very different
from the iterative scheme in [9, Lemma 2.5] because our
iterative scheme involves hybrid steepest-descent method
(namely, we add a strongly accretive and strictly pseudocon-
tractive mapping 𝐹 in our iterative scheme) and because the
mapping 𝑇 in [9, Lemma 2.5] is replaced by the composite
mapping 𝐺 ∘ 𝑇 in the iterative scheme of Theorem 16.

(iv) The argument techniques of Theorem 16 are very
different from Cai and Bu’s ones of [9, Lemma 2.5]. Because
the composite mapping 𝐺 ∘ 𝑇 appears in the iterative
scheme of Theorem 16, the proof of Theorem 16 depends
on the argument techniques in [18], the inequality in 2-
uniformly smooth Banach spaces (see Lemma 1), the inequal-
ity in smooth and uniform convex Banach spaces (see
Proposition 2), and the properties of the strongly positive
linear bounded operator (see Lemmas 15), the Banach limit
(see Lemma 5), and the strongly accretive and strictly pseu-
docontractive mapping (see Lemma 7).

4. GSVI with Hierarchical Fixed Point
Problem Constraint for a Countable Family
of Nonexpansive mappings

In this section, we propose our hybrid explicit viscosity
scheme for solving theGSVI (13) with hierarchical fixed point
problem constraint for a countable family of nonexpansive
mappings and show the strong convergence theorem.

Theorem 19. Let 𝐶 be a nonempty closed convex subset of
a uniformly convex and 2-uniformly smooth Banach space 𝑋

such that 𝐶 ± 𝐶 ⊂ 𝐶. Let Π
𝐶
be a sunny nonexpansive

retraction from 𝑋 onto 𝐶. Let the mapping 𝐵
𝑖

: 𝐶 → 𝑋

be 𝛼
𝑖
-inverse-strongly accretive for 𝑖 = 1, 2. Let {𝑆

𝑛
}
∞

𝑛=0
be an

infinite family of nonexpansive mappings of 𝐶 into itself such
that Δ = ⋂

∞

𝑖=0
Fix(𝑆
𝑖
) ∩ Ω ̸= 0, where Ω is the fixed point

set of the mapping 𝐺 = Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) with

0 < 𝜇
𝑖
< 𝛼
𝑖
/𝜅
2 for 𝑖 = 1, 2. Let 𝑓 : 𝐶 → 𝐶 be a fixed contra-

ctive map with coefficient 𝛽 ∈ (0, 1), let 𝐹 : 𝐶 → 𝐶 be 𝛼-
strongly accretive and 𝜆-strictly pseudocontractive with 𝛼+𝜆 >

1, and let 𝐴 : 𝐶 → 𝐶 be a 𝛾-strongly positive linear bounded
operator with 0 < 𝛾 − 𝛽 ≤ 1. Given sequences {𝜆

𝑛
}
∞

𝑛=0
, {𝜇
𝑛
}
∞

𝑛=0

in [0, 1] and {𝛼
𝑛
}
∞

𝑛=0
, {𝛽
𝑛
}
∞

𝑛=0
in (0, 1], suppose that there hold

the following conditions:

(i) lim
𝑛→∞

𝛽
𝑛
= 0 and ∑

∞

𝑛=0
𝛽
𝑛
= ∞;

(ii) lim
𝑛→∞

(𝜆
𝑛
𝜇
𝑛
)/𝛽
𝑛
= 0;

(iii) {𝛼
𝑛
} ⊂ [𝑎, 𝑏] for some 𝑎, 𝑏 ∈ (0, 1);

(iv) ∑
∞

𝑛=0
(|𝛼
𝑛+1

−𝛼
𝑛
|+|𝛽
𝑛+1

−𝛽
𝑛
|+|𝜆
𝑛+1

−𝜆
𝑛
|+|𝜇
𝑛+1

−𝜇
𝑛
|) <

∞.

Assume that∑∞
𝑛=0

sup
𝑥∈𝐷

‖𝑆
𝑛+1

𝑥 − 𝑆
𝑛
𝑥‖ < ∞ for any bounded

subset 𝐷 of 𝐶 and let 𝑆 be a mapping of 𝐶 into itself defined
by 𝑆𝑥 = lim

𝑛→∞
𝑆
𝑛
𝑥 for all 𝑥 ∈ 𝐶 and suppose that Fix(𝑆) =

⋂
∞

𝑛=0
Fix(𝑆
𝑛
). Then, for any given point 𝑥

0
∈ 𝐶, the sequence

{𝑥
𝑛
} generated by

𝑦
𝑛
= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐺 (𝑆

𝑛
𝑥
𝑛
) ,

𝑥
𝑛+1

= 𝛽
𝑛
𝑓 (𝑥
𝑛
) + (𝐼 − 𝛽

𝑛
𝐴)

× [𝐺 (𝑆
𝑛
𝑦
𝑛
) − 𝜆
𝑛
𝜇
𝑛
𝐹𝐺 (𝑆

𝑛
𝑦
𝑛
)] ,

∀𝑛 ≥ 0,

(84)

converges strongly to 𝑝 ∈ Δ, which is the unique solution in Δ

to the VIP:

⟨(𝐴 − 𝑓) 𝑝, 𝐽 (𝑝 − 𝑢)⟩ ≤ 0, ∀𝑢 ∈ Δ. (85)

Proof. First, let us show that {𝑥
𝑛
} is bounded. Indeed, taking

a fixed 𝑢 ∈ Δ arbitrarily, we have

𝑦𝑛 − 𝑢
 =

𝛼𝑛𝑥𝑛 + (1 − 𝛼
𝑛
) 𝐺 (𝑆

𝑛
𝑥
𝑛
) − 𝑢



≤ 𝛼
𝑛

𝑥𝑛 − 𝑢
 + (1 − 𝛼

𝑛
)
𝐺 (𝑆
𝑛
𝑥
𝑛
) − 𝑢



≤ 𝛼
𝑛

𝑥𝑛 − 𝑢
 + (1 − 𝛼

𝑛
)
𝑆𝑛𝑥𝑛 − 𝑢



≤ 𝛼
𝑛

𝑥𝑛 − 𝑢
 + (1 − 𝛼

𝑛
)
𝑥𝑛 − 𝑢

 =
𝑥𝑛 − 𝑢

 .

(86)

So, ‖𝑦
𝑛
− 𝑢‖ ≤ ‖𝑥

𝑛
− 𝑢‖ for all 𝑛 ≥ 0. Taking into account

lim
𝑛→∞

(𝜆
𝑛
𝜇
𝑛
)/𝛽
𝑛

= 0, we may assume, without loss of
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generality, that 𝜆
𝑛
𝜇
𝑛

≤ 𝛽
𝑛

≤ ‖𝐴‖
−1 for all 𝑛 ≥ 0. Thus, by

Lemma 7 (ii), we have

𝑥𝑛+1 − 𝑢


=
𝛽𝑛 (𝑓 (𝑥

𝑛
) − 𝑓 (𝑢)) + (𝐼 − 𝛽

𝑛
𝐴)

× [𝐺 (𝑆
𝑛
𝑦
𝑛
) − 𝜆
𝑛
𝜇
𝑛
𝐹𝐺 (𝑆

𝑛
𝑦
𝑛
) − 𝑢] − 𝛽

𝑛
(𝐴 − 𝑓) 𝑢



≤ 𝛽
𝑛

𝑓 (𝑥
𝑛
) − 𝑓 (𝑢)



+
(𝐼 − 𝛽

𝑛
𝐴) [𝐺 (𝑆

𝑛
𝑦
𝑛
) − 𝜆
𝑛
𝜇
𝑛
𝐹𝐺 (𝑆

𝑛
𝑦
𝑛
) −𝑢]



+ 𝛽
𝑛

(𝐴 − 𝑓) 𝑢


≤ 𝛽
𝑛
𝛽
𝑥𝑛 − 𝑢

 + (1 − 𝛽
𝑛
𝛾)

