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We present a heterogeneous networks model with the awareness stage and the decision-making stage to explain the process of
new products diffusion. If mass media is neglected in the decision-making stage, there is a threshold whether the innovation
diffusion is successful or not, or else it is proved that the networkmodel has at least one positive equilibrium. For networks with the
power-law degree distribution, numerical simulations confirm analytical results, and also at the same time, by numerical analysis
of the influence of the network structure and persuasive advertisements on the density of adopters, we give two different products
propagation strategies for two classes of nodes in scale-free networks.

1. Introduction

The Bass model has become an important exemplar in
marketing science. For over three decades, this model has
been themain impetus underlying diffusion research and has
beenwidely used to understand the diffusion of new products
[1–3]. The following equation illustrates the classical Bass
model [4]:

𝑑𝑁 (𝑡)

𝑑𝑡
=

𝑞

𝑚
𝑁 (𝑡) (𝑚 − 𝑁 (𝑡)) + 𝑝 (𝑚 − 𝑁 (𝑡)) , (1)

where 𝑁(𝑡) is the number of cumulative adopters, 𝑝 is
the coefficient of external influence, 𝑞 is the coefficient of
internal influence, and𝑚 is the market potential or potential
number of ultimate adopters. On the basis of the Bass model,
assuming that populations on the market are homogeneous
and well mixed, many dynamics models are used to study
new products diffusion; Yu et al. proposed mathematical
models to describe the dynamics of competitive products
in the market and analyzed the stability of equilibria of the
model [5–7]. Wang et al. proposed describing the dynamics
of users of one product in two different patches; periodic
advertisements are also incorporated and the existence and

uniqueness of positive periodic solutions are investigated
[8]. Considering that an observation process cannot be
neglected for the consumers of many products, especially
for the products with high values, Wang et al. established
a new production diffusion model with two stages (the
awareness stage and the decision-making stage) and obtained
a threshold above which innovation diffusion is successful
[9, 10]. All these models incorporate the imitation among the
population but without the explicit network structure. In fact,
the consumer’s decision-making process on the new product
adoption involves a complex interaction of various external
and internal factors like mass media, advertising, word of
mouth, personal preferences, and experience. Without a
doubt, a friend’s opinion or advice often can be a decisive
argument for a purchase. So, network models considering
social contacts and the individual heterogeneity about new
products diffusion are relatively reasonable.

The products information spread in the diffusion process
is similar to the typical virus spread model such as SIS
model and SIR model. The spread mechanism of diseases
on networks has been widely studied by many researchers.
Many researchers have given different interpretations for the
propagation of diseases on uncorrelated complex networks
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[11–17]; Boguna et al. discuss the epidemic spreading on
complex networks in which there are explicit correlations
among the degrees of connected vertices [18]. With the
development of the disease model on networks, researches
about new products diffusion on complex networks have
raised a growing interest [19, 20]; however, they still do not
have specific network dynamics models or dynamics analysis
of the model. So, we intend to model and analyze the process
of new products diffusion on heterogeneous networks in
this paper. Considering two stages, the awareness stage and
the decision-making stage in the product diffusion process,
and assuming that the product information is spread due to
mouth-to-mouthmethod among people’s direct contacts and
mass media channels (in the awareness stage, mass media is
informative, and in the decision-making stage, mass media is
persuasive), we propose the heterogeneous networks model
of new products diffusion with two stages.

The organization of this paper is as follows. In the next
section, we set up a heterogeneous networkmodel about new
products diffusion and discuss its invariant set. In Section 3,
when mass media is neglected in the decision-making stage,
we discuss equilibria and their stabilities and obtain condi-
tions that the diffusion is successful; when mass media is
considered, we obtain that the system at least has a positive
equilibrium. The theoretical results are also confirmed by
numerical simulations in Section 4; furthermore, we also
obtain two different propagation strategies by simulations
analysis. Finally, we give a brief conclusion and discussion in
Section 5.

2. Dynamics Model of New Products Diffusion

By incorporating the impact of social neighborhood in
the new products diffusion process, we establish networks
model describing the new products diffusion procedure.
Here, we consider the whole population and their contacts in
networks. Each individual in the region under consideration
can be regarded as a vertex in the network, and each contact
between two individuals is represented as an edge connecting
the vertices. The number of edges emanating from a vertex,
that is, the number of contacts a person has, is called the
degree of the vertex.Therefore, we divide the population into
𝑛 distinct groups of sizes 𝑁𝑘 (𝑘 = 1, 2, . . . , 𝑛) such that each
individual in group 𝑘 has exactly 𝑘 contacts per day. If the
whole population size is 𝑁 (𝑁 = 𝑁1 + 𝑁2 + ⋅ ⋅ ⋅ + 𝑁𝑛),
then the probability that a uniformly chosen individual has
𝑘 contacts is 𝑝(𝑘) = 𝑁𝑘/𝑁, which is called the degree
distributions of the network. Let 𝑈𝑘(𝑡) denote the number
of those individuals who have not been aware of the product
within group 𝑘 at time 𝑡, let 𝐼𝑘(𝑡) denote the number of those
individuals who have been aware of the information about the
product but have not yet adopted it within group 𝑘 at time
𝑡, and let 𝐴𝑘(𝑡) denote the number of those individuals who
have adopted the product at time 𝑡. We consider two stage:
in the first stage, enterprises transfer new production infor-
mation to consumers through informative advertisements,
or individuals obtain new product information from their
neighbors, so individuals become aware of information; in

Table 1: Parameters of model 1.

Parameters Description

𝑝

The fraction of individuals who have not been
aware of the product obtained the new product
information from informative advertisements in
the awareness stage

𝛽1
The effective transmission coefficient between
communities 𝑈𝑘 and 𝐼𝑘 in the awareness stage

𝛽2
The effective transmission coefficient between
communities 𝑈𝑘 and 𝐴𝑘 in the awareness stage

𝛽3

The effective transmission coefficient between
communities 𝐼𝑘 and 𝐴𝑘 in the decision-making
stage

𝛾
The rate at which individuals in awareness class
forget the information of the product

𝜇 The coefficient of discontinuance rate of adopters

𝛼

The fraction of individuals who have been aware
of the product turned to be adopters owing to
persuasive advertisements in the decision-making
stage

the decision-making stage, enterprises change consumers’
preference through persuasive advertisements, or a friend’s
opinion or advice also influences individuals’ preferences, so
individuals try or adopt the product. We give a system of
3𝑛 ordinary differential equations representing the product
diffusion dynamics on the scale-free network:

𝑑𝑈𝑘 (𝑡)

𝑑𝑡
= −𝑝𝑈𝑘 (𝑡) − 𝛽1𝑘𝑈𝑘 (𝑡) Θ1 (𝑡) − 𝛽2𝑘𝑈𝑘 (𝑡) Θ2 (𝑡)

