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We study the asymptotic properties of minimum distance estimator of drift parameter for a class of nonlinear scalar stochastic
differential equations driven by mixed fractional Brownian motion. The consistency and limit distribution of this estimator are
established as the diffusion coefficient tends to zero under some regularity conditions.

1. Introduction

Stochastic differential equations (SDEs) are a natural choice
to model the time evolution of dynamic systems which are
subject to random influences. For existence and uniqueness
of solutions of finite dimensional stochastic differential equa-
tions and properties of stochastic integrals, we refer to [1–3]
and the references therein.

It is natural that a model contains unknown parameters.
The parametric estimation problems for diffusion processes
satisfying SDEs driven by Brownian motion (hereafter Bm)
have been studied earlier. For a more recent comprehensive
discussion, we refer to [4, 5] and the references therein. In
case of statistical inference for diffusion processes satisfying
SDEs driven by a fractional Brownian motion (hereafter
fBm), substantial progress has been made in this direction;
we refer to [6–9] for more details.

Themixed fractional Brownianmotion (hereafter mfBm)
was introduced by Patrick [10] to present a stochastic model
of the discounted stock price in some arbitrage-free and
complete financial markets. As a result, in order to take into
account long memory and exclude arbitrage, it is natural
to use mfBm to replace the standard Brownian motion.
Consequently, there has been a growing interest in parameter
estimation for stochastic processes driven by mfBm.

There are several heuristic methods available for use in
case of SDEs driven bymfBm, such asMLE, LSE, and sequen-
tial estimation. In the continuous case, since the MLE has

desirable asymptotic properties of consistency, normality,
and efficiency under broad conditions, perhaps the most
direct method is the MLE. However, MLE has some short-
comings; MLE’s calculation is often cumbersome as the
expressions for MLE involve stochastic integrals which need
good approximations for computational purposes. Moreover,
the generally good asymptotic properties are not always satis-
fied in the discrete case. Paper [11] showed that the approach
of estimating parameters of an Itô process by applying MLE
to a discretization of the SDE does not yield consistent
estimators. LSE is asymptotically equivalent to the MLE. It
is well known that the sequential estimation methods might
lead to equally efficient estimators from the process observed
possibly over a shorter expected period of observation time.
Although there exists a wide range of estimation techniques
developed for the problem of parameters estimation for SDEs
driven by mfBm, we should choose a suitable estimation
method.

Though mfBm has stationary self-similar increments, it
does not have stationary increments and is not a Markov
process. So, state-space models and Kalman filter estimators
cannot be applied to the parameters of this process. Under
the circumstances, in order to overcome those difficulties, the
minimum distance approach is proposed.

The interest for this method of parametric estimation
is that the minimum distance estimation (hereafter MDE)
method has several features. It makes MDE an attractive
method. From one part it is sometimes easy to calculate.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 942307, 6 pages
http://dx.doi.org/10.1155/2014/942307

http://dx.doi.org/10.1155/2014/942307


2 Abstract and Applied Analysis

On the other side this estimator is known to be consistent
(see [12]) under some general conditions.Millar [13] studied a
general framework for (MDE) of Hilbertian type and showed
that the MDE is efficient and asymptotically normal in some
situations. Furthermore, theMDE is a class of estimators that
is automatically robust in the same sense (for more details
see [14]), which is generically optimal according to some
quantitative measure of robustness.

For the SDEs driven by Brownian motions, Kutoyants
[15] and Kutoyants and Pilibossian [16] proved that 𝜀−1(𝜃∗

𝜀

−

𝜃
0

) converge in probability to the random variable 𝜁
𝑇

with
𝐿
1

, 𝐿
2

or supremum norm and he also proved that 𝜁
𝑇

is
asymptotically normal when 𝑇 → +∞ and 𝜃

0

> 0. Hénaff
[17] established the same results in the general case of a
norm in some Banach space of functions on [0, 𝑇]. For the
SDEs driven by fBm, Prakasa Rao [18] studied the minimum
𝐿
1

-norm estimator 𝜃∗
𝜀

of the drift parameter of a fractional
Ornstein-Uhlenbeck type process and proved that 𝜀−1(𝜃∗

𝜀

−𝜃)

converges in probability under P
𝜃0

to a random variable 𝜁.
Kouame et al. [19] studied asymptotic properties ofminimum
distance estimator of the parameter of stochastic process
driven by a fBm as the diffusion coefficient tends to zero.