× [
(𝐼 − 𝜆

𝑛
𝜇
𝑛
𝐹)𝐺 (𝑆

𝑛
𝑦
𝑛
) − (𝐼 − 𝜆

𝑛
𝜇
𝑛
𝐹)𝐺 (𝑆

𝑛
𝑢)



+
(𝐼 − 𝜆

𝑛
𝜇
𝑛
𝐹)𝐺 (𝑆

𝑛
𝑢) − 𝑢

] + 𝛽
𝑛

(𝐴 − 𝑓) 𝑢


≤ 𝛽
𝑛
𝛽
𝑥𝑛 − 𝑢

 + (1 − 𝛽
𝑛
𝛾)

× (1 − 𝜆
𝑛
𝜇
𝑛
(1 − √

1 − 𝛼

𝜆
))

𝐺 (𝑆
𝑛
𝑦
𝑛
) − 𝐺 (𝑆

𝑛
𝑢)



+ (1 − 𝛽
𝑛
𝛾) 𝜆
𝑛
𝜇
𝑛
‖𝐹𝑢‖ + 𝛽

𝑛

(𝐴 − 𝑓) 𝑢


≤ 𝛽
𝑛
𝛽
𝑥𝑛 − 𝑢

 + (1 − 𝛽
𝑛
𝛾)(1 − 𝜆

𝑛
𝜇
𝑛
(1 − √

1 − 𝛼

𝜆
))

×
𝑆𝑛𝑦𝑛 − 𝑆

𝑛
𝑢
 + 𝜆
𝑛
𝜇
𝑛
‖𝐹𝑢‖ + 𝛽

𝑛

(𝐴 − 𝑓) 𝑢


≤ 𝛽
𝑛
𝛽
𝑥𝑛 − 𝑢

 + (1 − 𝛽
𝑛
𝛾)

𝑦𝑛 − 𝑢


+ 𝜆
𝑛
𝜇
𝑛
‖𝐹𝑢‖ + 𝛽

𝑛

(𝐴 − 𝑓) 𝑢


≤ 𝛽
𝑛
𝛽
𝑥𝑛 − 𝑢

 + (1 − 𝛽
𝑛
𝛾)

𝑥𝑛 − 𝑢


+ 𝛽
𝑛
‖𝐹𝑢‖ + 𝛽

𝑛

(𝐴 − 𝑓) 𝑢


= (1 − 𝛽
𝑛
(𝛾 − 𝛽))

𝑥𝑛 − 𝑢


+ 𝛽
𝑛
(𝛾 − 𝛽)

(𝐴 − 𝑓) 𝑢
 + ‖𝐹𝑢‖

𝛾 − 𝛽

≤ max{
𝑥𝑛 − 𝑢

 ,

(𝐴 − 𝑓) 𝑢
 + ‖𝐹𝑢‖

𝛾 − 𝛽
} ,

(87)

By induction,

𝑥𝑛−𝑢
 ≤ max{

𝑥0 − 𝑢
 ,

(𝐴 − 𝑓) 𝑢
 + ‖𝐹𝑢‖

𝛾 − 𝛽
} , ∀𝑛 ≥ 0.

(88)

Thus, {𝑥
𝑛
} is bounded and so is {𝑦

𝑛
}. Because 𝐺 and 𝑆

𝑛

are nonexpansive for all 𝑛 ≥ 0, 𝑓 is contractive, and 𝐹 is
Lipschitzian, {𝑆

𝑛
𝑥
𝑛
}, {𝑆
𝑛
𝑦
𝑛
}, {𝐺(𝑆

𝑛
𝑥
𝑛
)}, {𝐺(𝑆

𝑛
𝑦
𝑛
)}, {𝑓(𝑥

𝑛
)},

and {𝐹𝐺(𝑆
𝑛
𝑦
𝑛
)} are bounded. From conditions (i) and (ii) we

have

𝑥𝑛+1 − 𝐺 (𝑆
𝑛
𝑦
𝑛
)


= 𝛽
𝑛

(𝑓 (𝑥
𝑛
) − 𝐴𝐺 (𝑆

𝑛
𝑦
𝑛
)) + (𝐼 − 𝛽

𝑛
𝐴)

× (𝐺 (𝑆
𝑛
𝑦
𝑛
) − 𝜆
𝑛
𝜇
𝑛
𝐹𝐺 (𝑆

𝑛
𝑦
𝑛
) − 𝐺 (𝑆

𝑛
𝑦
𝑛
))


≤ 𝛽
𝑛

𝑓 (𝑥
𝑛
) − 𝐴𝐺 (𝑆

𝑛
𝑦
𝑛
)


+ (1 − 𝛽
𝑛
𝛾) 𝜆
𝑛
𝜇
𝑛

𝐹𝐺 (𝑆
𝑛
𝑦
𝑛
)


≤ 𝛽
𝑛

𝑓 (𝑥
𝑛
) − 𝐴𝐺 (𝑆

𝑛
𝑦
𝑛
)


+ 𝜆
𝑛
𝜇
𝑛

𝐹𝐺 (𝑆
𝑛
𝑦
𝑛
)
 → 0 2 as 𝑛 → ∞.

(89)

Now, we claim that

𝑥𝑛+1 − 𝑥
𝑛

 → 0 as 𝑛 → ∞. (90)

In order to prove (90), we estimate ‖𝑥
𝑛+1

−𝑥
𝑛
‖ first. From (84),

we have

𝑦
𝑛
= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐺 (𝑆

𝑛
𝑥
𝑛
) ,

𝑦
𝑛−1

= 𝛼
𝑛−1

𝑥
𝑛−1

+ (1 − 𝛼
𝑛−1

) 𝐺 (𝑆
𝑛−1

𝑥
𝑛−1

) .

(91)

Simple calculations show that

𝑦
𝑛
− 𝑦
𝑛−1

= (1 − 𝛼
𝑛
) (𝐺 (𝑆

𝑛
𝑥
𝑛
) − 𝐺 (𝑆

𝑛−1
𝑥
𝑛−1

))

+ 𝛼
𝑛
(𝑥
𝑛
− 𝑥
𝑛−1

) + (𝑥
𝑛−1

− 𝐺 (𝑆
𝑛−1

𝑥
𝑛−1

))

× (𝛼
𝑛
− 𝛼
𝑛−1

) .

(92)

It follows that

𝑦𝑛 − 𝑦
𝑛−1



≤ (1 − 𝛼
𝑛
)
𝐺 (𝑆
𝑛
𝑥
𝑛
) − 𝐺 (𝑆

𝑛−1
𝑥
𝑛−1

)
 + 𝛼
𝑛

𝑥𝑛 − 𝑥
𝑛−1



+
𝑥𝑛−1 − 𝐺 (𝑆

𝑛−1
𝑥
𝑛−1

)


𝛼𝑛 − 𝛼
𝑛−1



≤ (1 − 𝛼
𝑛
)
𝑆𝑛𝑥𝑛 − 𝑆

𝑛−1
𝑥
𝑛−1

 + 𝛼
𝑛

𝑥𝑛 − 𝑥
𝑛−1



+
𝑥𝑛−1 − 𝐺 (𝑆

𝑛−1
𝑥
𝑛−1

)


𝛼𝑛 − 𝛼
𝑛−1



≤ (1 − 𝛼
𝑛
) (

𝑆𝑛𝑥𝑛 − 𝑆
𝑛
𝑥
𝑛−1

 +
𝑆𝑛𝑥𝑛−1 − 𝑆

𝑛−1
𝑥
𝑛−1

)

+ 𝛼
𝑛

𝑥𝑛 − 𝑥
𝑛−1

 +
𝑥𝑛−1 − 𝐺 (𝑆

𝑛−1
𝑥
𝑛−1

)


𝛼𝑛 − 𝛼
𝑛−1



≤ (1 − 𝛼
𝑛
) (

𝑥𝑛 − 𝑥
𝑛−1

 +
𝑆𝑛𝑥𝑛−1 − 𝑆

𝑛−1
𝑥
𝑛−1

)

+ 𝛼
𝑛

𝑥𝑛 − 𝑥
𝑛−1

 +
𝑥𝑛−1 − 𝐺 (𝑆

𝑛−1
𝑥
𝑛−1

)


𝛼𝑛 − 𝛼
𝑛−1



≤
𝑥𝑛 − 𝑥

𝑛−1

 +
𝑥𝑛−1 − 𝐺 (𝑆

𝑛−1
𝑥
𝑛−1

)


𝛼𝑛 − 𝛼
𝑛−1



+
𝑆𝑛𝑥𝑛−1 − 𝑆

𝑛−1
𝑥
𝑛−1

 .

