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With the distributed generation technology widely applied, some system problems such as overvoltages and undervoltages are
gradually remarkable, which are caused by distributed generations like wind energy system (WES) and photovoltaic system (PVS)
because of their probabilistic output power which relied on natural conditions. Since the impacts ofWES and PVS are important in
the distribution system voltage quality, we study these in this paper using newmodels with the probability density function of node
voltage and the cumulative distribution function of total losses. We apply these models to solve the IEEE33 distribution system
to be chosen in IEEE standard database. We compare our method with the Monte Carlo simulation method in three different
cases, respectively. In the three cases, these results not only can provide the important reference information for the next stage
optimization design, system reliability, and safety analysis but also can reduce amount of calculation.

1. Introduction

Electric power systems have been originally designed based
on the unidirectional power flow. Nevertheless, in the last
years the conception of distributed generation (DG) such as
wind power generation and solar power generation has led
to new consideration on the distribution networks (DN) [1].
As the ratio of the distributed generation in power system
expanded, to study the effect of distributed generation on
the system steady run is more and more important. Because
wind power and solar power are with stochastic volatility, the
penetration of DG may impact the operation of DN in both
beneficial and detrimental ways [2–9]. The positive impacts
of DG may possibly be voltage support, power loss reduc-
tion, support of ancillary services, and improved reliability,
whereas, negative ones included protection coordination,
dynamic stability, and islanding. Numerous researchers have
dealt with the issue of size and site ofDG intoDNs. A group of
articles optimize sizing and/or siting of DG units in order to
obtain maximum benefits, such as maximum loss reduction
or reliability andminimum cost [10–18]. However, the above-
mentioned papers use power flow analysis either for a certain
loading condition or for a few specific scenarios (e.g., seasonal

loadings) based on measured data or default test cases [3–
5, 9, 10, 14–21]. And some have not considered stochastic
volatility of distributed generation.This paper ismainly about
energy losses and voltage stability assessment in distribution
network with distributed generation considering stochastic
volatility.

With the development of science and technology and the
raised awareness of environmental protection, every country
is becoming more and more interested in the renewable
energy sources specifically because they are reproducible
and nonpolluting. These technologies include hydro-, wind
[9], solar [10], biomass [11], and tidal technology. Among
these renewable energies, wind and solar technology have
evolved very rapidly over the past decade and the reduction of
capital costs, the improvement of reliability, and the efficiency
have made the wind and solar power be able to compete
with conventional power generation [12]. The renewable DG
technologies like wind and solar have special characteristics
due to their main source of energy. Obviously, the primary
energy source of a wind turbine is wind. The wind speed is
not a constant quantity during the operation of wind turbine
and is highly dependent on climate condition of the area
where wind turbine is installed. The solar technology is also
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Figure 1: Fuzzy trapezoidal number.

dependent on the climate and geographical location. It is the
reason that they exhibit uncertainty and variability in their
output [13]. Somemethods are proposed tomodel the impact
of these uncertainties on distribution network performance;
the general and powerful tool is based on Monte Carlo
simulation for simulating the uncertainties, but this method
needs too large amount of calculation, especially the power
flow calculation. Hence, this paper proposed a tool to reduce
the amount of calculation about uncertainties for distribution
network.

This paper is organized as follows: in Section 2, prelimi-
nary theory, the fuzzy theory, Monte Carlo simulation, and
the half invariant method used for the stochastic analysis
are presented. The model is given in Section 3. The pro-
posed solution algorithm and simulation result are presented
in Section 4. Some general conclusions are presented in
Section 5.

2. Preliminary Theory

The value of load in each bus and DG generation are
controllable with decisions of their owners. In this section, we
prepare the preliminary theory used in this paper. One part
is about fuzzy mathematics theory; the other is Monte Carlo
and half invariants method.

2.1. Fuzzy MathematicsTheory. In fuzzy mathematics theory,
amembership function is defined which describes howmuch
each element belongs to a fuzzy set. 𝜇

𝐴(𝑥)
is a membership

function that takes values in the interval [0, 1]. For each
element 𝑥 ∈ 𝐴, 𝐴 is a fuzzy set of universe of discourse 𝑈.
In this paper, fuzzy trapezoidal membership (FTM) with a
notation 𝐴 = (𝑎min, 𝑎𝐿, 𝑎𝑈, 𝑎max) is used as shown in Figure 1.

