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Graph automorphism (GA) is a classical problem, in which the objective is to compute the automorphism group of an input graph.
Most GA algorithms explore a search tree using the individualization-refinement procedure. Four novel techniques are proposed
which increase the performance of any algorithm of this type by reducing the depth of the search tree and by effectively pruning
it. We formally prove that a GA algorithm that uses these techniques correctly computes the automorphism group of an input
graph. Then, we describe how these techniques have been incorporated into the GA algorithm conauto, as conauto-2.03, with
at most an additive polynomial increase in its asymptotic time complexity. Using a benchmark of different graph families, we
have evaluated the impact of these techniques on the size of the search tree, observing a significant reduction both when they are
applied individually and when all of them are applied together. This is also reflected in a reduction of the running time, which is
substantial for some graph families. Finally, we have compared the search tree size of conauto-2.03 against those of other popular
GA algorithms, observing that, in most cases, conauto explores less nodes than these algorithms.

1. Introduction

Graph automorphism (GA), graph isomorphism (GI), and
finding of a canonical labeling (CL) are closely related
classical graph problems that have applications inmany fields,
ranging from mathematical chemistry [1, 2] to computer
vision [3]. Their general time-complexity is still an open
problem, although there are several cases for which they
are known to be solvable in polynomial time. Hence, the
construction of tools that are able to solve these problems
efficiently for a large variety of problem instances has signif-
icant interest. This work focuses on the GA problem, whose
objective is to compute the automorphism group of an input
graph (e.g., by obtaining a set of generators, the orbits, and
the size of this group). In this paper, novel techniques to
speed up algorithms that solve the GA problem are proposed.
Additionally, most of these techniques can be applied to
increase the performance of algorithms for solving the other
two problems as well.

1.1. Related Work. There are several practical algorithms that
solve the GA problem. Most of them can also be used for CL
(and consequently, for GI testing). For the last three decades,
nauty [4, 5] has been the most widely used tool to tackle all
these problems. Other interesting algorithms that solve GA
and CL are bliss [6, 7], Traces [8], and nishe [9, 10]. Recently,
McKay and Piperno have jointly released a new version of
both nauty and Traces [11] with significant improvements
over their previous versions. Another tool, named saucy [12–
15], which solves GA (but not CL), has the advantage of
being the most scalable for many graph families, since it is
specially designed for efficiently processing big and sparse
graphs. Recently, it was shown that the combined use of saucy
and bliss improves the running times of bliss for the canonical
labeling of graphs for a variety of graph families [16].

All these tools are based on the same principles,
using variants of the Weisfeiler-Lehman individualization-
refinement procedure [17]. They explore a search tree, whose
nodes are equitable vertex partitions, using a backtracking
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algorithm to compute the automorphism group of the graph
and, optionally, a canonical labeling. Inmore detail, using the
Weisfeiler-Lehman individualization-refinement procedure,
they generate a first-path from the root of this tree (which
corresponds to the trivial partition) to a leaf (first-leaf, which
is a partition where all cells are singleton). Then, using the
same procedure, alternative branches of the tree are explored,
backtracking, when a leaf is reached or a conflict is found. (A
conflict is a partition that is not compatible with the partition
at the same level in the first-path.) If no conflict is found, a
leaf is reached that is compatible with that of the first-path,
and an automorphism has been found. The efficiency of an
algorithm depends on the speed at which it performs basic
operations, like refinement, and, mainly, on the size of the
search tree generated (the number of nodes of the search tree
which are explored). There are two main ways to reduce the
search space: pruning and choosing a good target cell (and
vertex) for individualization.

Miyazaki showed in [18] that it is possible to make
nauty choose bad target cells for individualization, so its
search space becomes exponential in size when computing
the automorphism group for a family of colored graphs. This
suggests that a rigid criterion cell selector may be easily
misled so that many nodes are explored, while choosing
the right cells could dramatically reduce the search space.
Thus, different colorings of a graph, or just differently labeled
instances, may generate radically different search trees. Algo-
rithms for CL use different criteria to choose the target cell
for individualization. These criteria must be isomorphism
invariant to ensure that the search trees for isomorphic
graphs are isomorphic. However, this is not necessary for
GA. Examples of cell selectors are the first cell, the maximum
nonuniformly joined cell, the cell with more adjacencies to
nonsingleton cells, and so forth. A cell selector immune to
this dependency on the coloring or the labeling would be
desirable.

Pruning the search tree may be accomplished using sev-
eral techniques. Orbit pruning and coset pruning are exten-
sively used by GA and CL algorithms. Perhaps, the most
sophisticated pruning based on orbit stabilizer algorithms is
that of the latest versions of nauty and Traces [11], which use
the random Schreier method. However, when the number
of generators grow, the overhead imposed might not be
negligible in general. Conflict propagation is used by bliss [7]
to prune sibling nodes when one of them generates a conflict
which was not found in the corresponding node of the first-
path. Conflicts may be detected at the nodes of the search
tree, or during the refinement process as done by conauto
[19] and saucy [14]. Conflicts can also be used to backjump
several nodes in the search tree as done in [15]. In this case,
it is necessary to update the backjump level of a node every
time a conflict is found at that node.

Limited early automorphism detection, when a node has
exactly the same nonsingleton cells (in the same position) as
the corresponding (and compatible) node in the first-path, is
present in all versions of conauto [20]. Recently, this feature
has been added to saucy [14] under the name ofmatchingOPP
pruning. A more ambitious component detection was added
to bliss [7] for early automorphism detection. However,

components are not always easy to discover and keep track
of.

1.2. Contributions. In this paper we propose a novel combi-
nation of four techniques to speed upGA algorithms.Most of
these techniques can be applied to GI and CL algorithms as
well. (Such extensions are out of the scope of this work.)These
techniques can be used in GA algorithms that follow the
individualization-refinement approach. One key concept that
we define, which is used by some of the proposed techniques,
is the property of a partition being a subpartition of another
partition (see the definition in Section 3).