+ 𝛾𝐼𝑘 (𝑡) + 𝜇𝐴𝑘 (𝑡) ,

𝑑𝐼𝑘 (𝑡)

𝑑𝑡
= 𝑝𝑈𝑘 (𝑡) + 𝛽1𝑘𝑈𝑘 (𝑡) Θ1 (𝑡) + 𝛽2𝑘𝑈𝑘 (𝑡) Θ2 (𝑡)

− 𝛼𝐼𝑘 (𝑡) − 𝛾𝐼𝑘 (𝑡) − 𝛽3𝑘𝐼𝑘 (𝑡) Θ2 (𝑡) ,

𝑑𝐴𝑘 (𝑡)

𝑑𝑡
= 𝛼𝐼𝑘 (𝑡) + 𝛽3𝑘𝐼𝑘 (𝑡) Θ2 (𝑡) − 𝜇𝐴𝑘 (𝑡) ,

(2)

where

Θ1 (𝑡) =
∑
𝑛

𝑘=1
𝑘𝐼𝑘

∑
𝑛

𝑘=1
𝑘𝑁𝑘

,

Θ2 (𝑡) =
∑
𝑛

𝑘=1
𝑘𝐴𝑘

∑
𝑛

𝑘=1
𝑘𝑁𝑘

.

(3)

All parameters are positive constants and the meaning of
parameters is summarized in Table 1. When 𝛽1 = 0 and
population contact is assumed to be homogeneous, system
(2) becomes the model in [9].
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Denote the relative densities of 𝑈𝑘(𝑡), 𝐼𝑘(𝑡), and 𝐴𝑘(𝑡) at
time 𝑡 by 𝑢𝑘(𝑡), 𝑖𝑘(𝑡), and 𝑎𝑘(𝑡), respectively; then, system (2)
can be rewritten as

𝑑𝑢𝑘 (𝑡)

𝑑𝑡
= −𝑝𝑢𝑘 (𝑡) − 𝛽1𝑘𝑢𝑘 (𝑡) Θ1 (𝑡) − 𝛽2𝑘𝑢𝑘 (𝑡) Θ2 (𝑡)

+ 𝛾𝑖𝑘 (𝑡) + 𝜇𝑎𝑘 (𝑡) ,

𝑑𝑖𝑘 (𝑡)

𝑑𝑡
= 𝑝𝑢𝑘 (𝑡) + 𝛽1𝑘𝑢𝑘 (𝑡) Θ1 (𝑡) + 𝛽2𝑘𝑢𝑘 (𝑡) Θ2 (𝑡)

− 𝛼𝑖𝑘 (𝑡) − 𝛾𝑖𝑘 (𝑡) − 𝛽3𝑘𝑖𝑘 (𝑡) Θ2 (𝑡) ,

𝑑𝑎𝑘 (𝑡)

𝑑𝑡
= 𝛼𝑖𝑘 (𝑡) + 𝛽3𝑘𝑖𝑘 (𝑡) Θ2 (𝑡) − 𝜇𝑎𝑘 (𝑡) ,

(4)

with the normalization condition 𝑢𝑘(𝑡)+ 𝑖𝑘(𝑡)+𝑎𝑘(𝑡) = 1, and
Θ1(𝑡) = (1/⟨𝑘⟩)∑

𝑛

𝑘=1
𝑘𝑝(𝑘)𝑖𝑘, Θ2(𝑡) = (1/⟨𝑘⟩)∑

𝑛

𝑘=1
𝑘𝑝(𝑘)𝑎𝑘.

Using this condition, system (4) is reduced to

𝑑𝑖𝑘 (𝑡)

𝑑𝑡
= (𝑝 + 𝛽1𝑘Θ1 (𝑡) + 𝛽2𝑘Θ2 (𝑡)) (1 − 𝑖𝑘 (𝑡) − 𝑎𝑘 (𝑡))

− 𝛾𝑖𝑘 (𝑡) − (𝛼 + 𝛽3𝑘Θ2 (𝑡)) 𝑖𝑘 (𝑡) ,

𝑑𝑎𝑘 (𝑡)

𝑑𝑡
= (𝛼 + 𝛽3𝑘Θ2 (𝑡)) 𝑖𝑘 (𝑡) − 𝜇𝑎𝑘 (𝑡) .

(5)

Prior to discussing the stability of system (5), we first study its
variant set.

Let 𝑖𝑘 = 𝑦𝑘, 𝑘 = 1, 2, . . . , 𝑛, 𝑎𝑘 = 𝑦𝑛+𝑘, 𝑘 = 1, 2, . . . , 𝑛,
𝑦 = (𝑦1, 𝑦2, . . . , 𝑦2𝑛) = (𝑖1, 𝑖2, . . . , 𝑖𝑛, 𝑎1, 𝑎2, . . . , 𝑎𝑛). Denoting
that Δ 2𝑛 = ∑

2𝑛

𝑙=1
[0, 1], we study system (5) for 𝑦(𝑡) ∈ Δ 2𝑛.

Lemma 1. The set Δ 2𝑛 is positively invariant set of system (5).

Proof. We will show that all the solutions starting from any
initial value 𝑦(0) ∈ Δ 2𝑛 of system (5) satisfy 𝑦(𝑡) ∈ Δ 2𝑛.
Denote that

𝜕Δ
1

2𝑛
= {𝑦 ∈ Δ 2𝑛 | 𝑦𝑖 = 0 for some 𝑖},

𝜕Δ
2

2𝑛
= {𝑦 ∈ Δ 2𝑛 | 𝑦𝑖 = 1 for some 𝑖},

where 𝑖 = 1, 2, . . . , 2𝑛. Let the “outer normals” be denoted by
𝜂
1

𝑖
= (0, . . . , −1, . . . , 0) and 𝜂2

𝑖
= (0, . . . , 1, . . . , 0).

For arbitrary compact set Γ, Nagumo had proved that Γ
is invariant for 𝑑𝑥/𝑑𝑡 = 𝑓(𝑥), if, at each point 𝑦 in 𝜕Γ (the
boundary of Γ), the vector 𝑓(𝑥) is tangent or pointing into
the set [21, 22]. We can easily apply the result here, since Γ is

an 2𝑛-dimensional rectangle. Through Nagumo’s result, it is
not difficult to obtain that

(
𝑑𝑦

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦𝑖=0
⋅ 𝜂
1

𝑖
)

= −(𝑝 +
𝛽1𝑖

⟨𝑘⟩
∑

𝑘 ̸= 𝑖

𝑘𝑝 (𝑘) 𝑦𝑘 + 𝑖𝛽2Θ2)(1 − 𝑦𝑖+𝑛)

≤ 0, 𝑖 = 1, 2, . . . , 𝑛,

(
𝑑𝑦

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦𝑛+𝑖=0
⋅ 𝜂
1

𝑖
) = −(𝛼 +

𝛽3𝑖

⟨𝑘⟩
∑

𝑘 ̸= 𝑖

𝑘𝑝 (𝑘) 𝑦𝑛+𝑘) ≤ 0,

𝑖 = 1, 2, . . . , 𝑛,

(
𝑑𝑦

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦𝑖=1
⋅ 𝜂
2

𝑖
) ≤ 0, 𝑖 = 1, 2, . . . , 2𝑛.

