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Let 𝑚 ≥ 1 be an integer, letB
2𝑚

denote the Brualdi-Li matrix of order 2𝑚, and letLB
2𝑚

denote the Laplacianmatrices of Brualdi-
Li tournament digraphs. We obtain the eigenvalues and eigenvectors ofLB

2𝑚
.

1. Introduction

The Laplacian spectral theory is currently not only a hot
research direction of spectral graph theory but also one of the
research directions of combinedmatrix theory.The Laplacian
spectrum of a graph is of importance in graph theory, matrix
theory, and the definite solution of partial differential equa-
tions. It also has applications in quantum chemistry, biology,
and complex network.Therefore, it has important theoretical
and practical values to study the Laplacian eigenvalues and
eigenvectors of graphs. The Laplacian spectrum of graph has
attracted the attention of researchers; see [1–5] and so on. We
follow [1, 6] for terminology and notations.

Let 𝐺 be a digraph of order 𝑛 with vertex set 𝑉(𝐺) and
arc set 𝐸(𝐺), where 𝑉(𝐺) = {V

1
, V
2
, . . . , V

𝑛
}. The adjacency

matrix of 𝐺 is the (0, 1) matrix 𝐴(𝐺) = (𝑎
𝑖𝑗

) of order 𝑛,
where 𝑎

𝑖𝑗
= 1 if there is an arc from V

𝑖
to V
𝑗
and 𝑎

𝑖𝑗
= 0

otherwise. The digraph 𝐺 is called the associated digraph of
matrix 𝐴(𝐺). Let 𝐷(𝐺) = diag(𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑛
), the diagonal

matrix with vertex outdegrees 𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
of V
1
, V
2
, . . . , V

𝑛
.

𝐿(𝐺) = 𝐷(𝐺) − 𝐴(𝐺) is called the Laplacian matrix of the
digraph 𝐺. The characteristic polynomial of the adjacency
matrix 𝐴(𝐺), that is, 𝑃(𝐺, 𝜆) = 𝑃(𝐴(𝐺), 𝜆) = det(𝜆𝐼 − 𝐴(𝐺)),
is called the characteristic polynomial of the digraph 𝐺. The
equation det(𝜆𝐼 − 𝐴(𝐺)) = 0 has 𝑛 complex roots and
these roots are called the eigenvalues of 𝐴(𝐺). Suppose the
distinct eigenvalues of 𝐿(𝐺) are denoted by 𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑟
∈ C

with corresponding algebraic multiplicities 𝜇
𝜆
1

, 𝜇
𝜆
2

, . . . , 𝜇
𝜆
𝑟

,
where 𝜇

𝜆
𝑖

is a nonnegative integer 𝑖 = 1, 2, . . . , 𝑟.

𝐿𝑆 = (
𝜆
1
𝜆
2
⋅⋅⋅ 𝜆
𝑟

𝜇
𝜆1
𝜇
𝜆2
⋅⋅⋅ 𝜇
𝜆𝑟

) is called the Laplacian spectrum of
digraph 𝐺. The Laplacian spectral radius of 𝐺 is the largest
modulus of an eigenvalue of 𝐿(𝐺), denoted by 𝜌(𝐿(𝐺)). The
symbol C will denote the complex field. Let 𝜆 ∈ C be
an eigenvalue of matrix 𝐴. There is vector 𝑥 ̸= 0 satisfying
𝐴𝑥 = 𝜆𝑥, and then 𝑥 is called the eigenvectors of matrix 𝐴

corresponding to 𝜆.
A tournament matrix of order 𝑛 is a (0, 1) matrix 𝑇

𝑛

satisfying the equation 𝑇
𝑛

+ 𝑇
𝑡

𝑛
= 𝐽
𝑛

− 𝐼
𝑛
, where 𝐽

𝑛
is the all

ones matrix, 𝐼
𝑛
is the identity matrix, and 𝑇

𝑡

𝑛
is the transpose

of 𝑇
𝑛
. Let

B
2𝑚

= (

𝑈
𝑚

𝑈
𝑡

𝑚

𝐼
𝑚

+ 𝑈
𝑡

𝑚
𝑈
𝑚

) , (1)

where 𝑈
𝑚
is strictly upper triangular tournament matrix (all

of whose entries above the main diagonal are equal to one);
that is,

𝑈
𝑚

= (

0 1 1 ⋅ ⋅ ⋅ 1

0 0 1 ⋅ ⋅ ⋅ 1

... d d d
...

0 0 ⋅ ⋅ ⋅ 0 1

0 0 ⋅ ⋅ ⋅ 0 0

)

𝑚×𝑚

(2)

is the tournament matrix of order 2𝑚.
The matrix B

2𝑚
has been dubbed by the Brualdi-Li

matrix. The associated digraph of matrix B
2𝑚

is called
the Brualdi-Li tournament digraph. In 1983 Brualdi and Li
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conjectured that themaximal spectral radius for tournaments
of order 2𝑚 is attained by the Brualdi-Li matrix [7]. This
conjecture has been confirmed in [8]. The properties of the
Brualdi-Li matrix have been investigated in [9–14].

In this paper, we obtain the spectrum and eigenvectors
of the Laplacian matrices of the Brualdi-Li tournament
digraphs.