In engineering problems, the question is, knowing the
uncertain input variables 𝑥

𝑖
, how to give the membership

function of 𝑦.The 𝛼-cut method [16] answers this question in
the following way: for a given fuzzy set𝐴 defined on universe
of discourse, that is, 𝑈, the crisp set 𝐴𝛼 is defined as all

elements of 𝑈 which have membership degree to 𝐴, greater
than or equal to 𝛼, as calculated in the following equation:

𝐴
𝛼
= {𝑥 ∈ 𝑈 | 𝜇

𝐴 (𝑥) ⩾ 𝛼} . (1)

The𝛼-cut of each input variable, that is,𝑥𝛼
𝑖
, is calculated using

(1); then the 𝛼-cut of 𝑦, that is, 𝑌𝛼, is calculated as follows:

𝑌
𝛼
= (𝑦
𝛼
, 𝑦
𝛼
) , (2)

𝑦
𝛼
= min𝑓 (𝑥) , (3)

𝑦
𝛼
= max𝑓 (𝑥) , (4)

𝑥 ∈ (𝑥
𝛼
, 𝑥
𝛼
) . (5)

This means for each 𝛼-cut, (3) and (4) are solved. The upper
bound of 𝑦𝛼 is obtained by (4), and the lower bound of 𝑦

𝛼
is

obtained by (3).The defuzzification is amathematical process
for converting a fuzzy number into a crisp one [16]. In [19], the
centroidmethod is used for defuzzification of fuzzy numbers.
The defuzzified value of a given fuzzy quantity, that is, 𝐴∗, is
calculated as follows:

𝐴
∗
=
∫𝜇
𝐴 (𝑥) 𝑥 𝑑𝑥

∫𝜇
𝐴 (𝑥) 𝑑𝑥

. (6)

Transforming fuzzy variables into random variables is com-
monly used in engineering. This paper adopts a conversion
method defined as follows:

𝑓 (𝑥) =
𝜇
𝐴 (𝑥)

∫ 𝜇
𝐴 (𝑥) 𝑑𝑥

. (7)

This method not only retained the distribution information
of fuzzy variables membership functions but also met the
completeness and the nonnegativity of the probability density
function.

2.2. Monte Carlo Simulation and Half Invariants (Cumu-
lants) Method. Themain concept of Monte Carlo simulation
(MCS) method is described as follows: suppose a multivari-
able function, namely, 𝑦, 𝑦 = 𝑓(𝑍), where 𝑍 = (𝑍

1
, . . . , 𝑍

𝑚
),

in which 𝑍
1
to 𝑍
𝑚

are random variables with their own
probability distribution function (PDF). In [21], the MCS
acts as follows: first of all, it will generate a value, that is,
𝑍
Θ

𝑖
, for each input variable 𝑍

𝑖
using its own PDF and form

𝑍
Θ
= (𝑍
Θ

1
, . . . , 𝑍

Θ

𝑚
) and then calculate the value of 𝑦Θ using

𝑦
Θ
= 𝑓(𝑍

Θ
). This process will be repeated for a number of

iterations. The trend of the output, that is, 𝑦, will determine
its PDF.

Some of uncertain input parameters follow from PDF,
such as the value of wind which follows a Weibull PDF [20].
MCS is a powerful tool for analyzing the uncertainties which
follow any PDF. But MCS calculation is too big, hence this
paper presents a new method—half invariants (cumulants)
method instead of Monte Carlo simulation method.

Just as expectation and variance, half invariant is also a
numerical characteristic of random variable𝑋, which can be
calculated by the moment of the random variable𝑋.
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If 𝑌 is a linear function of random variables 𝑋
1
and 𝑋

2

with their own PDF, the problem is, knowing the PDFs of
all variables 𝑋

1
and 𝑋

2
, what would be the PDF of 𝑌? The

half invariants (cumulants) method applied half invariant
properties and Gram-Charlier series theorem: first, calculate
the half invariant of random variable 𝑌 using the half
invariant of random variables 𝑋

1
and 𝑋

2
: then get the PDF

of random variable 𝑌 using Gram-Charlier series theorem.
This can avoid complicated convolution operation and a large
number of Monte Carlo simulations.

Gram-Charlier Series Theorem. Suppose 𝑋 is a random
variable; then the PDF of𝑋 can be expressed as follows:

PDF (𝑥) = 𝜑 (𝑥) + 𝑐
1
𝜑
(1)

(𝑥) + 𝑐
2
𝜑
(2)

(𝑥) + ⋅ ⋅ ⋅ , (8)

where 𝜑(𝑥) is the PDF of the standard normal distribution,
𝜑
(𝑖)
(𝑥) is the 𝑖th derivative, and 𝑐

𝑖
is the coefficient which can

be calculated by the moment of the random variable𝑋.

3. Half Invariants Modeling

The assumptions for modeling the two types of uncertainties,
constraints, and the objective functions are described as
follows.