We propose a novel approach to early automorphism
detection (EAD) which allows infering an automorphism
without the need to reach a leaf-node of the search tree.
The early automorphism detection in bliss [7] relies on
component recursion which needs to identify components.
However, component identification is not easy and the cell
selectorsmust be aware of the structure to the graphs in order
to select the cells that belong to the component currently
being explored. This is specially difficult when components
are structured in amultilevel fashion. Yet, our approach relies
only on the structure of the partitions. Specifically, EAD is
based on the concept of subpartition and its correctness is
proved by Theorem 10. This technique is useful, for example,
when the graph is built from regularly connected sets of
isomorphic components or from components which have
automorphisms themselves.

A second technique which, to our knowledge, has never
been used in any other GA algorithm is subpartition back-
jumping, or backjumping (BJ) for short, in the search tree.
BJ is done under the condition that the partition of the
current node is a subpartition of its parent node. In this
case, if the current node has been fully explored and no
automorphism has been found, instead of backtracking to its
parent node, it is possible to backtrack directly to another
ancestor. Specifically, to the nearest ancestor of which the
current node is not a subpartition. The correctness of BJ is
proved by Theorem 11. This technique helps, for example,
when not all the components in a component-based graph
are isomorphic. Note that this backjumping only relies on
the structure of the partitions at the nodes of the search
tree, while the backjumping proposed in [15] relies on the
conflicts found during the search for automorphisms. In fact,
we compute the backjump points just after the generation of
the first-path.

As previously stated, the target cell selector for individ-
ualization is key to yield a good search tree. We propose
a dynamic cell selector (DCS) that tries to generate a tree
in which nodes are subpartitions of their parent nodes, so
that the previous techniques can be applied. If that is not
possible, it chooses the vertex to individualize to be the
one, among a nonisomorphism invariant subset of all the
possible candidates that generates the partition with the
largest number of cells. DCS adapts to a large variety of graph
families. Since it is not isomorphism invariant, it cannot be
applied for CL. However, it can be used for GA and, once
the automorphism group has been computed, use it for CL.
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This can be done in away similar to the combined use of saucy
and bliss proposed in [16].

The last technique proposed is conflict detection and
recording (CDR). With this technique, in addition to record-
ing a hash for each different conflict found exploring branches
of the nodes of the first-path, the number of times each
conflict appeared is counted. If the number of times a certain
conflict has been found at a node (not in the first-path)
exceeds the number of times it was found in the node at the
same level of the first-path, then no more branches need to
be explored in this node. This technique helps pruning the
search tree in a large variety of graph families, and it is an
improvement over the conflict propagation described in [7].

Theoriginal algorithmconauto [19] solves theGI problem
but not the GA problem; conauto-2.0 is a modified ver-
sion that computes automorphism groups and uses limited,
though quite effective, coset and orbit pruning. We have
implemented the four techniques described, and integrated
them into our program conauto-2.0, resulting in the new
version conauto-2.03. It is worth to mention that all versions
of conauto process both directed and undirected graphs (in
fact they consider all graphs as directed).

We have performed an analysis of the time complexity of
conauto-2.03. It is easy to adapt prior analyses [19] to show
that conauto-2.0 has asymptotic time complexity 𝑂(𝑛3) with
high probability when processing a random graph 𝐺(𝑛, 𝑝),
for 𝑝 ∈ [𝜔(ln4𝑛/𝑛 ln ln 𝑛), 1 − 𝜔(ln4𝑛/𝑛 ln ln 𝑛)] [21]. We
then show that, in the worst case, the techniques proposed
here increase the asymptotic time complexity of conauto-
2.03 by an additive polynomial term with respect to that of
conauto-2.0. In particular, DCS can increase the asymptotic
time complexity in up to 𝑂(𝑛5), while EAD and BJ in up to
𝑂(𝑛
3
). Finally, CDR does not increase the asymptotic time

complexity. Hence, if conauto-2.0 had polynomial time com-
plexity for a graph family, the time complexity of conauto-
2.03 would stay polynomial. Furthermore, as will be observed
experimentally, the techniques added drastically reduce the
search tree size (and the running time) in many cases.

We have experimentally evaluated the impact of each
of the above techniques for the processing of several graph
families and different graph sizes for each family. To do so, we
have compared the number of nodes traversed by conauto-2.0
and the number of nodes traversed when each of the above
techniques is applied. Then we have compared the number
of nodes traversed and the running times of conauto-2.0 and
conauto-2.03. The improvements are significant as the size
of the search tree increases, and the overhead introduced is
only noticeable for very small search trees. Finally, we have
compared the search tree size of conauto-2.03 against those
of nauty-2.5, Traces-2.5, saucy-3.0, and bliss-0.72, showing
that in most cases conauto explores less nodes than these
algorithms. In fact, there is only one family of graphs in the
benchmark for which the search tree size of conauto-2.03
goes over the limit of 108 explored nodes imposed in the
experiments.

1.3. Structure. The next section defines the basic concepts
and notation used in the analytical part of the paper. In
Section 3 we define the concept of subpartition and state the

main theoretical properties, which imply the correctness of
EAD and BJ.Then, in Section 4 we describe how these results
have been implemented in conauto-2.03, and in Section 5 we
evaluate the time complexity of conauto-2.03. In Section 6
we give an example of how these techniques can drastically
reduce the size of the search tree. Finally, in Section 7 we
present the experimental evaluation of conauto-2.03 (which
implements the proposed techniques), concluding the paper
with Section 8.

2. Basic Definitions and Notations

Most of the concepts and notations introduced in this section
are of common use. For simplicity of presentation, graphs are
considered undirected. However, all the results obtained can
be almost directly extended to directed graphs.