(93)
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In the meantime, it follows from (84) that

𝑥
𝑛+1

= 𝛽
𝑛
𝑓 (𝑥
𝑛
) + (𝐼 − 𝛽

𝑛
𝐴) [𝐺 (𝑆

𝑛
𝑦
𝑛
) − 𝜆
𝑛
𝜇
𝑛
𝐹𝐺 (𝑆

𝑛
𝑦
𝑛
)] ,

𝑥
𝑛
= 𝛽
𝑛−1

𝑓 (𝑥
𝑛−1

) + (𝐼 − 𝛽
𝑛−1

𝐴)

× [𝐺 (𝑆
𝑛−1

𝑦
𝑛−1

) − 𝜆
𝑛−1

𝜇
𝑛−1

𝐹𝐺 (𝑆
𝑛−1

𝑦
𝑛−1

)] .

(94)

Simple calculations show that

𝑥
𝑛+1

− 𝑥
𝑛

= (𝛽
𝑛
− 𝛽
𝑛−1

) 𝑓 (𝑥
𝑛−1

) + 𝛽
𝑛
(𝑓 (𝑥
𝑛
) − 𝑓 (𝑥

𝑛−1
))

+ (𝛽
𝑛−1

− 𝛽
𝑛
) 𝐴 (𝐼 − 𝜆

𝑛−1
𝜇
𝑛−1

𝐹)𝐺 (𝑆
𝑛−1

𝑦
𝑛−1

)

+ (𝐼 − 𝛽
𝑛
𝐴) [(𝐼 − 𝜆

𝑛
𝜇
𝑛
𝐹)𝐺 (𝑆

𝑛
𝑦
𝑛
)

− (𝐼 − 𝜆
𝑛−1

𝜇
𝑛−1

𝐹)𝐺 (𝑆
𝑛−1

𝑦
𝑛−1

)]

= (𝛽
𝑛
− 𝛽
𝑛−1

) 𝑓 (𝑥
𝑛−1

) + 𝛽
𝑛
(𝑓 (𝑥
𝑛
) − 𝑓 (𝑥

𝑛−1
))

+ (𝛽
𝑛−1

− 𝛽
𝑛
) 𝐴 (𝐼 − 𝜆

𝑛−1
𝜇
𝑛−1

𝐹)𝐺 (𝑆
𝑛−1

𝑦
𝑛−1

)

+ (𝐼 − 𝛽
𝑛
𝐴) [(𝐼 − 𝜆

𝑛
𝜇
𝑛
𝐹)𝐺 (𝑆

𝑛
𝑦
𝑛
)

− (𝐼 − 𝜆
𝑛
𝜇
𝑛
𝐹)𝐺 (𝑆

𝑛−1
𝑦
𝑛−1

)

+ (𝜆
𝑛−1

𝜇
𝑛−1

− 𝜆
𝑛
𝜇
𝑛
) 𝐹𝐺 (𝑆

𝑛−1
𝑦
𝑛−1

)] .

(95)

It follows from Lemma 7 (ii) and (93) that

𝑥𝑛+1 − 𝑥
𝑛



≤
𝛽𝑛 − 𝛽

𝑛−1



𝑓 (𝑥
𝑛−1

)
 + 𝛽
𝑛

𝑓 (𝑥
𝑛
) − 𝑓 (𝑥

𝑛−1
)


+
𝛽𝑛−1 − 𝛽

𝑛



𝐴 (𝐼 − 𝜆
𝑛−1

𝜇
𝑛−1

𝐹)𝐺 (𝑆
𝑛−1

𝑦
𝑛−1

)


+ (1 − 𝛽
𝑛
𝛾) [

(𝐼 − 𝜆
𝑛
𝜇
𝑛
𝐹)𝐺 (𝑆

𝑛
𝑦
𝑛
)

− (𝐼 − 𝜆
𝑛
𝜇
𝑛
𝐹)𝐺 (𝑆

𝑛−1
𝑦
𝑛−1

)


+
𝜆𝑛−1𝜇𝑛−1 − 𝜆

𝑛
𝜇
𝑛



𝐹𝐺 (𝑆
𝑛−1

𝑦
𝑛−1

)
]

≤
𝛽𝑛 − 𝛽

𝑛−1



𝑓 (𝑥
𝑛−1

)
 + 𝛽
𝑛
𝛽
𝑥𝑛 − 𝑥

𝑛−1



+
𝛽𝑛−1 − 𝛽

𝑛



𝐴 (𝐼 − 𝜆
𝑛−1

𝜇
𝑛−1

𝐹)𝐺 (𝑆
𝑛−1

𝑦
𝑛−1

)


+ (1 − 𝛽
𝑛
𝛾) [(1 − 𝜆

𝑛
𝜇
𝑛
(1 − √

1 − 𝛼

𝜆
))

×
𝐺 (𝑆
𝑛
𝑦
𝑛
) − 𝐺 (𝑆

𝑛−1
𝑦
𝑛−1

)


+
𝜆𝑛𝜇𝑛 − 𝜆

𝑛−1
𝜇
𝑛−1



𝐹𝐺 (𝑆
𝑛−1

𝑦
𝑛−1

)
 ]

≤
𝛽𝑛 − 𝛽

𝑛−1



𝑓 (𝑥
𝑛−1

)
 + 𝛽
𝑛
𝛽
𝑥𝑛 − 𝑥

𝑛−1



+
𝛽𝑛−1 − 𝛽

𝑛



𝐴 (𝐼 − 𝜆
𝑛−1

𝜇
𝑛−1

𝐹)𝐺 (𝑆
𝑛−1

𝑦
𝑛−1

)


+ (1 − 𝛽
𝑛
𝛾) [

𝑆𝑛𝑦𝑛 − 𝑆
𝑛−1

𝑦
𝑛−1



+
𝜆𝑛𝜇𝑛 − 𝜆

𝑛−1
𝜇
𝑛−1



𝐹𝐺 (𝑆
𝑛−1

𝑦
𝑛−1

)
]

≤
𝛽𝑛 − 𝛽

𝑛−1



𝑓 (𝑥
𝑛−1

)
 + 𝛽
𝑛
𝛽
𝑥𝑛 − 𝑥

𝑛−1



+
𝛽𝑛−1 − 𝛽

𝑛



𝐴 (𝐼 − 𝜆
𝑛−1

𝜇
𝑛−1

𝐹)𝐺 (𝑆
𝑛−1

𝑦
𝑛−1

)


+ (1 − 𝛽
𝑛
𝛾) [

𝑆𝑛𝑦𝑛 − 𝑆
𝑛
𝑦
𝑛−1

 +
𝑆𝑛𝑦𝑛−1 − 𝑆

𝑛−1
𝑦
𝑛−1



+
𝜆𝑛𝜇𝑛 − 𝜆

𝑛−1
𝜇
𝑛−1



𝐹𝐺 (𝑆
𝑛−1

𝑦
𝑛−1

)
]