However, it appears that there are few works studying
the estimators of mfBm. Zili [20] obtained some general
stochastic properties of the mfBm and treated the Hölder
continuity of the sample paths and 𝛼-differentiability of the
trajectories of mfBm. Miao [21] obtained the asymptotic
properties of the minimum 𝐿

1

-norm estimator of the drift
parameter for a linear SDE driven by an mfBm. Xiao et al.
[22] studied the problem of estimating the parameters for the
mfBm from discrete observations based on the MLE.

In present paper, our aim is to obtain the MDE of the
drift parameter for a class of nonlinear scalar SDEs driven by
mfBm and study the asymptotic properties of this estimator.

The remainder of this paper proceeds as follows. Section 2
starts with a short description of definition of mfBm and
then provides some basic lemmas that will be used in the
forthcoming sections. And we obtain the MDE of the drift
parameter for a class of nonlinear scalar SDEs driven by
mfBm. In Section 3, we study the consistency of the above
estimator. In Section 4, the limit distribution of this estimator
is established as the diffusion coefficient tends to zero under
some regularity conditions.

2. Notation and Preliminaries

Let 𝐵𝐻
𝑡

:= {𝐵
𝐻

(𝑡), 0 ≤ 𝑡 ≤ 𝑇} be a fractional Brownian
motion defined on the probability space (Ω,F, {F

𝑡

}
𝑡≥0

,P)

and {F
𝑡

}
𝑡≥0

is a filtration of 𝜎-algebra of F, where the
usual conditions are satisfied; that is, (Ω,F,P) is a complete
probability space, F

0

contains all 𝑃-null sets of F, and, for
each 𝑡 ≥ 0,F

+

:= ⋂
𝑠>𝑡

F
𝑠

= F
𝑡

.
A fractional Brownian motion 𝐵𝐻

𝑡

of Hurst parameter
𝐻 ∈ (0, 1) is a continuous and centered Gaussian process;
that is, 𝐸(𝐵𝐻

𝑡

) = 0 for all 𝑡 ≥ 0, with covariance function

𝐸 (𝐵
𝐻

𝑠

𝐵
𝐻

𝑡

) =

1

2

[𝑠
2𝐻

+ 𝑡
2𝐻

− |𝑠 − 𝑡|
2𝐻

] , 𝑡 ≥ 0, 𝑠 ≥ 0. (1)

From (1), it is easy to obtain that 𝐸[𝐵𝐻
𝑡

]
2

= 𝑡
2𝐻, 𝑡 ≥ 0, for

all 𝐻 ∈ (0, 1). Moreover, the fBm 𝐵𝐻
𝑡

reduces to a standard
Brownian motion denoted by 𝐵

𝑡

:= {𝐵(𝑡), 0 ≤ 𝑡 ≤ 𝑇} for
𝐻 = 1/2.

The notation {𝑋
𝑡

}

𝑑

= {𝑌
𝑡

} means that the {𝑋
𝑡

}
𝑡∈R+

and
{𝑌
𝑡

}
𝑡∈R+

have the same law. Denote by 𝑋∗
𝑡

the supremum
process

𝑋
∗

𝑡

= sup
𝑠≤𝑡

󵄨
󵄨
󵄨
󵄨
𝑋
𝑠

󵄨
󵄨
󵄨
󵄨
. (2)

A standard fBm 𝐵𝐻
𝑡

has the following properties (for more
details see [23], Page 5, Definition 1.1.1).

(1) 𝐵𝐻
𝑡

has homogeneous increments; that is, 𝐵𝐻
𝑠+𝑡

−𝐵
𝐻

𝑡

𝑑

=

𝐵
𝐻

𝑡

for 𝑠, 𝑡 ≥ 0.
(2) 𝐵𝐻
𝑡

has continuous trajectories.

Let us take 𝑎 and 𝑏 which are two real constants such that
(𝑎, 𝑏) ̸= (0, 0). By Patrick [10], we introduce the following.