(6)

Hence, Lemma 1 is proved.

3. Model Analysis

Next, for investigating the effect of mass media in the
decision-making stage, we will analyze the dynamics of
system (5) under two kinds of assumptions as followed:

(1) persuasive advertisements are neglected in the
decision-making stage, which means 𝛼 = 0,

(2) persuasive advertisements are considered in the
decision-making stage, which means 𝛼 ̸= 0.

Case I (𝛼 = 0). When 𝛼 = 0, equilibria for system (5) can be
found by setting the right sides of two differential equations
of system (5) equal to zero, giving the algebraic system

(𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘Θ2) (1 − 𝑖𝑘 − 𝑎𝑘) − 𝛾𝑖𝑘 − 𝛽3𝑘𝑖𝑘Θ2 = 0,

𝛽3𝑘𝑖𝑘Θ2 − 𝜇𝑎𝑘 = 0.

(7)

We can get the equivalent system of system (7) as follows:

𝑖𝑘 =
𝜇 (𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘Θ2)

(𝜇 + 𝛽3𝑘Θ2) (𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘Θ2) + 𝜇 (𝛾 + 𝛽3𝑘Θ2)
,

𝑎𝑘 =
𝛽3𝑘Θ2 (𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘Θ2)

(𝜇 + 𝛽3𝑘Θ2) (𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘Θ2) + 𝜇 (𝛾 + 𝛽3𝑘Θ2)
,

(8)

and it is obvious that 𝑎𝑘 = 0 satisfies the second formula in
(8); substituting 𝑎𝑘 = 0 into the first formula in (8), we obtain

𝑖𝑘 =
𝑝 + 𝛽1𝑘Θ1

𝑝 + 𝛾 + 𝛽1𝑘Θ1

(9)

and a self-consistency equation about Θ1 as follows:

Θ1 =
1

⟨𝑘⟩

𝑛

∑

𝑘=1

𝑘𝑝 (𝑘)
𝑝 + 𝛽1𝑘Θ1

𝑝 + 𝛾 + 𝛽1𝑘Θ1

≜ 𝑓 (Θ1) . (10)
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Through some calculation, we have that

0 < 𝑓 (0) =
𝑝

𝑝 + 𝛾
< 1,

0 < 𝑓 (1) =
1

⟨𝑘⟩

𝑛

∑

𝑘=1

𝑘𝑝 (𝑘)
𝑝 + 𝛽1𝑘

𝑝 + 𝛾 + 𝛽1𝑘
< 1,

(11)

𝑓
󸀠
(Θ1) =

1

⟨𝑘⟩

𝑛

∑

𝑘=1

𝑘𝑝 (𝑘)
𝛽1𝛾𝑘

(𝑝 + 𝛾 + 𝛽1𝑘Θ1)
2
> 0, (12)

𝑓
󸀠󸀠
(Θ1) =

1

⟨𝑘⟩

𝑛

∑

𝑘=1

𝑘𝑝 (𝑘)
−2𝛽
2

1
𝑘
2
𝛾

(𝑝 + 𝛾 + 𝛽1𝑘Θ1)
3
< 0. (13)

According to formula (11), we can know that (10) has at
least a positive solution in (0, 1); formula (12) shows that the
function 𝑓(Θ1) is a rigorous monotone increasing function,
and formula (13) means that the function 𝑓(Θ1) is convex,
so (10) must has a unique positive solution Θ

0

1
in (0, 1), and

system (5) has a trivial solution 𝐸0 = (𝑖
0

1
, 𝑖
0

2
, . . . , 𝑖

0

𝑛
, 0, 0, . . . , 0),

where

𝑖
0

𝑘
=

𝑝 + 𝛽1𝑘Θ
0

1

𝑝 + 𝛾 + 𝛽1𝑘Θ
0

1

, 𝑘 = 1, 2, . . . , 𝑛, (14)

Θ
0

1
=

1

⟨𝑘⟩

𝑛

∑

𝑘=1

𝑘𝑝 (𝑘) 𝑖
0

𝑘
. (15)

The above results can be summarized in the following
theorem.

Theorem 2. When 𝛼 = 0, system (5) has a unique trivial
equilibrium 𝐸

0.

Furthermore, one will prove the local stability and global
stability of the equilibrium 𝐸

0. The Jacobin matrix of system
(5) at 𝐸0 is

𝐽|𝐸0 = (
𝐵 𝐶

0 𝐷
) , (16)

where

𝐵 =

(
(
(
(
(
(

(

𝑏11 𝛽1

2𝑝 (2)

⟨𝑘⟩
𝑢
0

1
⋅ ⋅ ⋅ 𝛽1

𝑛𝑝 (𝑛)

⟨𝑘⟩
𝑢
0

1

2𝛽1

𝑝 (1)

⟨𝑘⟩
𝑢
0

2
𝑏22 ⋅ ⋅ ⋅ 2𝛽1

𝑛𝑝 (𝑛)

⟨𝑘⟩
𝑢
0

2

...
... d

...

𝑛𝛽1

𝑝 (1)

⟨𝑘⟩
𝑢
0

𝑛
𝑛𝛽1

2𝑝 (2)

⟨𝑘⟩
𝑢
0

𝑛
⋅ ⋅ ⋅ 𝑏𝑛𝑛

)
)
)
)
)
)

)

,

𝐶 =

(
(
(
(
(
(

(

𝑐11

2𝑝 (2)

⟨𝑘⟩
(𝛽2𝑢
0

1
− 𝛽3𝑖
0

1
) ⋅ ⋅ ⋅

𝑛𝑝 (𝑛)

⟨𝑘⟩
(𝛽2𝑢
0

1
− 𝛽3𝑖
0

1
)

2
𝑝 (1)

⟨𝑘⟩
(𝛽2𝑢
0

2
− 𝛽3𝑖
0

2
) 𝑐22 ⋅ ⋅ ⋅ 2

𝑛𝑝 (𝑛)

⟨𝑘⟩
(𝛽2𝑢
0

2
− 𝛽3𝑖
0

2
)

...
... d

...