≤
𝛽𝑛 − 𝛽

𝑛−1



𝑓 (𝑥
𝑛−1

)
 + 𝛽
𝑛
𝛽
𝑥𝑛 − 𝑥

𝑛−1



+
𝛽𝑛−1 − 𝛽

𝑛



𝐴 (𝐼 − 𝜆
𝑛−1

𝜇
𝑛−1

𝐹)𝐺 (𝑆
𝑛−1

𝑦
𝑛−1

)


+ (1 − 𝛽
𝑛
𝛾) [

𝑦𝑛 − 𝑦
𝑛−1

 +
𝑆𝑛𝑦𝑛−1 − 𝑆

𝑛−1
𝑦
𝑛−1



+
𝜆𝑛𝜇𝑛 − 𝜆

𝑛−1
𝜇
𝑛−1



𝐹𝐺 (𝑆
𝑛−1

𝑦
𝑛−1

)
]

≤
𝛽𝑛 − 𝛽

𝑛−1



𝑓 (𝑥
𝑛−1

)
 + 𝛽
𝑛
𝛽
𝑥𝑛 − 𝑥

𝑛−1



+
𝛽𝑛−1 − 𝛽

𝑛



𝐴 (𝐼 − 𝜆
𝑛−1

𝜇
𝑛−1

𝐹)𝐺 (𝑆
𝑛−1

𝑦
𝑛−1

)


+ (1 − 𝛽
𝑛
𝛾) [

𝑥𝑛 − 𝑥
𝑛−1

 +
𝑥𝑛−1 − 𝐺 (𝑆

𝑛−1
𝑥
𝑛−1

)


×
𝛼𝑛 − 𝛼

𝑛−1

 +
𝑆𝑛𝑥𝑛−1 − 𝑆

𝑛−1
𝑥
𝑛−1



+
𝑆𝑛𝑦𝑛−1 − 𝑆

𝑛−1
𝑦
𝑛−1



+
𝜆𝑛𝜇𝑛 − 𝜆

𝑛−1
𝜇
𝑛−1



𝐹𝐺 (𝑆
𝑛−1

𝑦
𝑛−1

)
]

≤ (1 − 𝛽
𝑛
(𝛾 − 𝛽))

𝑥𝑛 − 𝑥
𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1



× (
𝑓 (𝑥
𝑛−1

)
 +

𝐴 (𝐼 − 𝜆
𝑛−1

𝜇
𝑛−1

𝐹)𝐺 (𝑆
𝑛−1

𝑦
𝑛−1

)
)

+
𝑥𝑛−1 − 𝐺 (𝑆

𝑛−1
𝑥
𝑛−1

)


𝛼𝑛 − 𝛼
𝑛−1

 +
𝜆𝑛𝜇𝑛 − 𝜆

𝑛−1
𝜇
𝑛−1



×
𝐹𝐺 (𝑆

𝑛−1
𝑦
𝑛−1

)
 +

𝑆𝑛𝑥𝑛−1 − 𝑆
𝑛−1

𝑥
𝑛−1



+
𝑆𝑛𝑦𝑛−1 − 𝑆

𝑛−1
𝑦
𝑛−1



≤ (1 − 𝛽
𝑛
(𝛾 − 𝛽))

𝑥𝑛 − 𝑥
𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1

𝑀0

+ 𝑀
0

𝛼𝑛 − 𝛼
𝑛−1



+
𝜆𝑛𝜇𝑛 − 𝜆

𝑛−1
𝜇
𝑛−1

𝑀0 +
𝑆𝑛𝑥𝑛−1 − 𝑆

𝑛−1
𝑥
𝑛−1



+
𝑆𝑛𝑦𝑛−1 − 𝑆

𝑛−1
𝑦
𝑛−1



= (1 − 𝛽
𝑛
(𝛾 − 𝛽))

𝑥𝑛 − 𝑥
𝑛−1



+𝑀
0
(
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1

 +
𝜆𝑛𝜇𝑛 − 𝜆

𝑛−1
𝜇
𝑛−1

)

+
𝑆𝑛𝑥𝑛−1 − 𝑆

𝑛−1
𝑥
𝑛−1

 +
𝑆𝑛𝑦𝑛−1 − 𝑆

𝑛−1
𝑦
𝑛−1

 ,

≤ (1 − 𝛽
𝑛
(𝛾 − 𝛽))

𝑥𝑛 − 𝑥
𝑛−1



+ 𝑀
0
(
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1

 +
𝜆𝑛 − 𝜆

𝑛−1



+
𝜇𝑛 − 𝜇

𝑛−1

) +
𝑆𝑛𝑥𝑛−1 − 𝑆

𝑛−1
𝑥
𝑛−1



+
𝑆𝑛𝑦𝑛−1 − 𝑆

𝑛−1
𝑦
𝑛−1

 ,

(96)
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where sup
𝑛≥0

{‖𝑓(𝑥
𝑛
)‖+‖𝐴(𝐼−𝜆

𝑛
𝜇
𝑛
𝐹)𝐺(𝑆

𝑛
𝑦
𝑛
)‖+‖𝐹𝐺(𝑆

𝑛
𝑦
𝑛
)‖+

‖𝑥
𝑛
−𝐺(𝑆
𝑛
𝑥
𝑛
)‖} ≤ 𝑀

0
for some𝑀

0
> 0. Since it follows from

conditions (i) and (iv) that ∑∞
𝑛=0

𝛽
𝑛
(𝛾 − 𝛽) = ∞ and

∞

∑

𝑛=0

𝑀
0
(
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1



+
𝜆𝑛 − 𝜆

𝑛−1

 +
𝜇𝑛 − 𝜇

𝑛−1

) < ∞,

(97)

applying Lemma 3 to (96), we obtain from the assumption on
{𝑆
𝑛
} that

lim
𝑛→∞

𝑥𝑛+1 − 𝑥
𝑛

 = 0. (98)

By condition (iii) and (84), we have
𝑦𝑛 − 𝑥

𝑛

 = (1 − 𝛼
𝑛
)
𝐺 (𝑆
𝑛
𝑥
𝑛
) − 𝑥
𝑛



≤ (1 − 𝑎) (
𝐺 (𝑆
𝑛
𝑥
𝑛
) − 𝐺 (𝑆

𝑛
𝑦
𝑛
)


+
𝐺 (𝑆
𝑛
𝑦
𝑛
) − 𝑥
𝑛+1

 +
𝑥𝑛+1 − 𝑥

𝑛

)

≤ (1 − 𝑎) (
𝑥𝑛 − 𝑦

𝑛

 +
𝐺 (𝑆
𝑛
𝑦
𝑛
) − 𝑥
𝑛+1



+
𝑥𝑛+1 − 𝑥

𝑛

) ,

(99)

which implies that

𝑦𝑛 − 𝑥
𝑛

 ≤
1 − 𝑎

𝑎
(
𝐺 (𝑆
𝑛
𝑦
𝑛
) − 𝑥
𝑛+1

 +
𝑥𝑛+1 − 𝑥

𝑛

) .

(100)

This together with (89)-(90) implies that

lim
𝑛→∞

𝑥𝑛 − 𝑦
𝑛

 = 0. (101)

So, we obtain
𝑥𝑛 − 𝐺 (𝑆

𝑛
𝑥
𝑛
)
 ≤

𝑥𝑛 − 𝑦
𝑛

 +
𝑦𝑛 − 𝐺 (𝑆

𝑛
𝑥
𝑛
)


≤
𝑥𝑛 − 𝑦

𝑛

 + 𝛼
𝑛

𝑥𝑛 − 𝐺 (𝑆
𝑛
𝑥
𝑛
)


≤
𝑥𝑛 − 𝑦

𝑛

 + 𝑏
𝑥𝑛 − 𝐺 (𝑆

𝑛
𝑥
𝑛
)
 ,

(102)

which implies that

𝑥𝑛 − 𝐺 (𝑆
𝑛
𝑥
𝑛
)
 ≤

1

1 − 𝑏

𝑥𝑛 − 𝑦
𝑛

 ,
(103)

and hence

lim
𝑛→∞

𝑥𝑛 − 𝐺 (𝑆
𝑛
𝑥
𝑛
)
 = 0. (104)

Let 𝑢 ∈ Δ. Now, we show that lim
𝑛→∞

‖𝑥
𝑛
−𝑆𝑥
𝑛
‖ = 0 and

lim
𝑛→∞

‖𝑥
𝑛
− 𝐺𝑥
𝑛
‖ = 0.