Definition 1. Amixed fractional Brownian motion of param-
eters 𝑎, 𝑏, and 𝐻 is a process 𝑀𝐻 := {𝑀𝐻

𝑡

(𝑎, 𝑏); 𝑡 ≥ 0}

= {𝑀
𝐻

𝑡

; 𝑡 ≥ 0}, defined on the probability space (Ω,F,
{F
𝑡

}
𝑡≥0

,P) by

𝑀
𝐻

𝑡

= 𝑀
𝐻

𝑡

(𝑎, 𝑏) := 𝑎𝐵
𝑡

+ 𝑏𝐵
𝐻

𝑡

, ∀𝑡 ∈ R
+

. (3)

Remark 2. From Zili [20], we know that mfBm is a mixed-
self-similar process:

𝑀
𝐻

ℎ𝑡

(𝑎, 𝑏)

𝑑

= {𝑀
𝐻

𝑡

(𝑎ℎ
1/2

, 𝑏ℎ
𝐻

)} , (4)

where ℎ > 0 is a constant. Furthermore it follows for the
supremum process𝑀∗ that

𝑀
𝐻∗

ℎ𝑡

(𝑎, 𝑏)

𝑑

= {𝑀
𝐻∗

𝑡

(𝑎ℎ
1/2

, 𝑏ℎ
𝐻

)} . (5)

By using the self-similarity of mfBm, we obtain the
following lemma.

Lemma 3. Let 𝑇 > 0 be a constant and 𝑀𝐻
𝑡

an mfBm with
parameter 𝑎, 𝑏,𝐻; then for every 𝑝 > 0,

E(𝑀𝐻∗
𝑇

(𝑎, 𝑏))

𝑝

= E(𝑀𝐻∗
1

(𝑎𝑇
1/2

, 𝑏𝑇
𝐻

))

𝑝

= E(sup
𝑡≤1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎𝑇
1/2

𝐵
𝑡

+ 𝑏𝑇
𝐻

𝐵
𝐻

𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
)

𝑝

.

(6)

The value of (6) is not known. However it is fortunate that
we have the following two lemmas which give the bounds for
the standard Bm and fBm, respectively.

Lemma 4 (Burkholder-Davis-Gundy inequalities). For any
stopping time 𝜏 with respect to the filtration generated by the
Bm 𝐵
𝑡

, one has

𝑐 (𝑝)E (𝜏𝑝/2) ≤ E ((𝐵∗
𝜏

)
𝑝

) ≤ 𝐶 (𝑝)E (𝜏𝑝/2) , 𝑝 > 0, (7)

where the constants 𝑐(𝑝) and 𝐶(𝑝) > 0 depend only upon the
parameter 𝑝.
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B-D-G have a long history andwe cite only someworks in
this area. Maybe the first general results were due to Novikov
(𝑝 > 1/2) and Burkholder (see [24, 25]).

Lemma 5 (see [26]). Let 𝜏 be a stopping time with respect to
the filtration generated by the fBm 𝐵𝐻

𝑡

. Then, for𝐻 ∈ (1/2, 1),
one has

𝑐 (𝑝,𝐻)E (𝜏𝑝𝐻) ≤ E ((𝐵𝐻∗
𝜏

)

𝑝

) ≤ 𝐶 (𝑝,𝐻)E (𝜏𝑝𝐻) ,

∀𝑝 ≥ 0,

(8)

and, for𝐻 ∈ (0, 1/2), one has

𝑐 (𝑝,𝐻)E (𝜏𝑝𝐻) ≤ E ((𝐵𝐻∗
𝜏

)

𝑝

) , ∀𝑝 > 0, (9)

where the constants 𝑐(𝑝,𝐻) and𝐶(𝑝,𝐻) > 0 depend only upon
the parameters 𝑝,𝐻.

Lemma 6 (see [16, page 120]). Let 𝑍
𝜀

(𝑢), 𝜀 > 0, 𝑢 ∈ R, be a
sequence of continuous functions and 𝑍

0

(𝑢) a convex function
which admits a unique minimum 𝜉 ∈ R. Let 𝐿

𝜀

, 𝜀 > 0, be a
sequence of positive numbers such that 𝐿

𝜀

→ +∞ as 𝜀 → 0.
We suppose that

lim
𝜀→0

sup
|𝑢|<𝐿𝜀

󵄨
󵄨
󵄨
󵄨
𝑍
𝜀

(𝑢) − 𝑍
0

(𝑢)
󵄨
󵄨
󵄨
󵄨
= 0. (10)

Then

lim
𝜀→0

arg min
|𝑢|<𝐿𝜀

𝑍
𝜀

(𝑢) = 𝜉, (11)

where if there are several minima of𝑍
𝜀

, we choose the arbitrary
one.

Now we consider the parameter estimation problem for
a class of nonlinear scalar mixed SDE in the following
framework:

𝑑𝑋
𝑡

= 𝑆
𝑡

(𝜃, 𝑋) 𝑑𝑡 + 𝜀𝑑𝑀
𝐻

𝑡

, 𝑋
0

= 𝑥
0

, 0 ≤ 𝑡 ≤ 𝑇, (12)

where 𝑆
𝑡

(⋅, 𝑋) is a known measurable functional, the
unknown drift parameter 𝜃 ∈ Θ ⊂ R, and 𝜀 > 0.