𝑛
𝑝 (1)

⟨𝑘⟩
(𝛽2𝑢
0

𝑛
− 𝛽3𝑖
0

𝑛
) 𝑛

2𝑝 (2)

⟨𝑘⟩
(𝛽2𝑢
0

𝑛
− 𝛽3𝑖
0

𝑛
) ⋅ ⋅ ⋅ 𝑐𝑛𝑛

)
)
)
)
)
)

)

,

𝐷 =

(
(
(
(
(
(
(

(

𝛽3

𝑝 (1)

⟨𝑘⟩
𝑖
0

1
− 𝜇 𝛽3

2𝑝 (2)

⟨𝑘⟩
𝑖
0

1
⋅ ⋅ ⋅ 𝛽3

𝑛𝑝 (𝑛)

⟨𝑘⟩
𝑖
0

1

2𝛽3

𝑝 (1)

⟨𝑘⟩
𝑖
0

2
2𝛽3

2𝑝 (2)

⟨𝑘⟩
𝑖
0

2
− 𝜇 ⋅ ⋅ ⋅ 2𝛽3

𝑛𝑝 (𝑛)

⟨𝑘⟩
𝑖
0

2

...
... d

...

𝑛𝛽3

𝑝 (1)

⟨𝑘⟩
𝑖
0

𝑛
𝑛𝛽3

2𝑝 (2)

⟨𝑘⟩
𝑖
0

𝑛
⋅ ⋅ ⋅ 𝑛𝛽3

𝑛𝑝 (𝑛)

⟨𝑘⟩
𝑖
0

𝑛
− 𝜇

)
)
)
)
)
)
)

)

;

(17)
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here

𝑏𝑙𝑙 = − (𝑝 + 𝑙𝛽1Θ
0

1
+ 𝛾) + 𝑙

2
𝛽1

𝑝 (𝑙)

⟨𝑘⟩
𝑢
0

𝑙
, 𝑙 = 1, . . . , 𝑛,

𝑐𝑙𝑙 = 𝑙
2𝑝 (𝑙)

⟨𝑘⟩
(𝛽2𝑢
0

𝑙
− 𝛽3𝑖
0

𝑙
) − (𝑝 + 𝑙𝛽1Θ

0

1
) , 𝑙 = 1, . . . , 𝑛,

𝑢
0

𝑙
= 1 − 𝑖

0

𝑙
, 𝑙 = 1, . . . , 𝑛.

(18)

Next, for studying the local stability of the equilibrium
𝐸
0, we first estimate eigenvalues by carrying out the sim-

ilarity transformation about the matrix 𝐵. Letting 𝑇 =

diag(𝛿1, 𝛿2, . . . , 𝛿𝑛), 𝛿𝑖 = 𝑖𝑢
0

𝑖
, 𝑖 = 1, 2 . . . , 𝑛, then

𝑇
−1
𝐵𝑇 =

(
(
(
(
(

(

𝑏11 𝛽1

2
2
𝑝 (2)

⟨𝑘⟩
𝑢
0

2
⋅ ⋅ ⋅ 𝛽1

𝑛
2
𝑝 (𝑛)

⟨𝑘⟩
𝑢
0

𝑛

𝛽1

𝑝 (1)

⟨𝑘⟩
𝑢
0

1
𝑏22 ⋅ ⋅ ⋅ 𝛽1

𝑛
2
𝑝 (𝑛)

⟨𝑘⟩
𝑢
0

𝑛

...
... d

...

𝛽1

𝑝 (1)

⟨𝑘⟩
𝑢
0

1
𝛽1

2
2
𝑝 (2)

⟨𝑘⟩
𝑢
0

2
⋅ ⋅ ⋅ 𝑏𝑛𝑛

)
)
)
)
)

)

≜ 𝐵
∗
.

(19)

Obviously, 𝐵 and 𝐵
∗ have same eigenvalues. We can obtain

𝛽1(⟨𝑘
2
𝑢
0

𝑘
⟩/⟨𝑘⟩) = 𝑝 + 𝛾 − 𝑝/Θ

0

1
using formula (14), so

𝑏𝑙𝑙 = −(𝑝 + 𝑙𝛽1Θ
0

1
+ 𝛾) + 𝑙

2
𝛽1(𝑝(𝑙)/⟨𝑘⟩)𝑢

0

𝑙
< −(𝑝 + 𝑙𝛽1Θ

0

1
+

𝛾) + 𝛽1(⟨𝑘
2
𝑢
0

𝑘
⟩/⟨𝑘⟩) = −𝑙𝛽1Θ

0

1
− 𝑝/𝜃

0

1
< 0, 𝑙 = 1, 2, . . . , 𝑛;

furthermore, |𝑏𝑙𝑙| − ∑
𝑛

𝑗 ̸= 𝑙,𝑗=1
|𝐵
∗

𝑙𝑗
| = (𝑝 + 𝑙𝛽1Θ

0

1
+ 𝛾) −

𝛽1(⟨𝑘
2
𝑢
0

𝑘
⟩/⟨𝑘⟩) > 0, so 𝐵

∗ is strictly diagonally dominant
and the principle diagonal elements are negative, according
to the results of estimating distribution of eigenvalues for
generalized diagonally dominant matrices [23], and then
every eigenvalue of the matrix 𝐵∗ has negative real part; that
is to say, every eigenvalue of the matrix 𝐵 has negative real
part.

To find eigenvalues of the matrix 𝐷, we carry out simi-
larity transformation to the matrix 𝐷; namely, the 𝑗 column
multiplied by −𝑝(𝑗 − 1)/𝑗𝑝(𝑗) is added to the 𝑗 − 1 column,
and the 𝑗 − 1 row multiplied by 𝑝(𝑗 − 1)/𝑗𝑝(𝑗) is added to the
𝑗 row, 𝑗 = 2, 3, . . . , 𝑛.Then we obtain the similarity matrix𝐷∗
as follows:

𝐷
∗
=

(
(
(
(
(
(
(

(

−𝜇 0 ⋅ ⋅ ⋅ 𝛽3

𝑛𝑝 (𝑛)

⟨𝑘⟩
𝑖
0

1

0 −𝜇 ⋅ ⋅ ⋅ 𝛽3

𝑛𝑝 (𝑛)

⟨𝑘⟩
(
𝑝 (1)

2𝑝 (2)
𝑖
0

1
+ 2𝑖
0

2
)

...
... d

...

0 0 ⋅ ⋅ ⋅ 𝛽3

⟨𝑘
2
𝑖
0

𝑘
⟩

⟨𝑘⟩
− 𝜇

)
)
)
)
)
)
)

)

.

(20)

It is straightforward that 𝐽|𝐸0 has 2𝑛 − 1 negative charac-
teristic roots. When 𝛽3(⟨𝑘

2
𝑖
0

𝑘
⟩/⟨𝑘⟩) − 𝜇 < 0, 𝐸0 is locally

asymptotically stable; otherwise, it is not stable. Letting 𝑅 ≜

(𝛽3/𝜇)(⟨𝑘
2
𝑖
0

𝑘
⟩/⟨𝑘⟩), we have the following theorem.