Indeed, for simplicity, put V = Π
𝐶
(𝑢 − 𝜇

2
𝐵
2
𝑢), 𝑥
𝑛
= 𝑆
𝑛
𝑥
𝑛
,

𝑢
𝑛

= Π
𝐶
(𝑥
𝑛
− 𝜇
2
𝐵
2
𝑥
𝑛
), and V

𝑛
= Π
𝐶
(𝑢
𝑛
− 𝜇
1
𝐵
1
𝑢
𝑛
). Then,

𝑢 = Π
𝐶
(V − 𝜇

1
𝐵
1
V) and V

𝑛
= 𝐺𝑥
𝑛
= 𝐺(𝑆

𝑛
𝑥
𝑛
) for all 𝑛 ≥ 0. It is

clear from (84) that
𝑦𝑛 − 𝑢



2

≤ 𝛼
𝑛

𝑥𝑛 − 𝑢


2

+ (1 − 𝛼
𝑛
)
𝐺 (𝑆
𝑛
𝑥
𝑛
) − 𝑢



2

= 𝛼
𝑛

𝑥𝑛 − 𝑢


2

+ (1 − 𝛼
𝑛
)
V𝑛 − 𝑢



2

.

(105)

Utilizing Lemma 12, we have

𝑢𝑛 − V
2

=
Π𝐶 (𝑥𝑛 − 𝜇

2
𝐵
2
𝑥
𝑛
) − Π
𝐶
(𝑢 − 𝜇

2
𝐵
2
𝑢)



2

≤
𝑥𝑛 − 𝑢 − 𝜇

2
(𝐵
2
𝑥
𝑛
− 𝐵
2
𝑢)



2

≤
𝑥𝑛 − 𝑢



2

− 2𝜇
2
(𝛼
2
− 𝜅
2

𝜇
2
)
𝐵2𝑥𝑛 − 𝐵

2
𝑢


2

,

(106)

V𝑛 − 𝑢


2

=
Π𝐶 (𝑢𝑛 − 𝜇

1
𝐵
1
𝑢
𝑛
) − Π
𝐶
(V − 𝜇

1
𝐵
1
V)
2

≤
𝑢𝑛 − V − 𝜇

1
(𝐵
1
𝑢
𝑛
− 𝐵
1
V)
2

≤
𝑢𝑛 − V

2

− 2𝜇
1
(𝛼
1
− 𝜅
2

𝜇
1
)
𝐵1𝑢𝑛 − 𝐵

1
V
2

.

(107)

Substituting (106) for (107), we obtain

V𝑛 − 𝑢


2

≤
𝑥𝑛 − 𝑢



2

− 2𝜇
2
(𝛼
2
− 𝜅
2

𝜇
2
)

×
𝐵2𝑥𝑛 − 𝐵

2
𝑢


2

− 2𝜇
1
(𝛼
1
− 𝜅
2

𝜇
1
)

×
𝐵1𝑢𝑛 − 𝐵

1
V
2

≤
𝑥𝑛 − 𝑢



2

− 2𝜇
2
(𝛼
2
− 𝜅
2

𝜇
2
)

×
𝐵2𝑥𝑛 − 𝐵

2
𝑢


2

−2𝜇
1
(𝛼
1
− 𝜅
2

𝜇
1
)

×
𝐵1𝑢𝑛 − 𝐵

1
V
2

,

(108)

which together with (105) implies that

𝑦𝑛 − 𝑢


2

≤ 𝛼
𝑛

𝑥𝑛 − 𝑢


2

+ (1 − 𝛼
𝑛
)
V𝑛 − 𝑢



2

≤ 𝛼
𝑛

𝑥𝑛 − 𝑢


2

+ (1 − 𝛼
𝑛
)

× [
𝑥𝑛 − 𝑢



2

− 2𝜇
2
(𝛼
2
− 𝜅
2

𝜇
2
)

×
𝐵2𝑥𝑛 − 𝐵

2
𝑢


2

− 2𝜇
1
(𝛼
1
− 𝜅
2

𝜇
1
)
𝐵1𝑢𝑛 − 𝐵

1
V
2

]

=
𝑥𝑛 − 𝑢



2

− 2 (1 − 𝛼
𝑛
)

× [𝜇
2
(𝛼
2
− 𝜅
2

𝜇
2
)
𝐵2𝑥𝑛 − 𝐵

2
𝑢


2

+𝜇
1
(𝛼
1
− 𝜅
2

𝜇
1
)
𝐵1𝑢𝑛 − 𝐵

1
V
2

] .

(109)

It immediately follows that

2 (1 − 𝛼
𝑛
) [𝜇
2
(𝛼
2
− 𝜅
2

𝜇
2
)
𝐵2𝑥𝑛 − 𝐵

2
𝑢


2

+ 𝜇
1
(𝛼
1
− 𝜅
2

𝜇
1
)
𝐵1𝑢𝑛 − 𝐵

1
V
2

]

≤
𝑥𝑛 − 𝑢



2

−
𝑦𝑛 − 𝑢



2

≤ (
𝑥𝑛 − 𝑢

 +
𝑦𝑛 − 𝑢

)
𝑥𝑛 − 𝑦

𝑛

 .

(110)
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Since {𝑥
𝑛
} and {𝑦

𝑛
} are bounded and 0 < 𝜇

𝑖
< 𝛼
𝑖
/𝜅
2 for 𝑖 =

1, 2, we deduce from (101) and condition (iii) that

lim
𝑛→∞

𝐵2𝑥𝑛 − 𝐵
2
𝑢
 = 0, lim

𝑛→∞

𝐵1𝑢𝑛 − 𝐵
1
V = 0.

(111)

Utilizing Proposition 2 and Lemma 8, we have that there
exists 𝑔

1
such that

𝑢𝑛 − V
2

=
Π𝐶 (𝑥𝑛 − 𝜇

2
𝐵
2
𝑥
𝑛
) − Π
𝐶
(𝑢 − 𝜇

2
𝐵
2
𝑢)



2

≤ ⟨𝑥
𝑛
− 𝜇
2
𝐵
2
𝑥
𝑛
− (𝑢 − 𝜇

2
𝐵
2
𝑢) , 𝐽 (𝑢

𝑛
− V)⟩

= ⟨𝑥
𝑛
− 𝑢, 𝐽 (𝑢

𝑛
− V)⟩

+ 𝜇
2
⟨𝐵
2
𝑢 − 𝐵
2
𝑥
𝑛
, 𝐽 (𝑢
𝑛
− V)⟩

≤
1

2
[
𝑥𝑛 − 𝑢



2

+
𝑢𝑛 − V

2

−𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑢 − V))]

+ 𝜇
2

𝐵2𝑢 − 𝐵
2
𝑥
𝑛



𝑢𝑛 − V ,

(112)

which implies that

𝑢𝑛 − V
2

≤
𝑥𝑛 − 𝑢



2

− 𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑢 − V))

+ 2𝜇
2

𝐵2𝑢 − 𝐵
2
𝑥
𝑛



𝑢𝑛 − V .