Theorem 1. Let 𝑚 ≥ 1 be an integer, and let SLB
2𝑚

be
the Laplacian spectrum of the Brualdi-Li tournament digraph.
Then

SLB
2𝑚

= (

0 𝑚 𝜆
𝑘

𝜆
𝑘

1 ⌊

𝑚 − 1

2

⌋ + ⌊

𝑚 + 1

2

⌋ 1 1

) , (3)

where ⌊𝑎⌋ is the floor of number 𝑎, 𝜆
𝑘

= 𝑚 − 𝑖 cot ((𝜋 +

2𝑘𝜋)/2𝑚), and 𝜆
𝑘
is the conjugate complex number of 𝜆

𝑘
,

𝑘 = 0, 1, 2, . . . , ⌊𝑚/2⌋ − 1.

Theorem 2. Let 𝑚 ≥ 1 be an integer, and let 𝜉 = (
V
𝑤 ) ̸= 0

be the eigenvector of LB
2𝑚

corresponding to 𝜆, where V =

(V
1
, V
2
, . . . , V

𝑚
)
𝑡, 𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑚
)
𝑡; then

(1) if 𝜆 = 𝑚, then
𝜉
𝑚

= (
0

1
) is the eigenvector of LB

2
corresponding to

𝜆 = 𝑚 = 1,
𝜉
𝑚

= (1, −1, 1, −1)
𝑡 is the eigenvector of LB

4

corresponding to 𝜆 = 𝑚 = 2,
𝜉
𝑚

= ∑
𝑚

𝑘=2
𝑙
𝑘
𝜉
𝑚
𝑘

is the eigenvector of LB
2𝑚

corre-
sponding to 𝜆 = 𝑚 > 2,
where 𝑙

𝑘
is an arbitrary constant, 𝑘 = 2, 3, . . . , 𝑚,

(𝜉
𝑚
2

, 𝜉
𝑚
3

, . . . , 𝜉
𝑚
𝑚

) =
(

(

1𝑡
𝑚−2

1

−𝐼
𝑚−2

0

0 −1

1𝑡
𝑚−2

1

−𝐼
𝑚−2

0

0 −1

)

)2𝑚×(𝑚−1)

; (4)

(2) if 𝜆 ̸= 𝑚, then

V
𝑘

=

1

2 (𝑚 − 𝜆)

(1 − 𝜆(

𝑚 − 1 − 𝜆

𝑚 + 1 − 𝜆

)

𝑘−1

) ,

𝑤
𝑘

=

1

2 (𝑚 − 𝜆)

(1 + 𝜆(

𝑚 − 1 − 𝜆

𝑚 + 1 − 𝜆

)

𝑘

) ,

𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑚.

(5)

Corollary 3. Let 𝑚 ≥ 1 be an integer, and let 𝜌(LB
2𝑚

)

be the Laplacian spectral radius of the Brualdi-Li tournament
digraph. Then

𝜌 (LB
2𝑚

) = √𝑚
2

+ cot2 𝜋

2𝑚

. (6)

Proof. ByTheorem 1,

𝜌 (LB
2𝑚

) = max
0≤𝑘≤⌊𝑚/2⌋−1

{0, 𝑚,










𝑚 ± 𝑖cot𝜋 + 2𝑘𝜋

2𝑚










}

= √𝑚
2

+ cot2 𝜋

2𝑚

.

(7)

Corollary 4. Let 𝑚 ≥ 1 be an integer, then

(1) if 𝑚 > 1 is odd, thenLB
2𝑚

is not diagonalizable,

(2) if 𝑚 is even or 𝑚 = 1, thenLB
2𝑚

is diagonalizable.

2. Some Lemmas

Fundamental Theorem of Algebra. Every nonzero, single-
variable, degree 𝑛 polynomial with complex coefficients has,
counted with multiplicity, exactly 𝑛 roots.
Complex Conjugate RootTheorem. If 𝑃 is a polynomial in one
variable with real coefficients and 𝑎 + 𝑏𝑖 is a root of 𝑃 with 𝑎

and 𝑏 real numbers, then its complex conjugate 𝑎 − 𝑏𝑖 is also
a root of 𝑃, where 𝑖

2
= −1.

The symbol LB
2𝑚

denotes the Laplacian matrix of
the Brualdi-Li tournament digraph. Clearly, LB

2𝑚
=

(
(𝑚−1)𝐼

𝑚
−𝑈
𝑚
−𝑈
𝑡

𝑚

−𝐼
𝑚
−𝑈
𝑡

𝑚
𝑚𝐼
𝑚
−𝑈
𝑚

).

Lemma 5. Let 𝑚 > 1 be an integer, and 𝑋 = (1, 𝑥, 𝑥
2
,

. . . , 𝑥
𝑚−1

)
𝑡, where 𝑥 ̸= 1 is real variable. Then

(1) 𝑋
𝑡
𝑈
𝑚

= −

1

1 − 𝑥

𝑋
𝑡

+

1

1 − 𝑥

1𝑡
𝑚

,

(2) 𝑋
𝑡
𝑈
𝑡

𝑚
=

𝑥

1 − 𝑥

𝑋
𝑡

−

𝑥
𝑚

1 − 𝑥

1𝑡
𝑚

.