Theorem 3. When 𝛼 = 0, if 𝑅 < 1, 𝐸0 is locally asymptotically
stable, and if 𝑅 > 1, 𝐸0 is unstable.

Actually, one can further obtain the global stability of 𝐸0
under stronger parameter conditions.

Theorem 4. When 𝛼 = 0, if 𝑅 < (𝛽3⟨𝑘
2
⟩/𝜇⟨𝑘⟩) < 1, 𝐸0 is

globally asymptotically stable.

Proof. Considering system (5) with 𝛼 = 0, by the second
formula in system (5), we have

𝑑𝑎𝑘 (𝑡)

𝑑𝑡
≤ 𝛽3𝑘Θ2 (𝑡) − 𝜇𝑎𝑘 (𝑡) , (21)

and we consider the following auxiliary system:

𝑑𝑎𝑘 (𝑡)

𝑑𝑡
= 𝛽3𝑘Θ2 (𝑡) − 𝜇𝑎𝑘 (𝑡) . (22)

Multiplying formula (22) by 𝑘𝑝(𝑘)/⟨𝑘⟩ and summing over 𝑘,
we obtain

𝑑Θ2 (𝑡)

𝑑𝑡
= 𝜇Θ2(

𝛽3

𝜇

⟨𝑘
2
⟩

⟨𝑘⟩
− 1) , (23)

and the solution of (23) tends to 0 when 𝛽3⟨𝑘
2
⟩/𝜇⟨𝑘⟩ <

1, since system (23) is a quasi-monotone system; by the
comparison theorem, lim𝑡→∞𝑎𝑘 = 0 (𝑘 = 1, 2, . . . , 𝑛) in
system (5), we consider the limit equation of the first equation
of system (5):

𝑑𝑖𝑘 (𝑡)

𝑑𝑡
= (𝑝 + 𝛽1𝑘Θ1 (𝑡)) (1 − 𝑖𝑘 (𝑡)) − 𝛾𝑖𝑘 (𝑡) ; (24)

the above formula has a unique equilibrium (𝑖
0

1
, 𝑖
0

2
, . . . , 𝑖

0

𝑛
) and

it is locally asymptotically stable. So lim𝑡→∞𝑖𝑘 = 𝑖
0

𝑘
, 𝑘 =

1, 2, . . . , 𝑛. 𝐸0 is globally attractive when 𝛽3⟨𝑘
2
⟩/𝜇⟨𝑘⟩ < 1;

this, combined with Theorem 3, implies that 𝐸0 is globally
asymptotically stable when 𝑅 < 𝛽3⟨𝑘

2
⟩/𝜇⟨𝑘⟩ < 1.

For proving the existence of the positive equilibrium of
system (5) with 𝛼 = 0, we discuss the existence of the positive
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solution of (8); by (8), we obtain the following equations
about Θ1, Θ2:

Θ1 =
1

⟨𝑘⟩

𝑛

∑

𝑘=1

𝑘𝑝 (𝑘)

× (𝜇 (𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘Θ2))

× ((𝜇 + 𝛽3𝑘Θ2) (𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘Θ2)

+ 𝜇 (𝛾 + 𝛽3𝑘Θ2))
−1
,

Θ2 =
1

⟨𝑘⟩

𝑛

∑

𝑘=1

𝑘𝑝 (𝑘)

× (𝛽3𝑘Θ2 (𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘Θ2))

× ((𝜇 + 𝛽3𝑘Θ2) (𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘Θ2)

+ 𝜇 (𝛾 + 𝛽3𝑘Θ2))
−1
.

(25)

In consideration of 𝑎𝑘 ̸= 0, Θ2 ̸= 0, from formula (25), we can
know that (Θ1, Θ2) ∈ Ω1 ≜ {0 < Θ1 < 1, 0 < Θ2 < 1}. By the
identical transformation of the second equation in formula
(25), we have

𝑓 (Θ1, Θ2) = 0, (26)

where

𝑓 (Θ1, Θ2) ≜
1

⟨𝑘⟩

𝑛

∑

𝑘=1

𝑘𝑝 (𝑘)

× ((𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘Θ2) (𝛽3𝑘 (1 − Θ2) − 𝜇)

− 𝜇 (𝛾 + 𝛽3𝑘Θ2))

× ((𝜇 + 𝛽3𝑘Θ2) (𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘Θ2)

+ 𝜇 (𝛾 + 𝛽3𝑘Θ2))
−1
,

(27)

and 𝑓(Θ1, Θ2) is continuous in Ω ≜ [0, 1] × [0, 1]. It is easy
to testify that 𝑓(Θ0

1
, 0) = 𝑅 − 1 > 0 when 𝑅 > 1, 𝑓(1, 1) <

0, and 𝑓(Θ1, Θ2) is continuous about Θ2 in [0, 1], so there
must exist some sufficient small numbers 𝜀1 (0 < 𝜀1 < 1)

and 𝜀2 (0 < 𝜀2 < 1) fully close to 1 that satisfy 𝑓(Θ0
1
, 𝜀1) > 0

and 𝑓(1, 𝜀2) < 0, and 𝑓(Θ1, Θ2) is continuous about Θ1 in
[0, 1]; similarly, 𝑓(𝜀3, 𝜀2) < 0, where 𝜀3 (Θ

0

1
< 𝜀3 < 1) is fully

close to 1; thus there is at least one point 𝑃(Θ̃1, Θ̃2) satisfying
𝑓(Θ̃1, Θ̃2) = 0, where 𝑃 ∈ [Θ

0

1
, 𝜀3] × [𝜀1, 𝜀2]. According to

the implicit function theorem, equation 𝑓(Θ1, Θ2) = 0 can
establish only a continuous function in the neighbor domain
Ω2(⊂ Ω1) of 𝑃:

Θ2 = 𝑔 (Θ1) , (Θ1, Θ2) ∈ Ω2. (28)

Substituting (28) into the first equation in formula (25), we
can get the following equation:

Θ1 =
1

⟨𝑘⟩

𝑛

∑

𝑘=1

𝑘𝑝 (𝑘)

× (𝜇 (𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘𝑔 (Θ1)))

× ((𝜇 + 𝛽3𝑘𝑔 (Θ1)) (𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘𝑔 (Θ1))

+𝜇 (𝛾 + 𝛽3𝑘𝑔 (Θ1)))
−1

≜ 𝑔 (Θ1) .