(113)

In the same way, we derive that there exists 𝑔
2
such that

V𝑛 − 𝑢


2

=
Π𝐶 (𝑢𝑛 − 𝜇

1
𝐵
1
𝑢
𝑛
) − Π
𝐶
(V − 𝜇

1
𝐵
1
V)
2

≤ ⟨𝑢
𝑛
− 𝜇
1
𝐵
1
𝑢
𝑛
− (V − 𝜇

1
𝐵
1
V) , 𝐽 (V

𝑛
− 𝑢)⟩

= ⟨𝑢
𝑛
− V, 𝐽 (V

𝑛
− 𝑢)⟩ + 𝜇

1
⟨𝐵
1
V − 𝐵
1
𝑢
𝑛
, 𝐽 (V
𝑛
− 𝑢)⟩

≤
1

2
[
𝑢𝑛 − V

2

+
V𝑛 − 𝑢



2

−𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑢 − V))]

+ 𝜇
1

𝐵1V − 𝐵
1
𝑢
𝑛



V𝑛 − 𝑢
 ,

(114)

which implies that

V𝑛 − 𝑢


2

≤
𝑢𝑛 − V

2

−𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑢 − V))

+ 2𝜇
1

𝐵1V − 𝐵
1
𝑢
𝑛



V𝑛 − 𝑢
 .

(115)

Substituting (113) for (115), we get

V𝑛 − 𝑢


2

≤
𝑥𝑛 − 𝑢



2

− 𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑢 − V))

− 𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑢 − V))

+ 2𝜇
2

𝐵2𝑢 − 𝐵
2
𝑥
𝑛



𝑢𝑛 − V

+ 2𝜇
1

𝐵1V − 𝐵
1
𝑢
𝑛



V𝑛 − 𝑢


≤
𝑥𝑛 − 𝑢



2

− 𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑢 − V))

− 𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑢 − V))

+ 2𝜇
2

𝐵2𝑢 − 𝐵
2
𝑥
𝑛



𝑢𝑛 − V

+ 2𝜇
1

𝐵1V − 𝐵
1
𝑢
𝑛



V𝑛 − 𝑢
 ,

(116)

which together with (105) implies that

𝑦𝑛 − 𝑢


2

≤ 𝛼
𝑛

𝑥𝑛 − 𝑢


2

+ (1 − 𝛼
𝑛
)
V𝑛 − 𝑢



2

≤ 𝛼
𝑛

𝑥𝑛 − 𝑢


2

+ (1 − 𝛼
𝑛
)

× [
𝑥𝑛 − 𝑢



2

− 𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑢 − V))

− 𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑢 − V))

+ 2𝜇
2

𝐵2𝑢 − 𝐵
2
𝑥
𝑛



𝑢𝑛 − V

+2𝜇
1

𝐵1V − 𝐵
1
𝑢
𝑛



V𝑛 − 𝑢
]

=
𝑥𝑛 − 𝑢



2

− (1 − 𝛼
𝑛
)

× [𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑢 − V))

+𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑢 − V))] + 2 (1 − 𝛼

𝑛
)

× (𝜇
2

𝐵2𝑢 − 𝐵
2
𝑥
𝑛



𝑢𝑛 − V

+𝜇
1

𝐵1V − 𝐵
1
𝑢
𝑛



V𝑛 − 𝑢
) .

(117)

It immediately follows that

(1 − 𝛼
𝑛
) [𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑢 − V))

+𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑢 − V))]

≤
𝑥𝑛 − 𝑢



2

−
𝑦𝑛 − 𝑢



2

+ 2 (1 − 𝛼
𝑛
)

× (𝜇
2

𝐵2𝑢 − 𝐵
2
𝑥
𝑛



𝑢𝑛 − V

+𝜇
1

𝐵1V − 𝐵
1
𝑢
𝑛



V𝑛 − 𝑢
)

≤ (
𝑥𝑛 − 𝑢

 +
𝑦𝑛 − 𝑢

)
𝑥𝑛 − 𝑦

𝑛



+ 2𝜇
2

𝐵2𝑢 − 𝐵
2
𝑥
𝑛



𝑢𝑛 − V

+ 2𝜇
1

𝐵1V − 𝐵
1
𝑢
𝑛



V𝑛 − 𝑢
 .

(118)
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Since {𝑥
𝑛
}, {𝑦
𝑛
}, {𝑢
𝑛
}, and {V

𝑛
} are bounded, we deduce from

(101), (111), and condition (iii) that

lim
𝑛→∞

𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑢 − V)) = 0,

lim
𝑛→∞

𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑢 − V)) = 0.

(119)

Utilizing the properties of 𝑔
1
and 𝑔

2
, we get

lim
𝑛→∞

𝑥𝑛 − 𝑢
𝑛
− (𝑢 − V) = 0,

lim
𝑛→∞

𝑢𝑛 − V
𝑛
+ (𝑢 − V) = 0,

(120)

which hence yields
𝑥𝑛 − V

𝑛

 ≤
𝑥𝑛 − 𝑢

𝑛
− (𝑢 − V)

+
𝑢𝑛 − V

𝑛
+ (𝑢 − V) → 0

as 𝑛 → ∞.

(121)

That is,

lim
𝑛→∞

𝑆𝑛𝑥𝑛 − 𝐺 (𝑆
𝑛
𝑥
𝑛
)
 = lim
𝑛→∞

𝑥𝑛 − V
𝑛

 = 0. (122)

Note that
𝑥𝑛 − 𝑆

𝑛
𝑥
𝑛

 ≤
𝑥𝑛 − 𝐺 (𝑆

𝑛
𝑥
𝑛
)
 +

𝐺 (𝑆
𝑛
𝑥
𝑛
) − 𝑆
𝑛
𝑥
𝑛

 . (123)

So, from (104) and (122), we have

lim
𝑛→∞

𝑥𝑛 − 𝑆
𝑛
𝑥
𝑛

 = 0, (124)

which together with (104) and the assumption on {𝑆
𝑛
} implies

that
𝑥𝑛 − 𝑆𝑥

𝑛

 ≤
𝑥𝑛 − 𝑆

𝑛
𝑥
𝑛

 +
𝑆𝑛𝑥𝑛 − 𝑆𝑥

𝑛

 → 0

as 𝑛 → ∞,

𝑥𝑛 − 𝐺𝑥
𝑛

 ≤
𝑥𝑛 − 𝐺 (𝑆

𝑛
𝑥
𝑛
)
 +

𝐺 (𝑆
𝑛
𝑥
𝑛
) − 𝐺𝑥

𝑛



≤
𝑥𝑛 − 𝐺 (𝑆

𝑛
𝑥
𝑛
)
 +

𝑆𝑛𝑥𝑛 − 𝑥
𝑛

 → 0

as 𝑛 → ∞.

(125)

That is,

lim
𝑛→∞

𝑥𝑛 − 𝑆𝑥
𝑛

 = 0, lim
𝑛→∞

𝑥𝑛 − 𝐺𝑥
𝑛

 = 0. (126)

Define a mapping

𝑊𝑥 = (1 − 𝜃) 𝑆𝑥 + 𝜃𝐺𝑥, ∀𝑥 ∈ 𝐶, (127)

where 𝜃 is a constant in (0, 1). Then, by Lemma 10, we know
that Fix(𝑊) = Fix(𝑆) ∩ Fix(𝐺) = Δ. We observe that

𝑥𝑛 − 𝑊𝑥
𝑛

 =
(1 − 𝜃) (𝑥

𝑛
− 𝑆𝑥
𝑛
) + 𝜃 (𝑥

𝑛
− 𝐺𝑥
𝑛
)


≤ (1 − 𝜃)
𝑥𝑛 − 𝑆𝑥

𝑛

 +
𝜃𝑥𝑛 − 𝐺𝑥

𝑛

 .