(8)

Proof. Consider

(1) 𝑋
𝑡
𝑈
𝑚

= (1, 𝑥, 𝑥
2
, . . . , 𝑥

𝑚−1
) 𝑈
𝑚

= (0,

0

∑

𝑘=0

𝑥
𝑘
,

1

∑

𝑘=0

𝑥
𝑘
,

2

∑

𝑘=0

𝑥
𝑘
,

3

∑

𝑘=0

𝑥
𝑘
, . . . ,

𝑚−3

∑

𝑘=0

𝑥
𝑘
,

𝑚−2

∑

𝑘=0

𝑥
𝑘
)

= (

1 − 1

1 − 𝑥

,

1 − 𝑥

1 − 𝑥

,

1 − 𝑥
2

1 − 𝑥

,

1 − 𝑥
3

1 − 𝑥

, . . . ,

1 − 𝑥
𝑚−2

1 − 𝑥

,

1 − 𝑥
𝑚−1

1 − 𝑥

)

= −

1

1 − 𝑥

𝑋
𝑡

+

1

1 − 𝑥

1𝑡
𝑚

.
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(2) 𝑋
𝑡
𝑈
𝑡

𝑚

= (1, 𝑥, 𝑥
2
, . . . , 𝑥

𝑚−1
) 𝑈
𝑡

𝑚

= (

𝑚−1

∑

𝑘=1

𝑥
𝑘
,

𝑚−1

∑

𝑘=2

𝑥
𝑘
, . . . ,

𝑚−1

∑

𝑘=𝑚−2

𝑥
𝑘
,

𝑚−1

∑

𝑘=𝑚−1

𝑥
𝑘
, 0)

= (

𝑥 − 𝑥
𝑚

1 − 𝑥

,

𝑥
2

− 𝑥
𝑚

1 − 𝑥

, . . . ,

𝑥
𝑚−2

− 𝑥
𝑚

1 − 𝑥

,

𝑥
𝑚−1

− 𝑥
𝑚

1 − 𝑥

,

𝑥
𝑚

− 𝑥
𝑚

1 − 𝑥

)

=

𝑥

1 − 𝑥

𝑋
𝑡

−

𝑥
𝑚

1 − 𝑥

1𝑡
𝑚

.

(9)

Lemma6. Let𝑚 > 1 be an integer,𝜆 ̸= 𝑚, let𝜆 ∈ C be an arbi-
trary eigenvalue ofLB

2𝑚
, and let 𝜉 = (

V
𝑤 ) ̸= 0 be the eigenvec-

tor of LB
2𝑚

corresponding to 𝜆, where V = (V
1
, V
2
, . . . , V

𝑚
)
𝑡,

𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑚
)
𝑡. Let 𝑋 = (1, 𝑥, 𝑥

2
, . . . , 𝑥

𝑚−1
)
𝑡, 𝑓(𝑥) =

∑
𝑚

𝑘=1
V
𝑘
𝑥
𝑘−1, and 𝑔(𝑥) = ∑

𝑚

𝑘=1
𝑤
𝑘
𝑥
𝑘−1, where 𝑥 is real variable.

Then

(1) 𝑓 (𝑥)

= ((𝑚 + 1 − 𝜆) 𝑎 + (𝑎 + 𝑏) (𝑥 + 𝑥
2

+ ⋅ ⋅ ⋅ + 𝑥
𝑚−1

)

+ (𝑎 − 𝑏 (𝑚 − 𝜆)) 𝑥
𝑚

)

× ((𝑚 − 𝜆) ((𝑚 + 1 − 𝜆) − (𝑚 − 1 − 𝜆) 𝑥))
−1

,

(2) 𝑔 (𝑥)

= (𝑎 + 𝑏 (𝑚 − 𝜆) + (𝑎 + 𝑏) (𝑥 + 𝑥
2

+ ⋅ ⋅ ⋅ + 𝑥
𝑚−1

)

−𝑎 (𝑚 − 1 − 𝜆) 𝑥
𝑚

)

× ((𝑚 − 𝜆) ((𝑚 + 1 − 𝜆) − (𝑚 − 1 − 𝜆) 𝑥))
−1

,

(10)

where 𝑎 = 1𝑡
𝑚
V, 𝑏 = 1𝑡

𝑚
𝑤.

Proof. If 𝜆( ̸= 𝑚) is an eigenvalue, with eigenvector 𝜉 = (
V
𝑤 ),

ofLB
2𝑚
, thenLB

2𝑚
𝜉 = 𝜆𝜉 expands to

(

(𝑚 − 1) 𝐼
𝑚

− 𝑈
𝑚

−𝑈
𝑡

𝑚

−𝐼
𝑚

− 𝑈
𝑡

𝑚
𝑚𝐼
𝑚

− 𝑈
𝑚

) (

V
𝑤

) = 𝜆 (

V
𝑤

) . (11)

Therefore,

((𝑚 − 1) 𝐼
𝑚

− 𝑈
𝑚

) V − 𝑈
𝑡

𝑚
𝑤 = 𝜆V,

(−𝐼
𝑚

− 𝑈
𝑡

𝑚
) V + (𝑚𝐼

𝑚
− 𝑈
𝑚

) 𝑤 = 𝜆𝑤.

(12)

We have

𝑋
𝑡

((𝑚 − 1) 𝐼
𝑚

− 𝑈
𝑚

) V − 𝑋
𝑡
𝑈
𝑡

𝑚
𝑤 = 𝜆𝑋

𝑡V,

𝑋
𝑡

(−𝐼
𝑚

− 𝑈
𝑡

𝑚
) V + 𝑋

𝑡
(𝑚𝐼
𝑚

− 𝑈
𝑚

) 𝑤 = 𝜆𝑋
𝑡
𝑤.