(29)

Noting that 𝑔(0) − 0 > 0, 𝑔(1) − 1 < 0, by the continuity
of function 𝑔(Θ1), there at least exists Θ

∗

1
∈ (0, 1) satisfying

formula (29), so formula (25) at least has a positive solution
(Θ
∗

1
, Θ
∗

2
) (Θ
∗

2
= 𝑔(Θ

∗

1
)), which means that system (5) at least

has a positive equilibrium 𝐸1(𝑖
∗

1
, 𝑖
∗

2
, . . . , 𝑖

∗

𝑛
, 𝑎
∗

1
, 𝑎
∗

2
, . . . , 𝑎

∗

𝑛
),

where

𝑖
∗

𝑘
=

𝜇 (𝑝 + 𝛽1𝑘Θ
∗

1
+ 𝛽2𝑘Θ

∗

2
)

(𝜇 + 𝛽3𝑘Θ
∗

2
) (𝑝 + 𝛽1𝑘Θ

∗

1
+ 𝛽2𝑘Θ

∗

2
) + 𝜇 (𝛾 + 𝛽3𝑘Θ

∗

2
)
,

𝑘 = 1, . . . , 𝑛,

𝑎
∗

𝑘
=

𝛽3𝑘Θ
∗

2
(𝑝 + 𝛽1𝑘Θ

∗

1
+ 𝛽2𝑘Θ

∗

2
)

(𝜇 + 𝛽3𝑘Θ
∗

2
) (𝑝 + 𝛽1𝑘Θ

∗

1
+ 𝛽2𝑘Θ

∗

2
) + 𝜇 (𝛾 + 𝛽3𝑘Θ

∗

2
)
,

𝑘 = 1, . . . , 𝑛.

(30)

We will subsequently show that system (5) has a unique
positive equilibrium. We denote that 𝑖∗

𝑘
= 𝑦
∗

𝑘
, 𝑎∗
𝑘
= 𝑦
∗

𝑛+𝑘
, 𝑘 =

1, . . . , 𝑛 and assume that 𝑦 = 𝑦
∗
> 0 and 𝑦 = 𝑧

∗
> 0 are two

constant solutions of system (5). If 𝑦∗ ̸= 𝑧
∗, then there exists

at least one 𝑖0, 𝑖0 = 1, 2, . . . , 2𝑛, such that 𝑦∗
𝑖0

̸= 𝑧
∗

𝑖0
, where 𝑦∗

𝑖0
is

the 𝑖th
0
component of the vector 𝑦∗. Without loss of generality,

we assume that 𝑦∗
𝑖0
> 𝑧
∗

𝑖0
and moreover that 𝑦∗

𝑖0
/𝑧
∗

𝑖0
≥ 𝑦
∗

𝑖
/𝑧
∗

𝑖

for all 𝑖 = 1, . . . , 2𝑛. Since 𝑦∗ and 𝑧∗ are constant solutions of
system (5), and if 1 ≤ 𝑖0 ≤ 𝑛, we obtain that

(𝑝 + 𝛽1𝑖0Θ1 (𝑦
∗
) + 𝛽2𝑖0Θ2 (𝑦

∗
)) (1 − 𝑦

∗

𝑖0
− 𝑦
∗

𝑛+𝑖0
)

− 𝛾𝑦
∗

𝑖0
− 𝛽3𝑘Θ2 (𝑦

∗
) 𝑦
∗

𝑖0

= (𝑝 + 𝛽1𝑖0Θ1 (𝑧
∗
) + 𝛽2𝑖0Θ2 (𝑧

∗
)) (1 − 𝑧

∗

𝑖0
− 𝑧
∗

𝑛+𝑖0
)

− 𝛾𝑧
∗

𝑖0
− 𝛽3𝑘Θ2 (𝑧

∗
) 𝑧
∗

𝑖0
= 0,

(31)

or if 𝑛 < 𝑖0 ≤ 2𝑛, we have

𝛽3𝑖0Θ2 (𝑦
∗
) 𝑦
∗

𝑖0−𝑛
− 𝜇𝑦
∗

𝑖0
= 𝛽3𝑖0Θ2 (𝑧

∗
) 𝑧
∗

𝑖0−𝑛
− 𝜇𝑧
∗

𝑖0
= 0,

(32)



Journal of Applied Mathematics 7

where

Θ1 (𝑦
∗
) =

1

⟨𝑘⟩

𝑛

∑

𝑘=1

𝑘𝑝 (𝑘) 𝑦
∗

𝑘
,

Θ2 (𝑦
∗
) =

1

⟨𝑘⟩

𝑛

∑

𝑘=1

𝑘𝑝 (𝑘) 𝑦
∗

𝑛+𝑘
,

Θ1 (𝑧
∗
) =

1

⟨𝑘⟩

𝑛

∑

𝑘=1

𝑘𝑝 (𝑘) 𝑧
∗

𝑘
,

Θ2 (𝑧
∗
) =

1

⟨𝑘⟩

𝑛

∑

𝑘=1

𝑘𝑝 (𝑘) 𝑧
∗

𝑛+𝑘
.

(33)

After equivalent deformation, it follows that

𝑧
∗

𝑖0

𝑦∗
𝑖0

(𝑝 + 𝛽1𝑖0Θ1 (𝑦
∗
) + 𝛽2𝑖0Θ2 (𝑦

∗
)) (1 − 𝑦

∗

𝑖0
− 𝑧
∗

𝑛+𝑖0
)

− 𝛾𝑧
∗

𝑖0
− 𝛽3𝑘Θ2 (𝑧

∗
) 𝑧
∗

𝑖0

= (𝑝 + 𝛽1𝑖0Θ1 (𝑧
∗
) + 𝛽2𝑖0Θ2 (𝑧

∗
)) (1 − 𝑧

∗

𝑖0
− 𝑧
∗

𝑛+𝑖0
)

− 𝛾𝑧
∗

𝑖0
− 𝛽3𝑘Θ2 (𝑧

∗
) 𝑧
∗

𝑖0
= 0,

(34)

or

𝑧
∗

𝑖0

𝑦∗
𝑖0

𝛽3𝑖0Θ2 (𝑦
∗
) 𝑧
∗

𝑖0−𝑛
− 𝜇𝑧
∗

𝑖0
= 𝛽3𝑖0Θ2 (𝑧

∗
) 𝑧
∗

𝑖0−𝑛
− 𝜇𝑧
∗

𝑖0
= 0.