(128)

So, from (126), we get

lim
𝑛→∞

𝑥𝑛 − 𝑊𝑥
𝑛

 = 0, (129)

where 𝑝 is defined below. Now, we claim that

lim sup
𝑛→∞

⟨(𝑓 − 𝐴) 𝑝, 𝐽 (𝑥
𝑛
− 𝑝)⟩ ≤ 0. (130)

Indeed, let {𝑥
𝑡
} be defined by

𝑥
𝑡
= 𝑡𝑓 (𝑥

𝑡
) + (𝐼 − 𝑡𝐴)𝑊𝑥

𝑡
. (131)

Then, as 𝑡 → 0, {𝑥
𝑡
} converges strongly to 𝑝 ∈ Fix(𝑊) = Δ,

which by Proposition CB is the unique solution in Δ to the
VIP:

⟨(𝐴 − 𝑓) 𝑝, 𝐽 (𝑝 − 𝑢)⟩ ≤ 0, ∀𝑢 ∈ Δ. (132)

In terms of Lemma 6,we conclude from (129) that (130) holds.
It is clear that

lim sup
𝑛→∞

⟨(𝑓 − 𝐴) 𝑝, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩ ≤ 0. (133)

Finally, let us show that 𝑥
𝑛

→ 𝑝 as 𝑛 → ∞. We observe
that

𝑦𝑛 − 𝑝


2

≤ 𝛼
𝑛

𝑥𝑛 − 𝑝


2

+ (1 − 𝛼
𝑛
)
𝐺 (𝑆
𝑛
𝑥
𝑛
) − 𝑝



2

≤ 𝛼
𝑛

𝑥𝑛 − 𝑝


2

+ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝



2

=
𝑥𝑛 − 𝑝



2

,

(134)

and hence

𝑥𝑛+1 − 𝑝


2

=
𝛽𝑛 (𝑓 (𝑥

𝑛
) − 𝑓 (𝑝)) + (𝐼 − 𝛽

𝑛
𝐴)

× [𝐺 (𝑆
𝑛
𝑦
𝑛
) − 𝜆
𝑛
𝜇
𝑛
𝐹𝐺 (𝑆

𝑛
𝑦
𝑛
) − 𝑝] + 𝛽

𝑛
(𝑓 − 𝐴) 𝑝



2

≤
𝛽𝑛 (𝑓 (𝑥

𝑛
) − 𝑓 (𝑝)) + (𝐼 − 𝛽

𝑛
𝐴)

× [𝐺 (𝑆
𝑛
𝑦
𝑛
) − 𝜆
𝑛
𝜇
𝑛
𝐹𝐺 (𝑆

𝑛
𝑦
𝑛
) − 𝑝]



2

+ 2𝛽
𝑛
⟨(𝑓 − 𝐴) 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

≤ [𝛽
𝑛

𝑓 (𝑥
𝑛
) − 𝑓 (𝑝)

 + (1 − 𝛽
𝑛
𝛾)

×
𝐺 (𝑆
𝑛
𝑦
𝑛
) − 𝜆
𝑛
𝜇
𝑛
𝐹𝐺 (𝑆

𝑛
𝑦
𝑛
) − 𝑝

]
2

+ 2𝛽
𝑛
⟨(𝑓 − 𝐴) 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

= [𝛽
𝑛

𝑓 (𝑥
𝑛
) − 𝑓 (𝑝)

 + (1 − 𝛽
𝑛
𝛾)

×
(𝐼 − 𝜆

𝑛
𝜇
𝑛
𝐹)𝐺 (𝑆

𝑛
𝑦
𝑛
)

− (𝐼 − 𝜆
𝑛
𝜇
𝑛
𝐹) 𝑝 − 𝜆

𝑛
𝜇
𝑛
𝐹𝑝

]
2

+ 2𝛽
𝑛
⟨(𝑓 − 𝐴) 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

≤ [𝛽
𝑛

𝛽𝑥𝑛 − 𝑝
 + (1 − 𝛽

𝑛
𝛾)

× (
(𝐼 − 𝜆

𝑛
𝜇
𝑛
𝐹)𝐺 (𝑆

𝑛
𝑦
𝑛
) − (𝐼 − 𝜆

𝑛
𝜇
𝑛
𝐹) 𝑝



+𝜆
𝑛
𝜇
𝑛

𝐹𝑝
)]
2

+ 2𝛽
𝑛
⟨(𝑓 − 𝐴) 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩



16 Abstract and Applied Analysis

≤ [𝛽
𝑛
𝛽
𝑥𝑛 − 𝑝

 + (1 − 𝛽
𝑛
𝛾)

× ((1 − 𝜆
𝑛
𝜇
𝑛
(1 − √

1 − 𝛼

𝜆
))

×
𝐺 (𝑆
𝑛
𝑦
𝑛
) − 𝑝

 + 𝜆
𝑛
𝜇
𝑛

𝐹𝑝
 )]

2

+ 2𝛽
𝑛
⟨(𝑓 − 𝐴) 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

≤ [𝛽
𝑛
𝛽
𝑥𝑛 − 𝑝



+ (1 − 𝛽
𝑛
𝛾) (

𝑦𝑛 − 𝑝
 + 𝜆
𝑛
𝜇
𝑛

𝐹𝑝
)]
2

+ 2𝛽
𝑛
⟨(𝑓 − 𝐴) 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

≤ [𝛽
𝑛
𝛽
𝑥𝑛 − 𝑝

 + (1 − 𝛽
𝑛
𝛾)

𝑥𝑛 − 𝑝
 + 𝜆
𝑛
𝜇
𝑛

𝐹𝑝
]
2

+ 2𝛽
𝑛
⟨(𝑓 − 𝐴) 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

= [(1 − 𝛽
𝑛
(𝛾 − 𝛽))

𝑥𝑛 − 𝑝
 + 𝜆
𝑛
𝜇
𝑛

𝐹𝑝
]
2

+ 2𝛽
𝑛
⟨(𝑓 − 𝐴) 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

= (1 − 𝛽
𝑛
(𝛾 − 𝛽))

2𝑥𝑛 − 𝑝


2

+ 𝜆
𝑛
𝜇
𝑛

𝐹𝑝


× [2 (1 − 𝛽
𝑛
(𝛾 − 𝛽))

𝑥𝑛 − 𝑝
 + 𝜆
𝑛
𝜇
𝑛

𝐹𝑝
]

+ 2𝛽
𝑛
⟨(𝑓 − 𝐴) 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

≤ (1 − 𝛽
𝑛
(𝛾 − 𝛽))

𝑥𝑛 − 𝑝


2

+ 𝜆
𝑛
𝜇
𝑛

𝐹𝑝
 (2

𝑥𝑛 − 𝑝
 + 𝜆
𝑛
𝜇
𝑛

𝐹𝑝
)

+ 2𝛽
𝑛
⟨(𝑓 − 𝐴) 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

= (1 − 𝛽
𝑛
(𝛾 − 𝛽))

𝑥𝑛 − 𝑝


2

+ 𝛽
𝑛
(𝛾 − 𝛽) ⋅

1

𝛾 − 𝛽

× [
𝜆
𝑛
𝜇
𝑛

𝛽
𝑛

𝐹𝑝
 (2

𝑥𝑛 − 𝑝
 + 𝜆
𝑛
𝜇
𝑛

𝐹𝑝
)

+2 ⟨(𝑓 − 𝐴) 𝑝, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩ ] .

(135)

Taking into account (133) and conditions (i) and (ii), we
obtain that ∑∞

𝑛=0
(𝛾 − 𝛽)𝛽

𝑛
= ∞ and

lim sup
𝑛→∞

1

𝛾 − 𝛽
[
𝜆
𝑛
𝜇
𝑛

𝛽
𝑛

𝐹𝑝
 (2

𝑥𝑛 − 𝑝
 + 𝜆
𝑛
𝜇
𝑛

𝐹𝑝
)

+2 ⟨(𝑓 − 𝐴) 𝑝, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩ ] ≤ 0.

(136)

Therefore, applying Lemma 3 to (135), we infer that

lim
𝑛→∞

𝑥𝑛 − 𝑝
 = 0. (137)

This completes the proof.