(13)

According to Lemma 5, we have

((𝑚 − 1 − 𝜆) (1 − 𝑥) + 1) 𝑓 (𝑥) − 𝑥𝑔 (𝑥) = 𝑎 − 𝑏𝑥
𝑚

−𝑓 (𝑥) + ((𝑚 − 𝜆) (1 − 𝑥) + 1) 𝑔 (𝑥) = 𝑏 − 𝑎𝑥
𝑚

.

(14)

Notice that this equation holds for 𝑥 = 1 too. Consider

𝐷 = det(

(𝑚 − 1 − 𝜆) (1 − 𝑥) + 1 −𝑥

−1 (𝑚 − 𝜆) (1 − 𝑥) + 1
)

= ((𝑚 − 1 − 𝜆) (1 − 𝑥) + 1) ((𝑚 − 𝜆) (1 − 𝑥) + 1) − 𝑥

= (𝑚 − 𝜆) (1 − 𝑥) ((𝑚 + 1 − 𝜆) − (𝑚 − 1 − 𝜆) 𝑥) ,

𝐷
𝑓

= det(

𝑎 − 𝑏𝑥
𝑚

−𝑥

𝑏 − 𝑎𝑥
𝑚

(𝑚 − 𝜆) (1 − 𝑥) + 1
)

= (𝑎 − 𝑏𝑥
𝑚

) ((𝑚 − 𝜆) (1 − 𝑥) + 1) + 𝑥 (𝑏 − 𝑎𝑥
𝑚

)

= 𝑎 (𝑚 + 1 − 𝜆) + (𝑏 − 𝑎 (𝑚 − 𝜆)) 𝑥

− 𝑏 (𝑚 + 1 − 𝜆) 𝑥
𝑚

+ (𝑏 (𝑚 − 𝜆) − 𝑎) 𝑥
𝑚+1

= (1 − 𝑥) (𝑎 (𝑚 + 1 − 𝜆) + (𝑎 + 𝑏) (𝑥 + ⋅ ⋅ ⋅ + 𝑥
𝑚−1

)

+ (𝑎 − 𝑏 (𝑚 − 𝜆)) 𝑥
𝑚

) ,

𝐷
𝑔

= det(

(𝑚 − 1 − 𝜆) (1 − 𝑥) + 1 𝑎 − 𝑏𝑥
𝑚

−1 𝑏 − 𝑎𝑥
𝑚)

= (𝑏 − 𝑎𝑥
𝑚

) ((𝑚 − 1 − 𝜆) (1 − 𝑥) + 1) + (𝑎 − 𝑏𝑥
𝑚

)

= 𝑎 + 𝑏 (𝑚 − 𝜆) − 𝑏 (𝑚 − 1 − 𝜆) 𝑥

− (𝑏 + 𝑎 (𝑚 − 𝜆)) 𝑥
𝑚

+ 𝑎 (𝑚 − 1 − 𝜆) 𝑥
𝑚+1

= (1 − 𝑥) (𝑎 + 𝑏 (𝑚 − 𝜆) + (𝑎 + 𝑏) (𝑥 + ⋅ ⋅ ⋅ + 𝑥
𝑚−1

)

−𝑎 (𝑚 − 1 − 𝜆) 𝑥
𝑚

) .

(15)

By Cramer’s rule,

(1) 𝑓 (𝑥)

= ((𝑚 + 1 − 𝜆) 𝑎 + (𝑎 + 𝑏) (𝑥 + 𝑥
2

+ ⋅ ⋅ ⋅ + 𝑥
𝑚−1

)

+ (𝑎 − 𝑏 (𝑚 − 𝜆)) 𝑥
𝑚

)

× ((𝑚 − 𝜆) ((𝑚 + 1 − 𝜆) − (𝑚 − 1 − 𝜆) 𝑥))
−1

,

(2) 𝑔 (𝑥)

= (𝑎 + 𝑏 (𝑚 − 𝜆) + (𝑎 + 𝑏) (𝑥 + 𝑥
2

+ ⋅ ⋅ ⋅ + 𝑥
𝑚−1

)

−𝑎 (𝑚 − 1 − 𝜆) 𝑥
𝑚

)

× ((𝑚 − 𝜆) ((𝑚 + 1 − 𝜆) − (𝑚 − 1 − 𝜆) 𝑥))
−1

.

(16)

We are done.
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Lemma 7. Under the assumptions and in the notation of
Lemma 6,

𝑎 + 𝑏 = 1𝑡
𝑚
V + 1𝑡
𝑚

𝑤 ̸= 0, 𝑎 = 1𝑡
𝑚
V ̸= 0, 𝑏 = 1𝑡

𝑚
𝑤 ̸= 0.

(17)

Proof. In Lemma 6(1), by setting 𝑥 = 1, we have

𝑎 = 𝑓 (1)

=

(𝑚 + 1 − 𝜆) 𝑎 + (𝑎 + 𝑏) (𝑚 − 1) + (𝑎 − 𝑏 (𝑚 − 𝜆))

(𝑚 − 𝜆) ((𝑚 + 1 − 𝜆) − (𝑚 − 1 − 𝜆))

.