Denote 𝜃
0

by the true parameter of 𝜃. Let P(𝜀)
𝜃0

be the
probability measure induced by the process {𝑋

𝑡

} and 𝑥
𝑡

(𝜃)

the solution of the differential equation (12) with 𝜀 = 0.
Assume that the trend functional of the above equation

has the following form:

𝑆
𝑡

(𝜃, 𝑋) = 𝑉 (𝜃, 𝑡, 𝑋
𝑡

) + ∫

𝑡

0

𝐾(𝜃, 𝑡, 𝑠, 𝑋
𝑠

) 𝑑𝑠, (13)

where 𝑉(𝜃, 𝑡, 𝑋
𝑡

) and 𝐾(𝜃, 𝑡, 𝑠, 𝑋
𝑠

) are two measurable func-
tions.

The function 𝑆
𝑡

(𝜃, 𝑥) is measurable with respect to (𝑡, 𝜃)
and, for any 𝛿 > 0, denote

𝑔 (𝛿) := inf
|𝜃−𝜃0|>𝛿

󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

(𝜃) − 𝑥
𝑡

(𝜃
0

)
󵄩
󵄩
󵄩
󵄩𝑇
. (14)

Note that 𝑔(𝛿) > 0 for any 𝛿 > 0.

The 𝐿
𝑝≥1

or supremum norm can be denoted by ‖ ‖
𝑇

and
the MDE 𝜃∗

𝜀

(see [15]) is defined by

𝜃
∗

𝜀

:= argmin
𝜃∈Θ

‖𝑋 − 𝑥 (𝜃)‖
𝑇

. (15)

We also need the following additional conditions.
(A
1

)The functional 𝑆
𝑡

(𝜃, ⋅) is measurable and nonantici-
pative and satisfies the following inequalities: for all 𝑡 ∈ [0, 𝑇]
and𝑋,𝑌 ∈ C[0, 𝑇],

󵄨
󵄨
󵄨
󵄨
𝑆
𝑡

(𝜃, 𝑋) − 𝑆
𝑡

(𝜃, 𝑌)
󵄨
󵄨
󵄨
󵄨
≤ 𝐿
1

∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑋
𝑠

− 𝑌
𝑠

󵄨
󵄨
󵄨
󵄨
𝑑𝑠 + 𝐿

2

󵄨
󵄨
󵄨
󵄨
𝑋
𝑡

− 𝑌
𝑡

󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
𝑆
𝑡

(𝜃, 𝑋)
󵄨
󵄨
󵄨
󵄨
≤ 𝐿
1

∫

𝑡

0

(1 +
󵄨
󵄨
󵄨
󵄨
𝑋
𝑠

󵄨
󵄨
󵄨
󵄨
) 𝑑𝑠 + 𝐿

2

(1 +
󵄨
󵄨
󵄨
󵄨
𝑋
𝑡

󵄨
󵄨
󵄨
󵄨
) ,

(16)

where 𝐿
1

, 𝐿
2

are positive constants.
(A
2

) The measurable functions 𝑉(𝜃, 𝑡, 𝑋
𝑡

) and 𝐾(𝜃, 𝑡,
𝑠, 𝑋
𝑠

) are continuously twice differentiable in 𝜃 and 𝑥.
(A
3

) Suppose that

inf
𝜃∈Θ

‖𝑥̇ (𝜃)‖
𝑇

> 0 (17)

and define by the random variable 𝜉
𝑇

= 𝜉
𝑇

(𝜃
0

),

𝜉
𝑇

:= argmin
𝑢∈R

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
(1)

− 𝑢𝑥̇ (𝜃
0

)

󵄩
󵄩
󵄩
󵄩
󵄩𝑇
. (18)

Denote 𝑥̇
𝑡

(𝜃) by the derivatives of 𝑥
𝑡

(𝜃) with respect to
𝜃 and introduce a Gaussian process 𝑥(1)

𝑡

= 𝑥
(1)

𝑡

(𝜃) which
satisfies the equation

𝑑𝑥
(1)

𝑡

= [𝑉
󸀠

𝑥

(𝜃, 𝑡, 𝑥
𝑡

) 𝑥
(1)