Remark 20. It is worth pointing out that the sequences {𝜆
𝑛
},

{𝜇
𝑛
}, and {𝛽

𝑛
} can be taken, which satisfy the conditions in

Theorem 19. As a matter of fact, put 𝜆
𝑛

= (1 + 𝑛)
−5/6, 𝜇

𝑛
=

1, and 𝛽
𝑛

= (1 + 𝑛)
−2/3 for all 𝑛 ≥ 0. Then, there hold the

following statements:

(i) lim
𝑛→∞

𝛽
𝑛
= 0 and ∑

∞

𝑛=0
𝛽
𝑛
= ∞;

(ii) lim
𝑛→∞

(𝜆
𝑛
𝜇
𝑛
)/𝛽
𝑛
= 0;

(iii) ∑
∞

𝑛=0
|𝛽
𝑛+1

− 𝛽
𝑛
| < ∞, ∑∞

𝑛=0
|𝜆
𝑛+1

− 𝜆
𝑛
| < ∞, and

∑
∞

𝑛=0
|𝜇
𝑛+1

− 𝜇
𝑛
| < ∞.

By the careful analysis of the proof ofTheorem 19, we can
obtain the following result. Because its proof is much simpler
than that of Theorem 19, we omit its proof.

Theorem 21. Let 𝐶 be a nonempty closed convex subset of
a uniformly convex and 2-uniformly smooth Banach space 𝑋

such that 𝐶 ± 𝐶 ⊂ 𝐶. Let Π
𝐶
be a sunny nonexpansive

retraction from 𝑋 onto 𝐶. Let the mapping 𝐵
𝑖

: 𝐶 → 𝑋

be 𝛼
𝑖
-inverse-strongly accretive for 𝑖 = 1, 2. Let {𝑆

𝑛
}
∞

𝑛=0
be an

infinite family of nonexpansive mappings of 𝐶 into itself such
that Δ = ⋂

∞

𝑖=0
Fix(𝑆
𝑖
) ∩ Ω ̸= 0, where Ω is the fixed point

set of the mapping 𝐺 = Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) with

0 < 𝜇
𝑖

< 𝛼
𝑖
/𝜅
2 for 𝑖 = 1, 2. Let 𝑓 : 𝐶 → 𝐶 be a fixed

contractive map with coefficient 𝛽 ∈ (0, 1), let 𝐹 : 𝐶 → 𝐶

be 𝛼-strongly accretive and 𝜆-strictly pseudocontractive with
𝛼 + 𝜆 > 1, and let 𝐴 : 𝐶 → 𝐶 be a 𝛾-strongly positive linear
bounded operator with 0 < 𝛾−𝛽 ≤ 1. Given sequences {𝜆

𝑛
}
∞

𝑛=0

in [0, 1] and {𝛼
𝑛
}
∞

𝑛=0
, {𝛽
𝑛
}
∞

𝑛=0
in (0, 1], suppose that there hold

the following conditions:

(i) lim
𝑛→∞

𝛽
𝑛
= 0 and ∑

∞

𝑛=0
𝛽
𝑛
= ∞;

(ii) lim
𝑛→∞

𝜆
𝑛
/𝛽
𝑛
= 0 and ∑

∞

𝑛=0
|𝜆
𝑛+1

− 𝜆
𝑛
| < ∞;

(iii) {𝛼
𝑛
} ⊂ [𝑎, 𝑏] for some 𝑎, 𝑏 ∈ (0, 1);

(iv) ∑
∞

𝑛=0
|𝛼
𝑛+1

− 𝛼
𝑛
| < ∞ and ∑

∞

𝑛=0
|𝛽
𝑛+1

− 𝛽
𝑛
| < ∞.

Assume that∑∞
𝑛=0

sup
𝑥∈𝐷

‖𝑆
𝑛+1

𝑥 − 𝑆
𝑛
𝑥‖ < ∞ for any bounded

subset 𝐷 of 𝐶 and let 𝑆 be a mapping of 𝐶 into itself defined
by 𝑆𝑥 = lim

𝑛→∞
𝑆
𝑛
𝑥 for all 𝑥 ∈ 𝐶 and suppose that Fix(𝑆) =

⋂
∞

𝑛=0
Fix(𝑆
𝑛
). Then, for any given point 𝑥

0
∈ 𝐶, the sequence

{𝑥
𝑛
} generated by

𝑦
𝑛
= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐺 (𝑆

𝑛
𝑥
𝑛
) ,

𝑥
𝑛+1

= 𝛽
𝑛
𝑓 (𝑥
𝑛
) + (𝐼 − 𝛽

𝑛
𝐴) [𝑦
𝑛
− 𝜆
𝑛
𝐹 (𝑦
𝑛
)] , ∀𝑛 ≥ 0,

(138)

converges strongly to 𝑝 ∈ Δ, which is the unique solution in Δ

to the VIP (85).

Remark 22. Theorems 19 and 21 improve, extend, supplement
and develop Cai and Bu [10, Theorem 3.1] and Cai and Bu [9,
Theorems 3.1] in the following aspects.

(i) The GSVI (13) with hierarchical fixed point problem
constraint for a countable family of nonexpansive mappings
is more general and more subtle than every problem in Cai
and Bu [10, Theorems 3.1] and Cai and Bu [9, Theorem 3.1]
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because our problem is to find a point𝑝 ∈ Δ = ⋂
𝑛
Fix(𝑆
𝑛
)∩Ω,

which is the unique solution in Δ to the VIP:

⟨(𝐴 − 𝑓) 𝑝, 𝐽 (𝑝 − 𝑢)⟩ ≤ 0, ∀𝑢 ∈ Δ. (139)

(ii) The iterative scheme in [10, Theorem 3.1] is extended
to develop the iterative schemes in Theorems 19 and 21
by virtue of hybrid steepest-descent method. The iterative
schemes in Theorems 19 and 21 are more advantageous and
more flexible than the iterative scheme of [9, Theorem 3.1]
because the iterative scheme of [9, Theorem 3.1] is implicit
and our iterative schemes involve solving two problems: the
GSVI (13) and the fixed point problem of a countable family
of nonexpansive mappings {𝑆

𝑛
}.

(iii) The iterative schemes inTheorems 19 and 21 are very
different from everyone in both [10, Theorem 3.1] and [9,
Theorem 3.1] because our iterative schemes involve hybrid
steepest-descentmethod (namely, we add a strongly accretive
and strictly pseudocontractive mapping 𝐹 in our iterative
schemes) and because themappings𝐺 and 𝑆

𝑛
in [10,Theorem

3.1] and the mapping 𝑆
𝑛
in [9, Theorem 3.1] are replaced by

the same composite mapping 𝐺 ∘ 𝑆
𝑛
in the iterative schemes

of Theorems 19 and 21.
(iv) Cai and Bu’s proof in [10, Theorem 3.1] depends

on the argument techniques in [20], the inequality in 2-
uniformly smooth Banach spaces (see Lemma 1), and the
inequality in smooth and uniform convex Banach spaces (see
Proposition 2). Because the compositemapping𝐺∘𝑆

𝑛
appears

in the iterative schemes in Theorems 19 and 21, the proof
of Theorems 19 and 21 depends on the argument techniques
in [20], the inequality in 2-uniformly smooth Banach spaces
(see Lemma 1), the inequality in smooth and uniform convex
Banach spaces (see Proposition 2), and the properties of the
strongly positive linear bounded operator (see Lemmas 15),
the Banach limit (see Lemma 5), and the strongly accretive
and strictly pseudocontractive mapping (see Lemma 7).

Remark 23. Theorems 19 and 21 extend and improve
Theorem 16 of Yao et al. [21] to a great extent in the following
aspects:

(i) the 𝑢 is replaced by a fixed contractive mapping;
(ii) one continuous pseudocontractive mapping (includ-

ing nonexpansivemapping) is replaced by a countable
family of nonexpansive mappings;

(iii) we add a strongly positive linear bounded operator 𝐴
and a strongly accretive and strictly pseudocontrac-
tive mapping 𝐹 in our iterative algorithms.
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