3.1. Uncertainty Modeling

3.1.1. Load. It is assumed that the values of load in each
bus are controllable with decisions of their owners. In this
paper, we assume that the distribution network operators
(DNO) can just describe them with a membership function
as follows:

𝑆
𝐷

ℎ,𝑖
= 𝑆
𝐷

𝑖,𝑓
× DLF

ℎ
× (𝜉min, 𝜉𝐿, 𝜉𝑈, 𝜉max) , (9)

where 𝑆𝐷
𝑖,𝑓

is the apparent forecasted value of peak load in bus
𝑖 andDLF

ℎ
is the demand level factor at demand level ℎwhich

takes values between 0 and 1. Finally, 𝑆𝐷
ℎ,𝑖
is the fuzzy value of

demand in bus 𝑖 and demand level ℎ.
DG generation pattern: the amount of energy which a

controllable DG unit injects into the network is uncertain,
and usually it depends on the decisions of DG owner so the
DNO cannot have a PDF of it if there is not much historic
data about it. The output power of a controllable DG unit is
modeled using a membership function as follows:

𝑃
dg
ℎ,𝑖

= 𝐶
dg
𝑖,𝑓

× (𝜁min, 𝜁𝐿, 𝜁𝑈, 𝜁max) , (10)

where𝐶dg
𝑖,𝑓

is the capacity of DG unit installed in bus 𝑖 and𝑃dg
ℎ,𝑖

is the active power of a DG unit in bus 𝑖 in demand level ℎ.
Photovoltaic generation pattern: the amount of solar radi-

ation that reaches the ground, besides on the daily and yearly
apparent motion of the sun, depends on the geographical
location (latitude and altitude) and on the climatic conditions
(e.g., cloud cover). The generation schedule of a photovoltaic
generation pattern highly depends on the irradiance in the

site. The variation of irradiance, that is, 𝐸, can be modeled
using a beta PDF as follows:

PDF (𝐸) =
Γ (𝑝 + 𝑞)

Γ (𝑝) Γ (𝑞)
(

𝐸

𝐸max
)

𝑝−1

(1 −
𝐸

𝐸max
)

𝑞−1

, (11)

where 𝐸 and 𝐸max are the actual light intensity andmaximum
light intensity and 𝑝 and 𝑞 are the shape of the beta
distribution parameters.

The generated power of the photovoltaic generation is
determined as follows:

𝑃
sloar
ℎ,𝑖

= 𝐸𝐴𝛾, (12)

where𝐴 is the area of the solar panels and 𝛾 is the photoelec-
tric conversion efficiency.

Wind turbine generation pattern: the generation schedule
of a wind turbine highly depends on the wind speed in the
site. The variation of wind speed, that is, V, can be modeled
using a Weibull PDF [22] and its characteristic function
which relates the wind speed and the output of a wind turbine
[23] as follows:

PDF (V) = (
𝛽

𝛼
)(

V
𝛼
)

𝛽−1

exp(−( V
𝛼
)

𝛽

) , (13)

where 𝛽 is the shape parameters and 𝛼 is the scale parameters
of the Weibull PDF of wind speed in the zone under study.
The generated power of the wind turbine is determined using
its characteristics as follows:

𝑃
wind
ℎ,𝑖

=

{{{{

{{{{

{

𝑝
wind
𝑖,𝑟

, V𝑐in < V < Vrate,
V − V𝑐in
V𝑐out − V𝑐in

𝑝
wind
𝑖,𝑟

, Vrate < V < V𝑐out,

0, else,

(14)

where 𝑃wind
𝑖,𝑟

is the rated power of wind turbine installed in
bus 𝑖, 𝑃wind

ℎ,𝑖
is the generated power of wind turbine in bus 𝑖

and demand level ℎ, V𝑐out is the cut out speed, V
𝑐

in is the cut in
speed, and Vrate is the rated speed of the wind turbine.

3.2. Active Losses. Thepower flow equationsmust be satisfied
in each demand level ℎ and at each bus 𝑖 as follows:

𝑃
net
ℎ,𝑖

= 𝑉
ℎ,𝑖
∑(𝑌
𝑖𝑗
𝑉
ℎ,𝑖
(𝐺
𝑖𝑗
cos 𝜃
𝑖𝑗
+ 𝐵
𝑖𝑗
sin 𝜃
𝑖𝑗
)) ,

𝑄
net
ℎ,𝑖

= 𝑉
ℎ,𝑖
∑(𝑌
𝑖𝑗
𝑉
ℎ,𝑖
(𝐺
𝑖𝑗
cos 𝜃
𝑖𝑗
− 𝐵
𝑖𝑗
sin 𝜃
𝑖𝑗
)) ,

(15)

where 𝑃
net
ℎ,𝑖

and 𝑄
net
ℎ,𝑖

are the net active and reactive power
injected to the network in bus 𝑖 at level ℎ. The above equation
can be written in the matrix form as 𝑊 = 𝑓(𝑋). The power
flow equations at each branch are given as follows:

𝑃
ℎ,𝑖𝑗

= 𝑉
𝑖
𝑉
𝑗
(𝐺
𝑖𝑗
cos 𝜃
𝑖𝑗
+ 𝐵
𝑖𝑗
sin 𝜃
𝑖𝑗
) + 𝑡
𝑖𝑗
𝐺
𝑖𝑗
𝑉
2

𝑖
,

𝑄
ℎ,𝑖𝑗

= −𝑉
𝑖
𝑉
𝑗
(𝐺
𝑖𝑗
cos 𝜃
𝑖𝑗
− 𝐵
𝑖𝑗
sin 𝜃
𝑖𝑗
) + (𝐵

𝑖𝑗
− 𝑏
𝑖𝑗0
)𝐺
𝑖𝑗
𝑉
2

𝑖
.

(16)
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Table 1: Data used in this paper.

Parameters Unit Value
𝑐 8.78
𝑉min pu 0.95
V𝑐in m/s 3
Vrate m/s 13
𝜉
𝐿

0.925
𝜉max 1.15
𝜁
𝐿

0.9
𝜁max 1
𝑘 1.75
𝑉max pu 1.05
V𝑐out m/s 25
𝜉min 0.850
𝜉
𝑈

1.075
𝜁min 0
𝜁
𝑈

1
𝜏
ℎ

h 365

The above equation can be written in the matrix form as 𝑍 =

𝑔(𝑋). Make the first order Taylor expansion as follows:

𝑊 = 𝑓 (𝑋
0
) + 𝐽

𝑋0
Δ𝑋, 𝑍 = 𝑔 (𝑋

0
) + 𝐺

𝑋0
Δ𝑋. (17)

Then we get the following linear relationship:

Δ𝑋 = 𝑆
0
⋅ Δ𝑊, Δ𝑍 = 𝐺

0
⋅ ΔX = 𝐺

0
⋅ 𝑆
0
⋅ Δ𝑊 = 𝑇

0
Δ𝑊.

(18)

The total active loss of the network in each demand level is
equal to the sum of all active power injected to each bus as
follows:

Loss
ℎ
= ∑(𝑃

ℎ,𝑖𝑗
+ 𝑃
ℎ,𝑗𝑖

) ⋅ 𝜏
ℎ
Loss
ℎ
= 𝐻 (𝑋) . (19)

By the Taylor expansion and linearization, the total active loss
of the network is equal to the sum of all active power injected
to each bus, that is,

Lossnet = ∑ Loss
ℎ
, (20)

where Loss
ℎ
= 𝐻(𝑋

0
) + ΔLoss

ℎ
= Loss

ℎ,0
+ ΔLoss

ℎ
.

4. Algorithm and Simulation Results

This paper supposed that the injection power at each bus is
independent and made power flow equation linearization.
The uncertainties are neither random variables nor fuzzy
variables. Transforming fuzzy variables into random vari-
ables with the method is proposed ahead.

4.1. Algorithm

Step 1. Input feeder data, ℎ = 1.

Step 2. Read load and DG data at ℎ level.

Step 3. Run power flow with Newton-Raphson at ℎ level.

19 20 21 22

23 24 25

26 27 28 29 30 31 32 33

35

34

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 2: IEEE33 distribution network.

Step 4. Calculate the half invariance of the injection power
flow of the generator and load at ℎ level.

Step 5. Calculate the half invariance of Δ𝑊.

Step 6. Calculate the half invariance of Δ𝑋 according to 𝑆
ℎ,0
.

Step 7. Calculate the PDF of variate Δ𝑋 according to Gram-
Charlier Series theorem.

Step 8. Calculate the half invariance of Δ𝑍 according to 𝑇
ℎ,0
.

Step 9. Calculate the half invariance of ΔLoss according to
𝑀
ℎ,0
.

Step 10. Calculate the PDF of ΔLoss
ℎ
according to Gram-

Charlier series theorem at ℎ level and store the data.

Step 11. According Step 7, calculate the probability of out-of-
limit voltage at ℎ level and store the data.

Step 12. ℎ = ℎ + 1; if ℎ ⩽ 24, then turn to Step 2; else turn to
Step 13.

Step 13. According to the data stored in Step 10, fit the PDF
of ΔLoss of one year.