(18)

Since 𝜆 ̸= 𝑚, it follows that

(𝑎 + 𝑏) (1 − 𝜆) = 2𝑎. (19)

As we all know that the eigenvalues of a real skew-symmetric
matrix are all pure imaginary or nonzero, hence det((1 −

𝑚)𝐼
𝑚

+ 𝑈 − 𝑈
𝑡
) ̸= 0, where 𝑚 > 1. Since

det (1𝐼
𝑚

− LB
2𝑚

)

= det(

(2 − 𝑚) 𝐼
𝑚

+ 𝑈
𝑚

𝑈
𝑡

𝑚

𝐼
𝑚

+ 𝑈
𝑡

𝑚
(1 − 𝑚) 𝐼

𝑚
+ 𝑈
𝑚

)

= det(

(2 − 𝑚) 𝐼
𝑚

+ 𝑈
𝑚

(2 − 𝑚) 𝐼
𝑚

+ 𝑈
𝑚

+ 𝑈
𝑡

𝑚

𝐼
𝑚

+ 𝑈
𝑡

𝑚
(2 − 𝑚) 𝐼

𝑚
+ 𝑈
𝑚

+ 𝑈
𝑡

𝑚

)

= de𝑡 (

(1 − 𝑚) 𝐼
𝑚

+ 𝑈 − 𝑈
𝑡

0

𝐼
𝑚

+ 𝑈
𝑡

𝑚
(1 − 𝑚) 𝐼

𝑚
+ 𝐽𝑚

)

= det ((1 − 𝑚) 𝐼
𝑚

+ 𝑈 − 𝑈
𝑡
) det ((1 − 𝑚) 𝐼

𝑚
+ 𝐽𝑚)

= (1 − 𝑚)
𝑚−1 det ((1 − 𝑚) 𝐼

𝑚
+ 𝑈 − 𝑈

𝑡
) ̸= 0,

(20)

hence 𝜆 ̸= 1. Notice that (𝑎 + 𝑏)(1 − 𝜆) = 2𝑎 and if 𝑎 + 𝑏 = 0,
then 𝑎 = 0 and 𝑏 = (𝑎 + 𝑏) − 𝑎 = 0. By Lemma 6,

𝑓 (𝑥) =

𝑚

∑

𝑘=1

V
𝑘
𝑥
𝑘−1

≡ 0,

𝑔 (𝑥) =

𝑚

∑

𝑘=1

𝑤
𝑘
𝑥
𝑘−1

≡ 0,

(21)

for arbitrary real variable 𝑥. It is not possible. Hence 𝑎 + 𝑏 ̸= 0.
It is easy to see that 𝑎 ̸= 0 and 𝑏 ̸= 0.

Lemma 8 (see [15]). If A is a square matrix, then,

(1) for every eigenvalue of A, the geometric multiplicity is
less than or equal to the algebraic multiplicity,

(2) A is diagonalizable if and only if the geometric mul-
tiplicity of every eigenvalue is equal to the algebraic
multiplicity.

3. Proof of Theorem 1

Let 𝜆 ∈ C be an arbitrary eigenvalue of LB
2𝑚
, and let

𝜉 = (
V
𝑤 ) ̸= 0 be the eigenvector of LB

2𝑚
corresponding to

𝜆, where V = (V
1
, V
2
, . . . , V

𝑚
)
𝑡, 𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑚
)
𝑡.

For 𝑚 = 1, then B
2

= (
0 0

1 0
), LB

2
= (
0 0

−1 1
). Obviously,

𝜆
1

= 0, 𝜆
2

= 1 are eigenvalues of LB
2
and 𝜇

0
= 𝜇
1

= 1.
Theorem 1 holds.

For 𝑚 > 1, using the previous assumptions and notation,
obviously, 𝑃(LB

2𝑚
, 0) = det(0𝐼

2𝑚
− LB

2𝑚
) = 0, by

definition, 𝜆 = 0 is an eigenvalue ofLB
2𝑚
, 𝜇
0

≥ 1.
Note that 𝑃(LB

2𝑚
, 𝑚) = det(𝑚𝐼

2𝑚
− LB

2𝑚
) = 0, and

by definition, 𝜆 = 𝑚 is an eigenvalue of LB
2𝑚
. By simple

calculation, the rank ofmatrix𝑚𝐼
2𝑚

−LB
2𝑚

is equal to𝑚+1.
By Lemma 8(1) 𝜇

𝑚
≥ 2𝑚 − (𝑚 + 1) = 𝑚 − 1.

For 𝜆 ̸= 𝑚, by Lemma 7, we set 𝑎 = 1𝑡
𝑚
V, 𝑎 + 𝑏 = 1𝑡

𝑚
V +

1𝑡
𝑚

𝑤 = 1; hence 𝑏 = 1 − 1𝑡
𝑚
V = 1 − 𝑎. In Lemma 6(1), by

setting 𝑥 = 1, we have

𝑎 = 1𝑡
𝑚
V = 𝑓 (1)

=

(𝑚 + 1 − 𝜆) 𝑎 + 𝑚 − 1 + 𝑎 + (𝑎 − 1) (𝑚 − 𝜆)

(𝑚 − 𝜆) ((𝑚 + 1 − 𝜆) − (𝑚 − 1 − 𝜆))

=

(𝑚 − 𝜆) (2𝑎 − 1) + 𝑚 + 2𝑎 − 1

2 (𝑚 − 𝜆)

.