(35)

But 𝑦∗
𝑖0
> 𝑧
∗

𝑖0
, (𝑧∗
𝑖0
/𝑦
∗

𝑖0
)𝑦
∗

𝑖
≤ 𝑧
∗

𝑖
for all 𝑖, and 1 − 𝑦

∗

𝑖0
< 1 − 𝑧

∗

𝑖0
;

thus from the above equalities we get

𝑧
∗

𝑖0

𝑦∗
𝑖0

(𝑝 + 𝛽1𝑖0Θ1 (𝑦
∗
) + 𝛽2𝑖0Θ2 (𝑦

∗
)) (1 − 𝑦

∗

𝑖0
− 𝑧
∗

𝑛+𝑖0
)

− 𝛾𝑧
∗

𝑖0
− 𝛽3𝑘Θ2 (𝑧

∗
) 𝑧
∗

𝑖0

< (𝑝 + 𝛽1𝑖0Θ1 (𝑧
∗
) + 𝛽2𝑖0Θ2 (𝑧

∗
)) (1 − 𝑧

∗

𝑖0
− 𝑧
∗

𝑛+𝑖0
)

− 𝛾𝑧
∗

𝑖0
− 𝛽3𝑘Θ2 (𝑧

∗
) 𝑧
∗

𝑖0
,

𝑧
∗

𝑖0

𝑦∗
𝑖0

𝛽3𝑖0Θ2 (𝑦
∗
) 𝑧
∗

𝑖0−𝑛
− 𝜇𝑧
∗

𝑖0
< 𝛽3𝑖0Θ2 (𝑧

∗
) 𝑧
∗

𝑖0−𝑛
− 𝜇𝑧
∗

𝑖0
.

(36)

This is a contradiction. Therefore, system (5) has a unique
positive equilibrium. 𝐸1(𝑖

∗

1
, 𝑖
∗

2
, . . . , 𝑖

∗

𝑛
, 𝑎
∗

1
, 𝑎
∗

2
, . . . , 𝑎

∗

𝑛
) that is

𝑦
∗
= (𝑦
∗

1
, 𝑦
∗

2
, . . . , 𝑦

∗

𝑛+1
) ∈ Δ 2𝑛.

Hence, the conclusion follows.

Theorem 5. When 𝛼 = 0, if 𝑅 > 1, system (5) has a unique
positive equilibrium 𝐸1.

Case II (𝛼 ̸= 0). When 𝛼 ̸= 0, we can get equations that the
steady state of system (5) satisfies

𝑖𝑘 = (𝜇 (𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘Θ2))

× ((𝛼 + 𝜇 + 𝛽3𝑘Θ2) (𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘Θ2)

+ 𝜇 (𝛼 + 𝛾 + 𝛽3𝑘Θ2))
−1
,

𝑎𝑘 = ((𝛼 + 𝛽3𝑘Θ2) (𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘Θ2))

× ((𝛼 + 𝜇 + 𝛽3𝑘Θ2) (𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘Θ2)

+ 𝜇 (𝛼 + 𝛾 + 𝛽3𝑘Θ2))
−1
,

(37)

and self-consistency equations about Θ1, Θ2 are obtained
such that

Θ1 =
1

⟨𝑘⟩

𝑛

∑

𝑘=1

𝑘𝑝 (𝑘)

× (𝜇 (𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘Θ2))

× ((𝛼 + 𝜇 + 𝛽3𝑘Θ2) (𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘Θ2)

+ 𝜇 (𝛼 + 𝛾 + 𝛽3𝑘Θ2))
−1
,

Θ2 =
1

⟨𝑘⟩

𝑛

∑

𝑘=1

𝑘𝑝 (𝑘)

× ((𝛼 + 𝛽3𝑘Θ2) (𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘Θ2))

× ((𝛼 + 𝜇 + 𝛽3𝑘Θ2) (𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘Θ2)

+ 𝜇 (𝛼 + 𝛾 + 𝛽3𝑘Θ2))
−1
.

(38)

From formula (38), we can obtain 0 < Θ1 < 1, 0 < Θ2 <

1. By the identical transformation of the second equation in
formula (38), we can obtain

𝑓 (Θ1, Θ2) = 0, (39)

where

𝑓 (Θ1, Θ2)

≜
1

⟨𝑘⟩

𝑛

∑

𝑘=1

𝑘𝑝 (𝑘)

× ((𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘Θ2) (𝛼 + 𝛽3𝑘Θ2) (1 − Θ2)

− 𝜇Θ2 (𝑝 + 𝛼 + 𝛾 + 𝛽1𝑘Θ1 + 𝛽2𝑘Θ2 + 𝛽3𝑘Θ2))

× ((𝛼 + 𝜇 + 𝛽3𝑘Θ2) (𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘Θ2)

+ 𝜇 (𝛼 + 𝛾 + 𝛽3𝑘Θ2))
−1
,

(40)
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and since

𝑓 (Θ1, 0) =
1

⟨𝑘⟩

𝑛

∑

𝑘=1

𝑘𝑝 (𝑘)
(𝑝 + 𝛽1𝑘Θ1) 𝛼

(𝛼 + 𝜇) (𝑝 + 𝛽1𝑘Θ1) + 𝜇 (𝛼 + 𝛾)

> 0,

𝑓 (Θ1, 1) =
1

⟨𝑘⟩

𝑛

∑

𝑘=1

𝑘𝑝 (𝑘)

× (−𝜇 (𝑝 + 𝛼 + 𝛾 + 𝛽1𝑘Θ1 + 𝛽2𝑘 + 𝛽3𝑘))

× ((𝛼 + 𝜇 + 𝛽3𝑘) (𝑝 + 𝛽1𝑘Θ1 + 𝛽2𝑘)

+ 𝜇 (𝛼 + 𝛾 + 𝛽3𝑘))
−1

< 0,

(41)

𝑓(Θ̃1, 0) > 0 and 𝑓(Θ̃1, 1) < 0 for any Θ̃1 ∈ (0, 1),
and 𝑓(Θ̃1, Θ2) is continuous about Θ2, then there is at least
Θ̃2 (Θ̃2 ∈ (0, 1)) satisfying 𝑓(Θ̃1, Θ̃2) = 0; substituting Θ̃1

and Θ̃2 to (37), we have a positive equilibrium of system (5)
𝐸2(𝑖̃1, 𝑖̃2, . . . , 𝑖̃𝑛, 𝑎1, 𝑎2, . . . , 𝑎𝑛), where

𝑖̃𝑘 = (𝜇 (𝑝 + 𝛽1𝑘Θ̃1 + 𝛽2𝑘Θ̃2))

× ((𝛼 + 𝜇 + 𝛽3𝑘Θ̃2) (𝑝 + 𝛽1𝑘Θ̃1 + 𝛽2𝑘Θ̃2)

+ 𝜇 (𝛼 + 𝛾 + 𝛽3𝑘Θ̃2))
−1

, 𝑘 = 1, . . . , 𝑛,

𝑎𝑘 = ((𝛼 + 𝛽3𝑘Θ̃2) (𝑝 + 𝛽1𝑘Θ̃1 + 𝛽2𝑘Θ̃2))

× ((𝛼 + 𝜇 + 𝛽3𝑘Θ̃2) (𝑝 + 𝛽1𝑘Θ̃1 + 𝛽2𝑘Θ̃2)

+ 𝜇 (𝛼 + 𝛾 + 𝛽3𝑘Θ̃2))
−1

, 𝑘 = 1, . . . , 𝑛.