2.1. Basic Definitions. A graph 𝐺 is a pair (𝑉, 𝐸), where 𝑉 is a
finite set and 𝐸 is a binary relation over 𝑉. The elements of 𝑉
are the vertices of the graph, and the elements of𝐸 are its edges.
The set of graphs with vertex set 𝑉 is denoted by G(𝑉). Let
𝑊 ⊆ 𝑉; the subgraph induced by𝑊 in 𝐺 is denoted by 𝐺

𝑊
.

Let𝑊 ⊆ 𝑉 and V ∈ 𝑉; we denote by 𝛿(𝐺,𝑊, V) the number
of neighbors of vertex V which belong to𝑊. More formally,
𝛿(𝐺,𝑊, V) = |{(V, 𝑤) ∈ 𝐸 : 𝑤 ∈ 𝑊}|. If𝑊 = 𝑉, then it denotes
the degree of the vertex. Let 𝑊 ⊆ 𝑉; if for all V, 𝑤 ∈ 𝑊

,
𝛿(𝐺,𝑊, V) = 𝛿(𝐺,𝑊,𝑤), then this notation can be extended
to denote the number of neighbors of𝑊 which belong to𝑊
as 𝛿(𝐺,𝑊,𝑊).

Two graphs 𝐺 = (𝑉
𝐺
, 𝐸
𝐺
) and 𝐻 = (𝑉

𝐻
, 𝐸
𝐻
) are

isomorphic if and only if there is a bijection 𝛾 : 𝑉
𝐺
→ 𝑉
𝐻
,

such that (V, 𝑤) ∈ 𝐸
𝐺
⇔ (𝛾(V), 𝛾(𝑤)) ∈ 𝐸

𝐻
.This bijection 𝛾 is

an isomorphism of𝐺 onto𝐻. An automorphism of a graph𝐺
is an isomorphism of 𝐺 onto itself. The automorphism group
Aut(𝐺) is the set of all automorphisms of 𝐺 with respect to
the composition operation.

An ordered partition (or partition for short) of 𝑉 is a list
𝜋 = (𝑊

1
, . . . ,𝑊

𝑚
) of nonempty pairwise disjoint subsets of

𝑉 whose union is 𝑉. The sets𝑊
𝑖
are the cells of the ordered

partition. For each vertex V ∈ 𝑉, 𝜋(V) denotes the index of
the cell of 𝜋 that contains V (i.e., if V ∈ 𝑊

𝑖
, then 𝜋(V) = 𝑖).

The number of cells of 𝜋 is denoted by |𝜋|. Let 𝐴 ⊆ 𝑉, 𝜋𝐴
denotes the partition of𝐴 obtained by restricting 𝜋 to𝐴. The
set of all partitions of 𝑉 is denoted by Π(𝑉). A partition is
discrete if all its cells are singletons, and unit if it has only
one cell. Let 𝜋, 𝜌 ∈ Π(𝑉), then 𝜌 is finer than 𝜋, if 𝜋 can be
obtained from 𝜌 by replacing, one ormore times, two ormore
consecutive cells by their union. Let 𝜋 = (𝑊

1
, . . . ,𝑊

𝑚
) and

V ∈ 𝑊
𝑖
; the partition obtained by individualizing vertex V is

𝜋 ↓ V = (𝑊
1
, . . . ,𝑊

𝑖−1
, {V},𝑊

𝑖
\ {V},𝑊

𝑖+1
, . . . ,𝑊

𝑚
).

A colored graph is a pair (𝐺, 𝜋) ∈ G(𝑉)×Π(𝑉). Partition𝜋
assigns color𝜋(V) to each vertex V ∈ 𝑉. Let𝜋 = (𝑊

1
, . . . ,𝑊

𝑚
);

for each vertex V ∈ 𝑉, its color-degree vector is defined as
𝑑(𝐺, 𝜋, V) = (𝛿(𝐺,𝑊

𝑖
, V) : 𝑖 = 1, . . . , 𝑚). A colored graph

(𝐺, 𝜋) is equitable if for all V, 𝑤 ∈ 𝑉, 𝜋(V) = 𝜋(𝑤) implies
𝑑(𝐺, 𝜋, V) = 𝑑(𝐺, 𝜋, 𝑤). (i.e., if all vertices of the same color
have the same number of adjacent vertices of each color.)The
notion of isomorphism and automorphism can be extended
to colored graphs as follows. Two colored graphs (𝐺, 𝜋) and
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(𝐻, 𝜌) are isomorphic if there is an isomorphism 𝛾 of 𝐺 onto
𝐻, such that 𝛾(V) = 𝑤 implies 𝜋(V) = 𝜌(𝑤).

Two equitable colored graphs (𝐺, 𝜋) ∈ G(𝑉
𝐺
) × Π(𝑉

𝐺
)

and (𝐻, 𝜌) ∈ G(𝑉
𝐻
) × Π(𝑉

𝐻
) are compatible if and only if (1)

|𝜋| = |𝜌| = 𝑚; (2) let 𝜋 = (𝑊
1
, . . . ,𝑊

𝑚
) and 𝜌 = (𝑊

1
, . . . ,

𝑊


𝑚
), then for all 𝑖 ∈ [1, 𝑚], |𝑊

𝑖
| = |𝑊



𝑖
|; and (3) for all

V ∈ 𝑉
𝐺
, 𝑤 ∈ 𝑉

𝐻
, 𝜋(V) = 𝜌(𝑤) implies 𝑑(𝐺, 𝜋, V) = 𝑑(𝐻, 𝜌, 𝑤).

Note that if two colored graphs are not compatible, then
they can not be isomorphic. Besides, two compatible colored
graphs (𝐺, 𝜋) and (𝐻, 𝜌), such that 𝜋 and 𝜌 are discrete, are
isomorphic.