(22)

Hence

𝑎 =

1 − 𝜆

2

. (23)

Denoting 𝑓
0

= (𝑚 + 1 − 𝜆)𝑎, 𝑓
1

= 𝑓
2

= ⋅ ⋅ ⋅ = 𝑓
𝑚−1

= 1, 𝑓
𝑚

=

𝑎 + (𝑎 − 1)(𝑚 − 𝜆), 𝑐 = (𝑚 − 𝜆)(𝑚 + 1 − 𝜆), and 𝑑 = (𝑚 − 1 −

𝜆)/(𝑚 + 1 − 𝜆), we have

𝑓 (𝑥)

=

𝑚

∑

𝑘=1

V
𝑘
𝑥
𝑘−1

= ((𝑚 + 1 − 𝜆) 𝑎 + 𝑥 + 𝑥
2

+ ⋅ ⋅ ⋅ + 𝑥
𝑚−1

+ (𝑎 + (𝑎 − 1) (𝑚 − 𝜆)) 𝑥
𝑚

)

× ((𝑚 − 𝜆) ((𝑚 + 1 − 𝜆) − (𝑚 − 1 − 𝜆) 𝑥))
−1

=

1

𝑐

1

(1 − 𝑑𝑥)

𝑚

∑

𝑘=0

𝑓
𝑘
𝑥
𝑘

=

1

𝑐

∞

∑

𝑘=0

𝑑
𝑘
𝑥
𝑘

𝑚

∑

𝑘=0

𝑓
𝑘
𝑥
𝑘

=

1

𝑐

∞

∑

𝑘=0

(

𝑘

∑

𝑗=0

𝑓
𝑗
𝑑
𝑘−𝑗

) 𝑥
𝑘
.

(24)

It must be that

V
𝑘

=

1

𝑐

𝑘−1

∑

𝑗=0

𝑓
𝑗
𝑑
𝑘−1−𝑗

, 𝑘 = 1, 2, . . . , 𝑚. (25)

Therefore

𝑎 =

𝑚

∑

𝑘=1

V
𝑘

=

1

𝑐

𝑚

∑

𝑘=1

𝑘−1

∑

𝑗=0

𝑓
𝑗
𝑑
𝑘−1−𝑗

=

1

𝑐

𝑚

∑

𝑘=1

(𝑓
0
𝑑
𝑘−1

+

𝑘−1

∑

𝑗=1

𝑑
𝑘−1−𝑗

)
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=

1

𝑐

𝑚

∑

𝑘=1

(𝑓
0
𝑑
𝑘−1

+

1 − 𝑑
𝑘−1

1 − 𝑑

)

=

1

𝑐(1 − 𝑑)
2

× (𝑓
0

(1 − 𝑑
𝑚

) (1 − 𝑑) + 𝑚 (1 − 𝑑) − 1 + 𝑑
𝑚

)

=

1

𝑐(1 − 𝑑)
2

× ((1 − 𝑓
0

(1 − 𝑑)) 𝑑
𝑚

+ (𝑓
0

+ 𝑚) (1 − 𝑑) − 1) .

(26)

That is, 𝑎𝑐(1 − 𝑑)
2

= (1 − 𝑓
0
(1 − 𝑑))𝑑

𝑚
+ (𝑓
0

+ 𝑚)(1 − 𝑑) − 1.
Since 𝑎 = (1−𝜆)/2,𝑓

0
= (𝑚+1−𝜆)𝑎, 𝑐 = (𝑚−𝜆)(𝑚+1−𝜆),

and 𝑑 = (𝑚 − 1 − 𝜆)/(𝑚 + 1 − 𝜆), then

(1 − 𝑓
0

(1 − 𝑑)) 𝑑
𝑚

= 𝑎𝑐(1 − 𝑑)
2

− (𝑓
0

+ 𝑚) (1 − 𝑑) + 1,

(1 −

2𝑎 (𝑚 + 1 − 𝜆)

𝑚 + 1 − 𝜆

) 𝑑
𝑚

=

4𝑎 (𝑚 − 𝜆)

𝑚 + 1 − 𝜆

−

2 ((𝑚 + 1 − 𝜆) 𝑎 + 𝑚)

𝑚 + 1 − 𝜆

+ 1,

𝜆𝑑
𝑚

= −𝜆.

(27)

Denote 𝜃
𝑘

= (𝜋 + 2𝑘𝜋)/2𝑚, 𝑘 = 0, 1, 2, 𝑚 − 1. As 𝜆 ̸= 0, 𝜆 −

𝑚 ̸= 0, we have 𝑑 = 𝑒
2𝑖𝜃
𝑘 ; that is, (𝑚−1−𝜆)/(𝑚+1−𝜆) = 𝑒

2𝑖𝜃
𝑘 ,

where 𝑖
2

= −1.
Therefore,

𝜆 = 𝜆
𝑘

= 𝑚 −

1 + 𝑒
2𝑖𝜃
𝑘

1 − 𝑒
2𝑖𝜃
𝑘

= 𝑚 −

𝑖 sin 2𝜃
𝑘

1 − cos 2𝜃
𝑘

= 𝑚 − 𝑖cot𝜃
𝑘
,

(28)

where 1 − 𝑒
2𝑖𝜃
𝑘

̸= 0, 𝑘 = 0, 1, 2, . . . , 𝑚 − 1.
Note that if 𝑚 is odd, by 𝑑

𝑚
= ((𝑚−1−𝜆)/(𝑚+1−𝜆))

𝑚
=

−1, then (𝑚 − 1 − 𝜆)/(𝑚 + 1 − 𝜆) = −1; hence 𝜆 = 𝑚. It is an
eigenvalue ofLB

2𝑚
.