Step 14. According to the data stored in Step 11, estimate the
time of out-of-limit voltage of one year.

Step 15. End.

4.2. Simulation Results. The proposed methodology is
applied to a IEEE33 distribution network which is shown in
Figure 2 and joined with two distributed generations (i.e.,
node34 and node35).

The first one is the Monte Carlo simulation method and
the second is the method proposed by us in this paper. The
two methods, respectively, are used in three cases. Case 1

is not joined with any distributed generation (node34 and
node35 are out of work); case 2 is joined with two wind
turbine generations (node34 and node35), while case 3 is
joined with one wind turbine generation (node34) and one
photovoltaic generation (node35). The simulation results are
as shown in Figures 4 and 5. Simulation parameters are given
in Table 1. It is assumed that there are 24 demand levels in
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Table 2: Moment of bus voltage in case 1.

Node The 1st order cumulant The 2nd order cumulant The 3rd order cumulant The 4th order cumulant
5 1.0178 0.3181 × 10

−6 0 0
10 0.9893 0.3482 × 10

−5 0 0
18 0.9786 0.8142 × 10

−5 0 0
22 0.9756 0.8796 × 10

−5 0 0

Table 3: Moment of bus voltage in case 2.

Node The 1st order cumulant The 2nd order cumulant The 3rd order cumulant The 4th order cumulant
5 1.0211 0.5012 × 10

−5
0.1928 × 10

−10
−0.1012 × 10

−16

10 1.0097 0.6032 × 10
−4

0.1074 × 10
−8

−0.1404 × 10
−15

18 0.9676 0.1542 × 10
−5

0.4143 × 10
−8

−0.1542 × 10
−11

22 0.9458 0.1696 × 10
−5

0.4387 × 10
−8

−0.4542 × 10
−10

1 3 5 7 9 11 13 15 17 19 21 23
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Figure 3: The variations of DLF
ℎ
in each demand level.

each year with equal duration of 𝜏
ℎ
= 365 h.The variations of

demand level factors are depicted in Figure 3.
Some cumulants are given in Tables 1, 2, and 3. The first

order cumulant is expected of node voltage; the second order
cumulant is the variance. Figure 4 is the probability density
function of the voltage amplitude of node33. From this figure,
we can know that, in case 1, the random fluctuations of
voltage are similar to normal distribution; probability of out-
of-limit voltage is almost zero. When adding distributed gen-
eration, on one hand, line voltage had improved significantly
and load node voltage rises. On the other hand, because of the
randomness of the wind power and photovoltaic power, the
node voltage fluctuation and the probability of out-of-limit
voltage significantly increased. By comparing with case 2 and
case 3, we can also find that, for wind and solar hybrid power
systems, due to its complementarity, its impact on system
voltage fluctuation is relatively smaller compared with single
wind power and the probability of out-of-limit voltage is
reduced obviously. The experimental results show that the
proposed fuzzy variables are effective to describe load instead
of normal variable (Table 4).
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Case 1
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Case 3

Figure 4: Voltage probability density function of the 33rd node.

Figure 5 is the distribution of network loss; the calculation
results of two methods are almost the same, but calculated
amount of method 2 is far less thanmethod 1. In other words,
the method of this paper is effective.

5. Conclusions

A method combining half invariants and fuzzy mathematics
theory is proposed for evaluation of active losses in the
distribution network and the time of out-of-limit voltage. By
comparing the simulation, it can be found that the proposed
method can completely replace the Monte Carlo simulation
method and, moreover, reduce a large amount of calculation.
Themodel considers probabilistic presentation of wind speed
using a Weibull PDF and probabilistic description of loads
using normal distribution.

On the other hand, as the reduction of calculation, this
method can not only conveniently be used to calculate the
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Table 4: Moment of bus voltage in case 3.

Node The 1st order cumulant The 2nd order cumulant The 3rd order cumulant The 4th order cumulant
5 8.0207 0.5181 × 10

−5
0.4085 × 10

−11
−0.1685 × 10

−17

10 7.9887 0.4582 × 10
−4

0.6875 × 10
−10

−0.4735 × 10
−16

18 6.9693 0.1124 × 10
−3

0.8655 × 10
−9

−0.4076 × 10
−13

22 6.9876 0.1685 × 10
−3

0.8725 × 10
−9

−0.1628 × 10
−13

2500 3000 3500
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Method 1
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Figure 5: Cumulative distribution function of total losses.

network loss and the time of out-of-limit voltage and to assess
the effects of a distributed generation to the distribution net-
work, but also be used as the distributed power optimization
index when considering size and site.
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