(42)

We summarize these results in the following theorem.

Theorem 6. When 𝛼 ̸= 0, system (5) has at least a positive
equilibrium 𝐸2.

4. Numerical Simulation

In this section, we will perform a series of numerical sim-
ulations to verify the mathematical analysis on a scale-free
network with power-law distribution (𝑝(𝑘) = 8𝑘

−4, 𝑘 =

2, 3, . . . , 150, ⟨𝑘⟩ = 9.1824). Parameters in system (5) are
chosen as 𝑝 = 0.001, 𝛽1 = 0.0001, 𝛽2 = 0.0004, 𝛾 = 0.0001,
and 𝜇 = 0.015.

We give numerical simulations about the network model
(5) with different degrees and different initial value in
Figures 1 and 2. In Figure 1, when 𝛼 = 0, 𝛽3 = 0.0004, and
𝑅 = 0.8915, Figures 1(a)–1(c) show that system (5) has a stable
trivial equilibrium; namely, new products cannot diffuse on
the market; when 𝛼 = 0, 𝛽3 = 0.01, and 𝑅 = 1.7310, Figures
1(d)–1(f) show that system (5) has a positive equilibrium;

new products can diffuse on the market. Letting 𝛼 = 0.005,
Figure 2 gives time series of 𝑎50, 𝑎100, and 𝑎150, and it indicates
that system (5) has a positive equilibrium when 𝛼 = 0.005.

In Figure 3, (a) and (b) indicate that the relative density
of adopters always increases with the enhancement of mass
media’ influence; furthermore, by comparing Figure 3(a)
to Figure 3(b), we can find that the bigger the degree of
adopters is, the smaller the increment of adopters with
the enhancement of mass media’ influence is; however,
Figures 3(c) and 3(d) manifest that the enhancement of mass
media’ influence can increase adopters only in the early stage
as the adopters’ degree continuously increases; moreover, in
Figure 3(d), we find that mass media is effective only in [0, 𝜏].
These simulation results can be theoretically explained as
follows: 𝑖𝑘 exponentially decreases with the increment of 𝛼
and 𝑘 in system (5), so (𝛼 + 𝛽3𝑘Θ2(𝑡))𝑖𝑘(𝑡) decreases with the
increment of 𝛼 and 𝑘; namely, 𝑑𝑎𝑘(𝑡)/𝑑𝑡 decreases when 𝛼

or 𝑘 increases. In other words, the larger 𝛼 is (or the larger
𝑘), the smaller 𝑖𝑘 is, and the smaller 𝑑𝑎𝑘(𝑡)/𝑑𝑡 is, the faster
𝑎𝑘 decrease is if 𝑑𝑎𝑘(𝑡)/𝑑𝑡 < 0 and the slower 𝑎𝑘 increase
is if 𝑑𝑎𝑘(𝑡)/𝑑𝑡 > 0. In view of economics, Figures 3(a)–3(d)
imply two different propagation strategies in the decision-
making stage of new products diffusion process; for those
majority of nodes having small degree in scale-free networks,
it is very effective and permanent to persuade them to adopt
new products by mass media channels, despite the fact that
the effect in the late period is less significant than the one
in the early stage, so businesses should propagate chronically
new products by mass media among them. For those few
hubs’ nodes with larger degree, massmedia’ effect is only very
temporary; if businesses propagate and persuade people to
adopt new products only in [0, 𝜏], it will be useful to save
resources for businesses; when 𝑡 > 𝜏, businesses have to
change advertisement strategies.

In addition, fixing the degree of nodes in (a)–(d) of
Figure 3, it is found that the peak of 𝑎𝑘 increases with
increment of 𝛼; namely, the peak of adopters will increase
as the advertisement is enhanced. In Figure 3(e), by fixing
𝛼, we can find that the larger the degree and the larger the
relative density of adopters, the smaller the diffusion time;
Figure 3(e) means that hubs’ nodes are more easy to become
adopters than nodes with the small degrees, so businesses
should propagate timely and effectively new products among
them only in some period of time 𝜏, and they should take
different advertising strategies for hubs’ nodes andnodeswith
the small degrees.

In Figure 4, we keep track of the mean density 𝑎 versus
times, and we find that the mean density of networks 𝑎

increases with the increment of 𝛼; that is to say, the number of
adopters increases when mass media’ influence is enhanced,
and it is reasonable. Moreover, we can also see that the effect
of mass media is more pronounced before the stable state
of the adopters than after the stable state; this indicates that
the enterprise should take persuasive advertisement strategy
to tell consumers why to choose a particular brand; after
adopters tend to stable states, namely, once the brand is pop-
ularized, the enterprise should take remindful advertisement
to frequently remind consumer to have such a product, and
it is useful to save advertising cost.
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Figure 1: Time series when 𝛼 = 0. (a)–(c) time series with different degrees, respectively, when 𝑅 = 0.8915; (d)–(f) time series with different
degrees, respectively, when 𝑅 = 1.7310.
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Figure 2: Time series with different degrees when 𝛼 = 0.005.
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Figure 3: (a)–(d) time series of 𝑎5, 𝑎10, 𝑎15, and 𝑎25, respectively, when 𝛼 changes from 0 to 0.05 (𝛼 = 0, 0.0005, 0.005, 0.05); (e) time series of
𝑎𝑘 (𝑘 = 5, 10, 15, 25) when 𝛼 = 0.0005.

5. Conclusion and Discussion

In this paper, we have proposed a complex networks model
with the awareness stage and the decision-making stage to
expound adoption processes. Unlike the classical diffusion
model, where population contacts are homogeneous mixing,
populations have complex and heterogeneous connectivity
patterns. We study the existence and stability of equilibrium
when the influence of mass media is neglected or considered
in the decision-making stage. In simulations of networks
with the power-law distribution, we analyze the effect of
the network structure and mass media in the decision-
making stage on the density of adopters and obtain different
propagation strategies to persuade individuals to adopt the
products. From the local point of view, businesses should
take different propagation strategies for hub nodes and other
nodes with the small degree. From the global point of view,
because the effect ofmassmedia ismore significant before the
arrival of the stable state of the adopters than after the arrival
of the stable state, businesses should change propagation

strategies after the average density of adopters in the network
reaches the stable state.

It is worth noting here that we only consider the influence
of nodes’ degree on diffusion; however, in recent years there
has been considerable interest within the physics community
in the network structures, such as clusters, path length, and
centrality indices [24–29]; if other network structures are
considered in the model, it could have a profound influence.
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