𝑡

+∫

𝑡

0

𝐾
󸀠

𝑥

(𝜃, 𝑡, 𝑠, 𝑥
𝑠

) 𝑥
(1)

𝑠

𝑑𝑠] 𝑑𝑡 + 𝑑𝑀
𝐻

𝑡

,

𝑥
(1)

0

= 0, 0 ≤ 𝑡 ≤ 𝑇,

(19)

where 𝑉󸀠
𝑥

and 𝐾󸀠
𝑥

are the derivatives of 𝑉(𝜗, 𝑡, 𝑥) and 𝐾(𝜗, 𝑡,
𝑠, 𝑥) with respect to 𝑥 and 𝑥(1)

𝑡

is a derivative with probability
one of𝑋

𝑡

with respect to 𝜀 as 𝜀 = 0.
In the paper, we will use 𝐶 to denote a generic constant

which may vary from place to place.

3. Consistency

Theorem 7. If the above condition (A
1

) is satisfied, then, for
any 𝑝 > 0, there exist constants𝐶

1

(𝑝,𝐻),𝐶
2

(𝑝) > 0 such that,
for every 𝛿 > 0,

P(𝜀)
𝜃0

{
󵄨
󵄨
󵄨
󵄨
𝜃
∗

𝜀

− 𝜃
0

󵄨
󵄨
󵄨
󵄨
> 𝛿}

≤ 2
𝑝

𝐶
𝑝

𝑇

𝐶
𝑝

𝜀
𝑝

(𝑔 (𝛿))
−𝑝

(𝐶
1

(𝑝,𝐻)𝑇
𝐻𝑝

+ 𝐶
2

(𝑝) 𝑇
𝑝/2

)

= 𝑂 ((𝑔 (𝛿))
−𝑝

𝜀
𝑝

) .

(20)
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Proof. Condition (A
1

) ensures the existence and uniqueness
of a strong solution of (12). It is obvious that, with P

(𝜀)

𝜃0

prob-
ability one,

󵄩
󵄩
󵄩
󵄩
𝑋
𝑡

− 𝑥
𝑡

(𝜃
0

)
󵄩
󵄩
󵄩
󵄩∞
≤ 𝐶𝜀 sup
0≤𝑡≤𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝐻

𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
. (21)

For any 𝛿 > 0,

P(𝜀)
𝜃0

{
󵄨
󵄨
󵄨
󵄨
𝜃
∗

𝜀

− 𝜃
0

󵄨
󵄨
󵄨
󵄨
> 𝛿}

≤ P(𝜀)
𝜃0

{ inf
|𝜃−𝜃0|≤𝛿

(‖𝑋 − 𝑥 (𝜃)‖
𝑇

) ≤ inf
|𝜃−𝜃0|>𝛿

(‖𝑋 − 𝑥 (𝜃)‖
𝑇

)}

≤ P(𝜀)
𝜃0

{
󵄩
󵄩
󵄩
󵄩
𝑋 − 𝑥 (𝜃

0

)
󵄩
󵄩
󵄩
󵄩𝑇
+ inf
|𝜃−𝜃0|≤𝛿

(
󵄩
󵄩
󵄩
󵄩
𝑥 (𝜃) − 𝑥 (𝜃

0

)
󵄩
󵄩
󵄩
󵄩𝑇
)

> inf
|𝜃−𝜃0|>𝛿

(
󵄩
󵄩
󵄩
󵄩
𝑥 (𝜃) − 𝑥 (𝜃

0

)
󵄩
󵄩
󵄩
󵄩𝑇
) −
󵄩
󵄩
󵄩
󵄩
𝑋 − 𝑥 (𝜃

0

)
󵄩
󵄩
󵄩
󵄩𝑇
}

≤ P(𝜀)
𝜃0

{2
󵄩
󵄩
󵄩
󵄩
𝑋 − 𝑥 (𝜃

0

)
󵄩
󵄩
󵄩
󵄩𝑇
> inf
|𝜃−𝜃0|>𝛿

(
󵄩
󵄩
󵄩
󵄩
𝑥 (𝜃) − 𝑥 (𝜃

0

)
󵄩
󵄩
󵄩
󵄩𝑇
)} .