2.2. Individualization-Refinement and Search Trees. Most
algorithms for computing GA or CL use variants of theWeis-
feiler-Lehman individualization-refinement procedure [17].
This procedure requires two functions: a cell selector and a
partition refiner. A cell selector is a function 𝑆 that, given a
colored graph (𝐺, 𝜋), returns the index 𝑖 of a cell𝑊

𝑖
∈ 𝜋 such

that |𝑊
𝑖
| > 1. In the case of CL, 𝑆 must be isomorphism

invariant, that is, if (𝐺, 𝜋) is isomorphic to (𝐻, 𝜌), then
𝑆(𝐺, 𝜋) = 𝑆(𝐻, 𝜌). Although this restriction is not necessary
for automorphism group computation, provided that the
selectionsmade are stored for future use, most algorithms use
isomorphism invariant cell selectors for automorphismgroup
computation. A partition refiner is an isomorphism-invariant
function 𝑅 that, given a colored graph (𝐺, 𝜋), returns either
(𝐺, 𝜋) if it is already equitable, or an equitable colored graph
(𝐺, 𝜌) such that 𝜌 is finer than𝜋.The partition refiners usually
used are optimized versions of the 1-dim Weisfeiler-Lehman
stabilization procedure.

The automorphism group of a graph is usually computed
by traversing a search tree in a depth-first manner. A search
tree of a graph 𝐺 ∈ G(𝑉) is a rooted tree T(𝐺) of colored
graphs defined as follows.

(1) The root ofT(𝐺) is the colored graph 𝑅(𝐺, (𝑉)). (We
write𝑅(𝐺, (𝑉)) and 𝑆(𝐺, 𝜋) instead of𝑅((𝐺, (𝑉))) and
𝑆((𝐺, 𝜋)) to avoid duplicated parentheses).

(2) Let (𝐺, 𝜋) be a node ofT(𝐺). If 𝜋 is discrete, it is a leaf
node.

(3) Otherwise, let𝜋 = {𝑊
1
, . . . ,𝑊

𝑚
}. Assume that 𝑆(𝐺, 𝜋)

= 𝑗 and 𝑊
𝑗
= {V
1
, . . . , V

𝑘
} (recall that |𝑊

𝑗
| > 1

from the definition of a cell selector).Then, (𝐺, 𝜋) has
exactly 𝑘 children, where the 𝑖th child is (𝐺, 𝜋

𝑖
) =

𝑅(𝐺, 𝜋 ↓ V
𝑖
).

A path in T(𝐺) starts at some internal (non-leaf)
node and moves toward a leaf. A path can be denoted
as 𝜋
0
[V
1
⟩𝜋
1
⋅ ⋅ ⋅ [V
𝑘
⟩𝜋
𝑘
, indicating that, starting at node (𝐺,

𝜋
0
) and individualizing vertices V

1
, . . . , V

𝑘
, node (𝐺, 𝜋

𝑘
) is

reached.The depth (or level) of a node inT(𝐺) is determined
by the number of vertices which have been individualized in
its path from the root. Thus, if (𝐺, 𝜋

0
) is the root node, then

𝜋
0
is the partition at level 0, and 𝜋

𝑘
is the partition at level 𝑘.

The first-path traversed in T(𝐺) is called the first-path, and
the leaf node of the first-path is called the first-leaf.

Theorem 1. Let𝐺 = (𝑉, 𝐸) be a graph. Let (𝐺, 𝜋) and (𝐺, 𝜌) be
two compatible leaf-nodes in T(𝐺). Then, mapping 𝛾 : 𝑉 →

𝑉 such that, for all V ∈ 𝑉, 𝜋(V) = 𝜌(𝛾(V)) is an automorphism
of 𝐺.

Proof. Direct from the definition of compatibility among
colored graphs, and the fact that, since (𝐺, 𝜋) and (𝐺, 𝜌) are
leaf-nodes, all their cells are singleton.

3. Correctness of EAD and BJ

In this section we define specific concepts needed to develop
our main results, like the concept of kernel of a partition, and
that of a partition being a subpartition of another partition.
Then, using these concepts, we prove the correctness of the
EAD and BJ techniques.

3.1. Definitions. We start by defining the kernel of a partition,
which intuitively is the subset of vertices in non-singleton
cells with edges to other vertices in non-singleton cells, but
not to all of them. More formally, we can define the kernel as
follows.

Definition 2. Let (𝐺, 𝜋) ∈ G(𝑉) × Π(𝑉) be an equitable
colored graph, 𝜋 = (𝑊

1
, . . . ,𝑊

𝑚
) and𝑊 = ⋃

𝑖:|𝑊𝑖|>1
𝑊
𝑖
. Then,

the kernel of partition𝜋 is defined as 𝜅(𝜋) = {V ∈ 𝑊 : 𝛿(𝐺,𝑊\
{V}, V) ∈ [1, |𝑊| − 1]}. The kernel complement of 𝜋 is defined
as 𝜅(𝜋) = (𝑉 \ 𝜅(𝜋)).

Note that the kernel complement may contain non-
singleton cells: those non-singleton cells whose vertices have
no adjacencies with the vertices of the kernel. If such cells
exist, then a simple EAD technique can be used to derive
generators for a subgroup of the automorphism group of the
graph in the following way.

Observation 1. Let (𝐺, 𝜋) be an equitable colored graph. Let
𝜋 = (𝑊

1
, . . . ,𝑊

𝑚
). For each 𝑖 ∈ [1,𝑚] such that |𝑊

𝑖
| > 1 and

𝑊
𝑖
⊆ 𝜅(𝜋), it holds that for each 𝑢, V ∈ 𝑊

𝑖
, 𝑑(𝐺, 𝜋𝜅(𝜋), 𝑢) =

𝑑(𝐺, 𝜋
𝜅(𝜋)
, V), and for all V ∈ 𝑊

𝑖
, 𝛿(𝐺,𝑊

𝑗
, V) = 0 for all 𝑗 ∈

[1,𝑚] such that |𝑊
𝑗
| > 1. Hence, 𝑢 and V are inditinguishable

from each other. Thus, any permutation of the vertices of𝑊
𝑖

(fixing the remaining vertices of𝐺) is an automorphism of𝐺.
In fact, they form a subgroup of the automorphism group of
graph 𝐺.