Furthermore, 𝜇
𝜆
𝑘

≥ 1. Note that 𝜆
𝑘

= 𝜆
𝑚−1−𝑘

, 𝑘 =

0, 1, 2, . . . , ⌊𝑚/2⌋ − 1.
To sum up, by fundamental theorem of algebra and

complex conjugate root theorem, for 𝑚 ≥ 1, we obtain the
following conclusions.

If 𝑚 is odd, then 𝜇
0

= 𝜇
𝜆
𝑘

= 𝜇
𝜆
𝑘

= 1 and 𝜇
𝑚

= 𝑚 =

⌊(𝑚 − 1)/2⌋ + ⌊(𝑚 + 1)/2⌋.
If𝑚 is even, then𝜇

0
= 𝜇
𝜆
𝑘

= 𝜇
𝜆
𝑘

= 1 and𝜇
𝑚

= 𝑚−1 =

⌊(𝑚 − 1)/2⌋ + ⌊(𝑚 + 1)/2⌋.
Consider 𝑘 = 0, 1, 2, . . . , ⌊𝑚/2⌋ − 1. We complete the
proof of Theorem 1.

4. Proofs of Theorem 2 and Corollary 4

It is easy to see that the distinct eigenvalues of LB
2𝑚

are
0, 𝜆
𝑘

= 𝑚 − 𝑖cot((𝜋 + 2𝑘𝜋)/2𝑚), 𝜆
𝑘
, 𝑚, with corresponding

algebraic multiplicities 1, 1, 1, ⌊(𝑚 − 1)/2⌋ + ⌊(𝑚 + 1)/2⌋, 𝑘 =

1, 2, . . . , ⌊𝑚/2⌋ − 1.
For 𝜆 = 𝑚 = 1,LB

2
= (
0 0

−1 1
) and, obviously, 𝜉

𝑚
= (
0

1
)

is the eigenvector ofLB
2
corresponding to 𝜆 = 𝑚 = 1.

For 𝜆 = 𝑚 = 2,

LB
4

= (

1 −1 0 0

0 1 −1 0

−1 0 2 −1

−1 −1 0 2

) . (29)

By simple calculation, 𝜉
𝑚

= (1, −1, 1, −1)
𝑡 is the eigenvec-

tor ofLB
4
corresponding to 𝜆 = 𝑚 = 2.

For 𝜆 = 𝑚 > 2, let 𝜉
𝑚

= (
V
𝑤 ) ̸= 0 be the eigenvector

of LB
2𝑚

corresponding to 𝑚, and then LB
2𝑚

𝜉
𝑚

= 𝑚𝜉
𝑚

expands to

(

𝐼
𝑚

+ 𝑈
𝑚

𝑈
𝑡

𝑚

𝐼
𝑚

+ 𝑈
𝑡

𝑚
𝑈
𝑚

) (

V
𝑤

) = 0. (30)

Equation (30) is equivalent to the following equation:

(

𝐼
𝑚

(𝐼 + 𝑈
𝑚

)
−1

𝑈
𝑡

𝑚

0
𝑚

𝑈
𝑚

− (𝐼
𝑚

− 𝑈
𝑡

𝑚
) (𝐼 + 𝑈

𝑚
)
−1

𝑈
𝑡

𝑚

) (

V
𝑤

) = 0. (31)

By simple calculation,

(𝐼 + 𝑈
𝑚

)
−1

𝑈
𝑡

𝑚
= (

−𝐼
𝑚−1

0

1𝑡
𝑚−1

0
) ,

𝑈
𝑚

− (𝐼
𝑚

− 𝑈
𝑡

𝑚
) (𝐼 + 𝑈

𝑚
)
−1

𝑈
𝑡

𝑚
= (

𝐽
𝑚−1

1
𝑚−1

0 0
) .

(32)

We obtain the solution of (30) as follows:

𝜉
𝑚

=

𝑚

∑

𝑘=2

𝑙
𝑘
𝜉
𝑚
𝑘

, (33)

where 𝑙
𝑘
is an arbitrary constant, 𝑘 = 2, 3, . . . , 𝑚, and

(𝜉
𝑚
2

, 𝜉
𝑚
3

, . . . , 𝜉
𝑚
𝑚

) =
(

(

1𝑡
𝑚−2

1

−𝐼
𝑚−2

0

0 −1

1𝑡
𝑚−2

1

−𝐼
𝑚−2

0

0 −1

)

)2𝑚×(𝑚−1)

. (34)

For 𝜆 ̸= 𝑚, let 𝜉 = (
V
𝑤 ) ̸= 0 be the eigenvector of LB

2𝑚

corresponding to 𝜆( ̸= 𝑚), where V = (V
1
, V
2
, . . . , V

𝑚
)
𝑡, 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑚
)
𝑡; thenLB

2𝑚
𝜉 = 𝜆𝜉 expands to

(

(𝑚 − 1) 𝐼
𝑚

− 𝑈
𝑚

−𝑈
𝑡

𝑚

−𝐼
𝑚

− 𝑈
𝑡

𝑚
𝑚𝐼
𝑚

− 𝑈
𝑚

) (

V
𝑤

) = 𝜆 (

V
𝑤

) . (35)