(22)

By (21), we have

P(𝜀)
𝜃0

{
󵄨
󵄨
󵄨
󵄨
𝜃
∗

𝜀

− 𝜃
0

󵄨
󵄨
󵄨
󵄨
> 𝛿} ≤ P(𝜀)

𝜃0

{‖𝑋 − 𝑥 (𝜃)‖
∞

>

𝑔 (𝛿)

2𝐶
𝑇

}

≤ P(𝜀)
𝜃0

{ sup
0≤𝑡≤𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝐻

𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
>

𝑔 (𝛿)

2𝜀𝐶𝐶
𝑇

}

= P(𝜀)
𝜃0

{𝑀
𝐻∗

𝑇

>

𝑔 (𝛿)

2𝜀𝐶𝐶
𝑇

}

≤

E(𝑀𝐻∗
𝑇

)

𝑝

(𝑔 (𝛿) /2𝜀𝐶𝐶
𝑇

)
𝑝

.

(23)

Then using Lemmas 3, 4, and 5, we obtain

P(𝜀)
𝜃0

{
󵄨
󵄨
󵄨
󵄨
𝜃
∗

𝜀

− 𝜃
0

󵄨
󵄨
󵄨
󵄨
> 𝛿}

≤ 2
𝑝

𝐶
𝑝

𝑇

𝐶
𝑝

𝜀
𝑝

(𝑔 (𝛿))
−𝑝

(𝐶
1

(𝑝,𝐻)𝑇
𝐻𝑝

+ 𝐶
2

(𝑝) 𝑇
𝑝/2

)

= 𝑂 ((𝑔 (𝛿))
−𝑝

𝜀
𝑝

) .

(24)

Remark 8. As a consequence of the above theorem, we obtain
that 𝜃∗

𝜀

converges in probability to 𝜃
0

under 𝑃(𝜀)
𝜃0

-measure as
𝜀 → 0. Furthermore, the rate of convergence is of order
𝑂(𝜀
𝑝

) for every 𝑝 > 0.

4. Asymptotic Distribution

Theorem 9. Under conditions (A
2

) and (A
3

), we have that
the random variable 𝜀−1(𝜃∗

𝜀

− 𝜃) converges in probability to a
random variable whose probability distribution is the same as
that of 𝜉

𝑇

under P
𝜃0
.

Proof. Let ] = ]
𝜀

= 𝜀𝜆
𝜀

→ 0 and 𝜆
𝜀

→ +∞ as 𝜀 → 0.
Introduce the set

𝐻
0

= 𝐻
0

(]) = {𝜔 : inf
|𝜃−𝜃0|<]

‖𝑋 − 𝑥 (𝜃)‖
𝑇

< inf
|𝜃−𝜃0|≥]

‖𝑋 − 𝑥 (𝜃)‖
𝑇

} .

(25)

For any 𝜔 ∈ 𝐻
0

, we have |𝜃∗
𝜀

− 𝜃
0

| < ]
𝜀

.
In fact, according to (17) of condition (A

3

) and Taylor
formula, we obtain

𝑔 (]
𝜀

) = inf
|𝑢|>]𝜀

󵄩
󵄩
󵄩
󵄩
𝑥 (𝜃
0

+ 𝑢) − 𝑥 (𝜃
0

)
󵄩
󵄩
󵄩
󵄩𝑇

= inf
|𝑢|>]𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢𝑥̇ (
̃
𝜃
0

)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇

= ( inf
|𝑢|>]𝜀
|𝑢|)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥̇ (
̃
𝜃
0

)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇

≥ 𝜅
0

]
𝜀

,

(26)

where 𝑢 ∈ R, 𝜅
0

> 0, ̃𝜃
0

= 𝜃
0

+ 𝛼𝑢, and 0 < 𝛼 < 1.
Then, byTheorem 7, we have

P(𝜀)
𝜃0

{
󵄨
󵄨
󵄨
󵄨
𝜃
∗

𝜀

− 𝜃
0

󵄨
󵄨
󵄨
󵄨
> ]
𝜀

} 󳨀→ 0, 𝜀 󳨀→ 0. (27)

Therefore, we just need to consider the behavior of the norm
‖𝑋 − 𝑥(𝜃)‖

𝑇

, for 𝜃 ∈ {𝜃 : |𝜃∗
𝜀

− 𝜃
0

| < ]
𝜀

}.
We have

𝜀
−1

‖𝑋 − 𝑥 (𝜃)‖
𝑇

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑋 − 𝑥 (𝜃
0

)

𝜀

−

𝑥 (𝜃) − 𝑥 (𝜃
0

)

𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝑇

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
(1)

− 𝑢𝑥̇ (𝜃
0

) + 𝑟 + 𝑞

󵄩
󵄩
󵄩
󵄩
󵄩𝑇
,

(28)

where

𝜃 = 𝜃
0

+ 𝜀𝑢, |𝑢| < 𝜆
𝜀

,

𝑞
𝑡

=

𝑋
𝑡

− 𝑥
𝑡

(𝜃
0

)

𝜀

− 𝑥
(1)

𝑡

,

𝑟
𝑡

=

𝑋
𝑡

(𝜃
0

+ 𝜀𝑢) − 𝑥
𝑡

(𝜃
0

)

𝜀

− 𝑢𝑥̇ (𝜃
0

) .