A set of generators for this subgroup may be built in the
following way: let |𝑊

𝑖
| = 𝑘 and𝑊

𝑖
= {V
1
, . . . , V

𝑘
}. Then, 𝑘 − 1

generators, each of them defined by permuting vertex V
𝑖
with

vertex V
𝑖+1

for all 𝑖 ∈ [1, 𝑘 − 1] generate this subgroup of size
𝑘!

Now we can define the concept of a partition being a
subpartition of another partition, which is based on the
kernel.

Definition 3. Let (𝐺, 𝜋) and (𝐺, 𝜌) be two equitable colored
graphs such that 𝜌 is finer than 𝜋. Then, 𝜌 is a subpartition of
𝜋 if and only if each cell in the kernel of 𝜌 is contained in a
different cell of 𝜋. (I.e., 𝜌𝜅(𝜌) = 𝜋𝜅(𝜌)).
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3.2. Early Automorphism Detection. The next results allow
for early automorphism detection (EAD) when, at some node
in the search tree, the node’s partition is a subpartition of
an ancestor’s partition. In practice, it limits the maximum
depth in the search tree necessary to determine if a path is
automorphic to a previously explored one.

Lemma 4. Let (𝐺, 𝜋) ∈ G(𝑉) × Π(𝑉) be an equitable colored
graph. Let 𝜋 = (𝑊

1
, . . . ,𝑊

𝑚
). Then, for each vertex V ∈ 𝜅(𝜋),

for all 𝑖 ∈ [1, 𝑚], 𝛿(𝐺,𝑊
𝑖
, V) ∈ {|𝑊

𝑖
|, 0}.

Proof. Let 𝐴 = {V ∈ 𝜅(𝜋) : |𝑊
𝜋(V)| = 1}. Since 𝜋 is equitable

and |𝑊
𝜋(V)| = 1 for all V ∈ 𝐴, the claim holds for all V ∈ 𝐴.

Since the vertices in (𝜅(𝜋) \𝐴) have no adjacencies with non-
singleton cells, the claim also holds for these vertices.

Lemma 5. Let (𝐺, 𝜋), (𝐻, 𝜌) ∈ G(𝑉) × Π(𝑉) be two equitable
and compatible colored graphs. Let 𝜋 = (𝑊

1
, . . . ,𝑊

𝑚
) and 𝜌 =

(𝑊


1
, . . . ,𝑊



𝑚
). For all 𝑖 ∈ [1, 𝑚], let 𝛽

𝑖
be any bijection from𝑊

𝑖

to𝑊
𝑖
. For all V ∈ 𝑉, let 𝛾(V) = 𝛽

𝜋(V)(V). Then, for all V ∈ 𝜅(𝜋),
for all 𝑖 ∈ [1, 𝑚], 𝛿(𝐺,𝑊

𝑖
, V) = 𝛿(𝐺,𝑊

𝑖
, 𝛾(V)) ∈ {|𝑊

𝑖
|, 0}.

Proof. Since (𝐺, 𝜋) and (𝐻, 𝜌) are equitable, from Lemma 4,
for all V ∈ 𝜅(𝜋), for all 𝑖 ∈ [1,𝑚], 𝛿(𝐺,𝑊

𝑖
, V) ∈ {|𝑊

𝑖
|, 0}, and

for all V ∈ 𝜅(𝜌), for all 𝑖 ∈ [1,𝑚], 𝛿(𝐺,𝑊
𝑖
, V) ∈ {|𝑊

𝑖
|, 0}.

For all 𝑖 ∈ [1,𝑚], since (𝐺, 𝜋) and (𝐻, 𝜌) are compatible,
|𝑊
𝑖
| = |𝑊



𝑖
|, and for all V ∈ 𝑉, 𝛿(𝐺,𝑊

𝑖
, V) = 𝛿(𝐺,𝑊

𝑖
, 𝛾(V)).

Hence, for all V ∈ 𝜅(𝜋), for all 𝑖 ∈ [1, 𝑚], 𝛿(𝐺,𝑊
𝑖
, V) =

𝛿(𝐺,𝑊


𝑖
, 𝛾(V)) ∈ {|𝑊

𝑖
|, 0}.

Corollary 6. For all 𝑢 ∈ 𝜅(𝜋), V ∈ 𝑉, 𝑢 is adjacent to V if and
only if 𝛾(𝑢) is adjacent to 𝛾(V).

Definition 7. Let 𝐺 ∈ G(𝑉) and T(𝐺) its search tree. Let
(𝐺, 𝜋
𝑘
) be a node of T(𝐺). Let (𝐺, 𝜋

𝑙
) and (𝐺, 𝜌

𝑙
) be two

descendants of (𝐺, 𝜋
𝑘
) such that (1) they are compatible, and

(2) 𝜋
𝑙
and 𝜌

𝑙
are subpartitions of 𝜋

𝑘
. Let 𝜋

𝑙
= (𝑊
1
, . . . ,𝑊

𝑚
)

and 𝜌
𝑙
= (𝑊



1
, . . . ,𝑊



𝑚
). For all 𝑖 ∈ [1, 𝑚], let 𝛽

𝑖
be any

bijection from𝑊
𝑖
to𝑊
𝑖
. Let us define the function 𝛼 : 𝑉 →

𝑉 as follows
(i) For all V ∈ 𝜅(𝜋

𝑙
), 𝛼(V) = 𝛽

𝜋𝑙(V)(V).
(ii) For all V ∈ 𝜅(𝜋

𝑙
), 𝛼(V) = 𝑓(V), where 𝑓(V) = V if V ∈

𝜅(𝜌
𝑙
), and 𝑓(V) = 𝑓(𝛽−1(V)) if V ∈ 𝜅(𝜌

𝑙
).