By Lemma 7, 1𝑡
𝑚
V + 1𝑡
𝑚

𝑤 ̸= 1; we put 1𝑡
𝑚
V + 1𝑡
𝑚

𝑤 = 1. By
Theorem 1, 𝑎 = 1𝑡

𝑚
V = (1 − 𝜆)/2, 𝑏 = 1𝑡

𝑚
𝑤 = 1 − 𝑎.
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Denote 𝑔
0

= 𝑎 + (1 − 𝑎)(𝑚 − 𝜆), 𝑔
1

= 𝑔
2

= ⋅ ⋅ ⋅ = 𝑔
𝑚−1

= 1,
and 𝑔

𝑚
= −𝑎(𝑚 − 1 − 𝜆). By Lemma 6(2) we have

𝑔 (𝑥)

=

𝑚

∑

𝑘=1

𝑤
𝑘
𝑥
𝑘−1

= (𝑎 + (1 − 𝑎) (𝑚 − 𝜆) + 𝑥 + 𝑥
2

+ ⋅ ⋅ ⋅ + 𝑥
𝑚−1

−𝑎 (𝑚 − 1 − 𝜆) 𝑥
𝑚

)

× ((𝑚 − 𝜆) ((𝑚 + 1 − 𝜆) − (𝑚 − 1 − 𝜆) 𝑥))
−1

=

1

𝑐

1

(1 − 𝑑𝑥)

𝑚

∑

𝑘=0

𝑔
𝑘
𝑥
𝑘

=

1

𝑐

∞

∑

𝑘=0

𝑑
𝑘
𝑥
𝑘

𝑚

∑

𝑘=0

𝑔
𝑘
𝑥
𝑘

=

1

𝑐

∞

∑

𝑘=0

(

𝑘

∑

𝑗=0

𝑔
𝑗
𝑑
𝑘−𝑗

) 𝑥
𝑘
.

(36)

It must be that

𝑤
𝑘

=

1

𝑐

𝑘−1

∑

𝑗=0

𝑔
𝑗
𝑑
𝑘−1−𝑗

, 𝑘 = 1, 2, . . . , 𝑚. (37)

Hence

𝑤
𝑘

=

1

𝑐

𝑘−1

∑

𝑗=0

𝑔
𝑗
𝑑
𝑘−1−𝑗

=

1

𝑐

(

1 − 𝜆 + (1 + 𝜆) (𝑚 − 𝜆)

2

𝑑
𝑘−1

+

𝑘−2

∑

𝑗=0

𝑑
𝑗
)

=

1

𝑐

(

1 − 𝜆 + (1 + 𝜆) (𝑚 − 𝜆)

2

𝑑
𝑘−1

+

1 − 𝑑
𝑘−1

1 − 𝑑

)

=

1

2 (𝑚 − 𝜆)

(1 + 𝜆(

𝑚 − 1 − 𝜆

𝑚 + 1 − 𝜆

)

𝑘

) , 𝑘 = 1, 2, . . . , 𝑚.

(38)

In the proof of Theorem 1, we have

V
𝑘

=

1

𝑐

𝑘−1

∑

𝑗=0

𝑓
𝑗
𝑑
𝑘−1−𝑗

=

1

𝑐

(

(𝑚 + 1 − 𝜆) (1 − 𝜆)

2

𝑑
𝑘−1

+

𝑘−2

∑

𝑗=0

𝑑
𝑗
)

=

1

𝑐

(

(𝑚 + 1 − 𝜆) (1 − 𝜆)

2

𝑑
𝑘−1

+

1 − 𝑑
𝑘−1

1 − 𝑑

)

=

1

2 (𝑚 − 𝜆)

(1 − 𝜆(

𝑚 − 1 − 𝜆

𝑚 + 1 − 𝜆

)

𝑘−1

) , 𝑘 = 1, 2, . . . , 𝑚.

(39)

We complete the proof of Theorem 2.

Let 𝜆 be an eigenvalue of LB
2𝑚
, and 𝜇

𝜆
and ]

𝜆
are

the algebraic multiplicity and the geometric multiplicity
corresponding to 𝜆, respectively.

If 𝑚 = 1, by Theorem 1 and Theorem 2, and 𝜇
0

= ]
0

=

𝜇
1

= ]
1

= 1, thenLB
2
is diagonalizable.

If 𝑚 > 1, byTheorem 1, 𝜇
0

= 1, 𝜇
𝑚

= ⌊(𝑚 − 1)/2⌋ + ⌊(𝑚 +

1)/2⌋, and 𝜇
𝜆
𝑘

= 𝜇
𝜆
𝑘

= 1, where 𝜆
𝑘

= 𝑚−𝑖cot((𝜋+2𝑘𝜋)/2𝑚),
𝑘 = 0, 1, 2, ⋅ ⋅ ⋅ , ⌊𝑚/2⌋ − 1.

ByTheorem 2, ]
0

= 1, ]
𝑚

= 𝑚 − 1, and ]
𝜆
𝑘

= ]
𝜆
𝑘

= 1. We
have the following:

if 𝑚 > 1 is odd, then 𝑚 = 𝜇
𝑚

̸= ]
𝑚

= 𝑚 − 1;

if 𝑚 is even, then 𝜇
𝜆

= ]
𝜆
, where 𝜆 = 0, 𝑚, 𝜆

𝑘
, 𝜆
𝑘
,

𝑘 = 0, 1, 2, . . . , ⌊𝑚/2⌋ − 1.

By Lemma 8(2), Corollary 4 holds.
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