(29)

Then using (12), (13), (19), and (21),
󵄨
󵄨
󵄨
󵄨
𝑞
𝑡

󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

0

[

𝑆V (𝜃0, 𝑋) − 𝑆V (𝜃0, 𝑥)

𝜀

− 𝑉
󸀠

𝑥

(𝜃
0

, V, 𝑥V) 𝑥
(1)

V

− ∫

V

0

𝐾
󸀠

𝑥

(𝜃
0

, V, ℎ, 𝑥
ℎ

) 𝑥
(1)

ℎ

𝑑ℎ] 𝑑V
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑉 (𝜃
0

, V, 𝑋V) − 𝑉 (𝜃0, V, 𝑥V)
𝜀

−𝑉
󸀠

𝑥

(𝜃
0

, V, 𝑥V) 𝑥
(1)

V

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑V
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+ ∫

𝑡

0

∫

V

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐾 (𝜃
0

, V, ℎ, 𝑋
ℎ

) − 𝐾 (𝜃
0

, V, ℎ, 𝑥
ℎ

)

𝜀

−𝐾
󸀠

𝑥

(𝜃
0

, V, ℎ, 𝑥
ℎ

) 𝑥
(1)

ℎ

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑ℎ 𝑑V

≤ ∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑉
󸀠

𝑥

(𝜃
0

, V, 𝑋V)
𝑋V − 𝑥V

𝜀

− 𝑉
󸀠

𝑥

(𝜃
0

, V, 𝑥V) 𝑥
(1)

V

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑V

+ ∫

𝑡

0

∫

V

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐾
󸀠

𝑥

(𝜃
0

, V, ℎ, 𝑋
ℎ

)

𝑋
ℎ

− 𝑥
ℎ

𝜀

−𝐾
󸀠

𝑥

(𝜃
0

, V, ℎ, 𝑥
ℎ

) 𝑥
(1)

ℎ

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑ℎ 𝑑V

≤ ∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑥

󸀠 (𝜃
0

, V, 𝑋V)
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑋V − 𝑥V

𝜀

− 𝑥
(1)

V

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑V

+ ∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
󸀠

𝑥

(𝜃
0

, V, 𝑋V) − 𝑉
󸀠

𝑥

(𝜃
0

, V, 𝑥V)
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
(1)

V
󵄨
󵄨
󵄨
󵄨
󵄨
𝑑V

+ ∫

𝑡

0

∫

V

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝐾
󸀠

𝑥

(𝜃
0

, V, ℎ, 𝑋
ℎ

)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑋
ℎ

− 𝑥
ℎ

𝜀

− 𝑥
(1)

ℎ

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑ℎ 𝑑V

+ ∫

𝑡

0

∫

V

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝐾
󸀠

𝑥

(𝜃
0

, 𝑠, V, 𝑋V) − 𝐾
󸀠

𝑥

(𝜃
0

, 𝑠, V, 𝑥V)
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
(1)

V
󵄨
󵄨
󵄨
󵄨
󵄨
𝑑ℎ 𝑑V

≤ 𝐶
1

∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑞V
󵄨
󵄨
󵄨
󵄨
𝑑V + 𝐶

2

∫

𝑡

0

∫

V

0

󵄨
󵄨
󵄨
󵄨
𝑞
ℎ

󵄨
󵄨
󵄨
󵄨
𝑑ℎ 𝑑V

+ 𝜀𝐶
3

sup
0≤𝑡≤𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝐻

𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
sup
0≤𝑡≤𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
(1)

𝑡

󵄨
󵄨
󵄨
󵄨
󵄨

(30)

with some constants 𝐶
𝑖

> 0, 𝑖 = 1, 2, 3. From (19), condition
(A
2

), and Lemma 4.13 (see [27]), we obtain

sup
0≤𝑡≤𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
(1)

𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶 sup
0≤𝑡≤𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝐻

𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
; (31)

then,

󵄨
󵄨
󵄨
󵄨
𝑞
𝑡

󵄨
󵄨
󵄨
󵄨
≤ 𝐶
1

∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑞
𝑠

󵄨
󵄨
󵄨
󵄨
𝑑𝑠 + 𝐶

2

∫

𝑡

0

∫

𝑠

0

󵄨
󵄨
󵄨
󵄨
𝑞V
󵄨
󵄨
󵄨
󵄨
𝑑V 𝑑𝑠 + 𝜀𝐶

4

sup
0≤𝑡≤𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝐻

𝑇

󵄨
󵄨
󵄨
󵄨
󵄨

2

.