Observation 2. For all 𝑖 ∈ [1,𝑚], 𝛼 is a bijection from𝑊
𝑖
to

𝑊


𝑖
. Hence, 𝛼 is a bijection (and a permutation of 𝑉).

Proof. Recall that 𝛽
𝑖
is a bijection from𝑊

𝑖
to𝑊
𝑖
for all 𝑖 ∈

[1, 𝑚]. Additionally, since 𝜋
𝑙
and 𝜌

𝑙
are subpartitions of 𝜋

𝑘
,

for all V ∈ 𝜅(𝜋
𝑙
), V ∈ 𝑊

𝑖
implies V ∈ 𝑊

𝑖
.

Let us define the following subsets
𝐴 = 𝜅 (𝜋

𝑙
) ∩ 𝜅 (𝜌

𝑙
) ,

𝐷 = 𝜅 (𝜋
𝑙
) ∩ 𝜅 (𝜌

𝑙
) ,

𝐵 = 𝜅 (𝜋
𝑙
) \ 𝐷 = 𝜅 (𝜌

𝑙
) \ 𝐴,

𝐶 = 𝜅 (𝜋
𝑙
) \ 𝐴 = 𝜅 (𝜌

𝑙
) \ 𝐷.

(1)

Similarly, for each 𝑖 ∈ [1,𝑚], we define the following subsets

𝐴
𝑖
= 𝐴 ∩𝑊

𝑖
= 𝐴 ∩𝑊



𝑖
,

𝐷
𝑖
= 𝐷 ∩𝑊

𝑖
= 𝐷 ∩𝑊



𝑖
,

𝐵
𝑖
= 𝐵 ∩ (𝑊

𝑖
∪𝑊


𝑖
) ,

𝐶
𝑖
= 𝐶 ∩ (𝑊

𝑖
∪𝑊


𝑖
) .

(2)

Note that for all 𝑖 ∈ [1,𝑚],𝑊
𝑖
⊆ 𝜅(𝜋

𝑙
) implies𝑊

𝑖
= 𝐴
𝑖
∪ 𝐶
𝑖
,

𝑊


𝑖
⊆ 𝜅(𝜌

𝑙
) implies𝑊

𝑖
= 𝐴
𝑖
∪ 𝐵
𝑖
,𝑊
𝑖
⊆ 𝜅(𝜋

𝑙
) implies𝑊

𝑖
=

𝐵
𝑖
∪ 𝐷
𝑖
, and𝑊

𝑖
⊆ 𝜅(𝜌
𝑙
) implies𝑊

𝑖
= 𝐶
𝑖
∪ 𝐷
𝑖
.

Observation 3. 𝛼maps the vertices in 𝜅(𝜋
𝑙
) to the vertices in

𝜅(𝜌
𝑙
), the vertices in𝐷 to themselves, and hence, the vertices

in 𝐵 to the vertices in 𝐶.

Lemma 8. For all 𝑢 ∈ 𝐵, V ∈ 𝐷, 𝑢 and V are adjacent if and
only if 𝛼(𝑢) and 𝛼(V) are adjacent.

Proof. Take any vertex 𝑥 ∈ 𝐶. Since 𝑥 ∈ 𝜅(𝜋
𝑙
), then from

Corollary 6, for all V ∈ 𝐷, 𝑥 and V are adjacent if and only if
𝛼(𝑥) and 𝛼(V) are adjacent. Note that, from the construction
of 𝛼, 𝛼(V) = V and, either 𝛼(𝑥) ∈ 𝐵 or 𝛼(𝑥) ∈ 𝐴. In case
𝛼(𝑥) = 𝑢 ∈ 𝐵, then from the construction of 𝛼, 𝛼(𝑢) =
𝛼(𝛼(𝑥)) = 𝑓(𝛼

−1
(𝛼(𝑥))) = 𝑓(𝑥) = 𝑥. Hence, since 𝛼 is a

bijection of𝑊
𝑖
onto𝑊

𝑖
for all 𝑖 ∈ [1,𝑚], then for all 𝑢 ∈ 𝐵

such that 𝛼−1(𝑢) ∈ 𝐶, 𝑢 and V are adjacent if and only if
𝛼(𝑢) and 𝛼(V) are adjacent. Consider now the case in which
𝛼(𝑥) ∈ 𝐴. Note that, for all 𝑎 ∈ 𝐴, 𝛼(𝑎) ∈ (𝐴∪𝐵). Then, from
the construction of 𝛼, there is a sequence (𝑎

1
, . . . , 𝑎

𝑛
), such

that 𝛼(𝑥) = 𝑎
1
, for all 𝑗 ∈ [1, 𝑛], 𝑎

𝑗
∈ 𝐴, for all 𝑗 ∈ [1, 𝑛 − 1],

𝛼(𝑎
𝑗
) = 𝑎

𝑗+1
, and 𝛼(𝑎

𝑛
) = 𝑢 ∈ 𝐵. Hence, 𝛼𝑛+1(𝑥) = 𝑢, and

𝛼(𝑢) = 𝑥 from the construction of 𝛼. Note that, since 𝛼 is
a bijection, there are no two such sequences which share a
vertex. Applying Corollary 6 to the powers of 𝛼, we get that
𝑥 = 𝛼(𝑢) and V = 𝛼(V) are adjacent if and only if 𝛼𝑧(𝑥) and
𝛼
𝑧
(V) are adjacent. For the case 𝑧 = 𝑛+1, we get that 𝛼(𝑢) and

𝛼(V) are adjacent if and only if 𝛼𝑛+1(𝑥) = 𝑢 and 𝛼𝑛+1(V) = V
are adjacent.

This applies to all 𝑥 ∈ 𝐶 and V ∈ 𝐷. Since 𝛼 is a bijection
that maps 𝐵 to 𝐶, the proof applies to all 𝑢 = 𝛼−1(𝑥) ∈ 𝐵.

Lemma 9. For all 𝑢, V ∈ 𝐵, 𝑢 and V are adjacent if and only if
𝛼(𝑢) is adjacent to 𝛼(V).

Proof. Let 𝑥, 𝑦 ∈ 𝐶. Like in the proof of Lemma 8, from the
construction of 𝛼, there is a (smallest) 𝑧 such that 𝛼𝑧(𝑥) = 𝑢 ∈
𝐵 and 𝛼(𝑢) = 𝑥 (from the construction of 𝛼), and a (possibly
different smallest) 𝑧, such that 𝛼𝑧



(𝑦) = V ∈ 𝐵 and 𝛼(V) = 𝑦
(also from the construction of 𝛼). Note that for all ℎ ∈ [1, 𝑧 ⋅
𝑧

], either 𝛼ℎ(𝑥), 𝛼ℎ(𝑦) ∈ 𝐵, or 𝛼ℎ(𝑥) ∈ 𝐴 or 𝛼ℎ(𝑦) ∈ 𝐴 (or

both). Let 𝑐 = LCM(𝑧, 𝑧) be the least common multiple of 𝑧
and 𝑧 (or a multiple of it). Then, 𝛼𝑐(𝑥), 𝛼𝑐(𝑦) ∈ 𝐵 and, for all
ℎ ∈ [1, 𝑐 − 1], 𝛼ℎ(𝑥) ∈ 𝐴 or 𝛼ℎ(𝑦) ∈ 𝐴. Hence, Corollary 6
may be applied to conclude that 𝑥 = 𝛼(𝑢) and 𝑦 = 𝛼(V) are
adjacent if and only if 𝛼𝑐(𝑥) = 𝑢 and 𝛼𝑐(𝑦) = V are adjacent.
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This applies to all 𝑥, 𝑦 ∈ 𝐶. Since 𝛼 is a bijection that
maps 𝐵 to 𝐶, the proof applies to all 𝑢 = 𝛼−1(𝑥) ∈ 𝐵 and
V = 𝛼−1(𝑦) ∈ 𝐵.

Theorem 10. Let 𝐺 ∈ G(𝑉) and T(𝐺) its search tree. Let
(𝐺, 𝜋
𝑘
) be a node of T(𝐺). Let (𝐺, 𝜋

𝑙
) and (𝐺, 𝜌

𝑙
) be two

descendants of (𝐺, 𝜋
𝑘
) such that (1) they are compatible, and

(2) 𝜋
𝑙
and 𝜌

𝑙
are subpartitions of 𝜋

𝑘
. Then, (𝐺, 𝜋

𝑙
) and (𝐺,

𝜌
𝑙
) are isomorphic, and 𝛼 (as defined in Definition 7) is an

automorphism of 𝐺.

Proof. To prove that 𝛼 is an isomorphism of (𝐺, 𝜋
𝑙
) onto

(𝐺, 𝜌
𝑙
), we will prove that for all 𝑢, V ∈ 𝑉, 𝑢 and V are adjacent

if and only if 𝛼(𝑢) and 𝛼(V) are adjacent. FromObservation 3,
there are four cases to consider:

(1) 𝑢 ∈ 𝜅(𝜋
𝑙
), V ∈ 𝑉: Direct from Corollary 6;

(2) 𝑢, V ∈ 𝐷: since𝐷 = 𝜅(𝜋
𝑙
)∩𝜅(𝜌

𝑙
), from the definition of

𝛼, 𝛼(𝑢) = 𝑢 and 𝛼(V) = V. Hence, 𝛼 applies the trivial
automorphism of 𝐺

𝐷
;

(3) 𝑢 ∈ 𝐵, V ∈ 𝐷: Direct from Lemma 8;
(4) 𝑢, V ∈ 𝐵: Direct from Lemma 9.

Interestingly, some of the properties used for early auto-
morphism detection in other graph automorphism algo-
rithms are special cases of the above theorem. For instance,
the early automorphismdetection used in saucy-3.0 is limited
to the case in which all the nonsingleton cells are the same
in both partitions. This corresponds to the particular case of
Theorem 10 in which 𝜅(𝜋

𝑙
) ∩ 𝜅(𝜌

𝑙
) = 0, and all the cells in

𝜅(𝜋
𝑙
) are singleton.

3.3. Backjumping. The following theorem shows the correct-
ness of backjumping (BJ) when searching for automorphisms.
This allows to backtrack various levels in the search tree at
once.

Theorem 11. Let (𝐺, 𝜋
𝑘
) be a node of T(𝐺). Let (𝐺, 𝜋

𝑙
)

and (𝐺, 𝜌
𝑙
) be two compatible descendants of (𝐺, 𝜋

𝑘
). Let (𝐺,

𝜋
𝑚
) and (𝐺, 𝜌

𝑚
) be two descendants of (𝐺, 𝜋

𝑙
) and (𝐺, 𝜌

𝑙
),

respectively, such that 𝜋
𝑚
is a subpartition of 𝜋

𝑙
and 𝜌

𝑚
is a

subpartition of 𝜌
𝑙
. If (𝐺, 𝜋

𝑚
) and (𝐺, 𝜌

𝑚
) are compatible but not

isomorphic, then (𝐺, 𝜋
𝑙
) and (𝐺, 𝜌

𝑙
) are not isomorphic either.

Proof. Assume otherwise. If (𝐺, 𝜋
𝑚
) and (𝐺, 𝜌

𝑚
) are isomor-

phic, (𝐺, 𝜋
𝑙
) and (𝐺, 𝜌

𝑙
) would be isomorphic too. From

Theorem 10, all descendant nodes of (𝐺, 𝜋
𝑙
) compatible with

(𝐺, 𝜋
𝑚
) (which is a subpartition of (𝐺, 𝜋

𝑙
)) will be isomorphic

to it. Then, since (𝐺, 𝜋
𝑚
) and (𝐺, 𝜌

𝑚
) are not isomorphic,

(𝐺, 𝜋
𝑙
) and (𝐺, 𝜌

𝑙
) can not be isomorphic either.