(32)

By using Lemma 4.13 once more, we get

sup
0≤𝑡≤𝑇

󵄨
󵄨
󵄨
󵄨
𝑞
𝑡

󵄨
󵄨
󵄨
󵄨
≤ 𝐶𝜀 sup
0≤𝑡≤𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝐻

𝑇

󵄨
󵄨
󵄨
󵄨
󵄨

2

. (33)

Now consider 𝑟
𝑡

; using the Taylor formula, we obtain

sup
|𝑢|<𝜆𝜀

sup
0≤𝑡≤𝑇

󵄨
󵄨
󵄨
󵄨
𝑟
𝑡

󵄨
󵄨
󵄨
󵄨
= sup
|𝑢|<𝜆𝜀

sup
0≤𝑡≤𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢 (𝑥̇
𝑡

(
̂
𝜃
0

) − 𝑥̇
𝑡

(𝜃))

󵄨
󵄨
󵄨
󵄨
󵄨

≤ sup
|𝑢|<𝜆𝜀

|𝑢| sup
0≤𝑡≤𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥̇
𝑡

(
̂
𝜃
0

) − 𝑥̇
𝑡

(𝜃)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶𝜀𝜆

2

𝜀

,

(34)

where ̂𝜃
0

= 𝜃
0

+ 𝛽𝜀𝑢, 𝛽 ∈ (0, 1).
Introduce the functions

𝑍
𝜀

(𝑢) =
󵄩
󵄩
󵄩
󵄩
𝑋 − 𝑥 (𝜃

0

+ 𝜀𝑢)
󵄩
󵄩
󵄩
󵄩𝑇
, 𝑍
0

(𝑢) =

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
(1)

− 𝑢𝑥̇(𝜃
0

)

󵄩
󵄩
󵄩
󵄩
󵄩𝑇
.

(35)

By (33) and (34),

sup
|𝑢|<𝜆𝜀

󵄨
󵄨
󵄨
󵄨
𝑍
𝜀

(𝑢) − 𝑍
0

(𝑢)
󵄨
󵄨
󵄨
󵄨

= sup
|𝑢|<𝜆𝜀

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1

𝜀

(𝑋 − 𝑥 (𝜃
0

+ 𝜀𝑢))

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
𝑇

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
(1)

− 𝑢𝑥̇ (𝜃
0

)

󵄩
󵄩
󵄩
󵄩
󵄩𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ sup
|𝑢|<𝜆𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1

𝜀

(𝑋 − 𝑥 (𝜃
0

+ 𝜀𝑢)) − (𝑥
(1)

− 𝑢𝑥̇ (𝜃
0

))

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
𝑇

≤ 𝐶
𝑇

sup
|𝑢|<𝜆𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1

𝜀

(𝑋 − 𝑥 (𝜃
0

+ 𝜀𝑢)) − (𝑥
(1)

− 𝑢𝑥̇ (𝜃
0

))

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
∞

≤ 𝐶
𝑇

( sup
0≤𝑡≤𝑇

󵄨
󵄨
󵄨
󵄨
𝑞
𝑡

󵄨
󵄨
󵄨
󵄨
+ sup
|𝑢|<𝜆𝜀

sup
0≤𝑡≤𝑇

󵄨
󵄨
󵄨
󵄨
𝑟
𝑡

󵄨
󵄨
󵄨
󵄨
)

≤ 𝐶𝜀 sup
0≤𝑡≤𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝐻

𝑇

󵄨
󵄨
󵄨
󵄨
󵄨

2

+ 𝐶𝜀𝜆
2

𝜀

.

(36)

Therefore, if we choose 𝜆
𝜀

such that 𝜀𝜆2
𝜀

→ 0 when 𝜀 → 0,
then, with probability one, we have

sup
|𝑢|<𝜆𝜀

󵄨
󵄨
󵄨
󵄨
𝑍
𝜀

(𝑢) − 𝑍
0

(𝑢)
󵄨
󵄨
󵄨
󵄨
󳨀→ 0. (37)

Using Lemma 6, we obtain the result. The proof completes.
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