A direct practical consequence of Theorem 11 is that,
when exploring alternative paths at level 𝑘, if a level 𝑚 is
reached that satisfies the conditions of the theorem, it is not
necessary to explore alternative paths at level 𝑙. Instead, it is
possible to backjump directly to the closest level 𝑗 ∈ [𝑘, 𝑙)
such that 𝜌

𝑚
is not a subpartition of 𝜌

𝑗
.

4. Implementation of the Techniques in
Conauto-2.03

The starting point of algorithm conauto-2.03 is algorithm
conauto-2.0, which is the first version of conauto that
solves GA. It obtains a set of generators, and computes
the orbits and the size of the automorphism group using
the individualization-refinement approach. The cell selector
of conauto-2.0 uses the following criteria: (a) a cell which
has adjacencies with non-singleton cells is better than those
which only have adjacencies to singleton cells, (b) among
the cells that satisfy the previous criterion, the smallest cells
are preferred, (c) among the cells that satisfy the previous
criteria, the cells whose vertices have the highest number of
adjacencies to vertices of nonsingleton cells are preferred, and
(d) among those which satisfy the previous criteria, the cell
with the smallest index is chosen.

In all the algorithms based on individualization-
refinement, it has been experimentally observed that the cell
selector determines, in most cases, the depth of the search
tree, and the number of bad paths (those that do not yield
an automorphism of the graph) in the search tree. However,
no known cell selector yields an optimal search tree for all
graph families. Besides, automorphisms discovered are used
to prune the search tree. Yet, there are times when it is easy to
know in advance that a path will be successful (will yield an
automorphism of the graph). EAD can be used to generate
such automorphism without the need to reach a leaf node,
hence pruning the search tree quite effectively.

In conauto-2.03, the proposed techniques have been
implemented with very good results. First, it must be noted
that, in conauto-2.03, the leaf-nodes of the search tree are
those which have a partition with an empty kernel, not
necessarily those with discrete partitions.This already prunes
the search tree, since vertices which are adjacent to the same
vertices may remain in the same cell in the leaf nodes.

Additionally, EAD is implemented as follows. Once the
first-path has been generated, the obtained partition is tested
to see if Observation 1 can be applied to it. After that, the
first-path is explored to find, for each non-leaf node (𝐺, 𝜋),
its nearest successor (𝐺, 𝜌) which is a subpartition of (𝐺, 𝜋).
(Note that a leaf node is a subpartition of all its ancestors).
(𝐺, 𝜌) is recorded as the search limit for (𝐺, 𝜋). Then, when
searching for automorphisms fromnode (𝐺, 𝜋), if a new node
compatible with (𝐺, 𝜌) is found, an automorphism is inferred
applying Theorem 10, and a generator 𝛼 is obtained applying
Definition 7. This requires a subpartition test which is linear
in the number of cells. The test will be executed, for each
nonleaf node in the first-path, at most as many times as the
length of the path from that node to the first-leaf. Every time
the search limit is not a leaf, a subtree is pruned.

On its hand, BJ requires the execution of the subpartition
test for the ancestors of eachnode (𝐺, 𝜋)of the first-path, until
a node (𝐺, 𝜌) is found such that 𝜋 is not a subpartition of 𝜌.
That will be the backjump point for node (𝐺, 𝜋). The point
is recorded, and BJ can be subsequently applied with zero
overhead. If there is no such ancestor, then that fact is also
recorded. Thus, if a node compatible with (𝐺, 𝜋) is reached
during the search for automorphisms from an ancestor node
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and that path is unsuccessful, no more paths in the search
tree will be tested at that ancestor (since no one could yield an
automorphism, according toTheorem 11). Note that although
it is out of the scope of this paper, this technique is used in the
isomorphism testing algorithm of conauto-2.03, with good
results.

EAD and BJ are only applied if there are nodes in the first-
path that satisfy the subpartition condition. Without a cell
selector that favours subpartitions, they cannot be expected to
be useful in general. Hence, a cell selector like DCS is needed
to choose a good cell for individualization. In conauto-2.03,
DCS is implemented in the following way. At node (𝐺, 𝜋),
for each cell 𝑐 ∈ 𝜅(𝜋), it computes its size 𝑠 = |𝑐| and
degree 𝑑 = 𝛿(𝐺, 𝜅(𝜋), 𝑐). For each pair of values (𝑠, 𝑑), one
cell is selected as a candidate for individualization. From
each such cell, it takes the first vertex V, and computes the
corresponding refinement 𝑅(𝐺, 𝜋 ↓ V). If it gets a partition
which is a subpartition of 𝜋, it selects that cell (and vertex)
for individualization. If no such cell is found, it selects
the cell (and vertex) which produces the partition with the
largest number of cells. Observe that this function is not
isomorphism-invariant (not all the vertices of a cell will
always produce compatible colored graphs), and it has a non-
negligible cost in both time and number of additional nodes
explored. However, it pays off because the final search tree
is drastically reduced for a great variety of graphs, and other
techniques compensate for the overhead introduced.

The implementation of conflict detection and recording
(CDR) in conauto-2.03 requires the computation of a hash
value for each conflict found. This way, conflicts may be
identified by an integer value, what simplifies both recording
and comparing conflicts. Additionally, an integer is asso-
ciated to each conflict, indicating the number of vertices
that generated that conflict. The cost in time and memory
incurred by this computation is very limited and there is
a large variety of graphs that benefit from this technique.
Conflicts are recorded during the search for automorphisms
at each node (𝐺, 𝜋) of the first-path. Then, when searching
for automorphisms at some ancestor node of (𝐺, 𝜋), if a
node compatible with (𝐺, 𝜋) is reached, then several paths
would need to be explored at this level. If a path finds an
automorphism, no more paths need to be explored. If a path
finds a bad-node (a node which is incompatible with the
corresponding node of the first-path), then its hash value is
computed. If it was not recorded as a valid conflict, no more
paths are tested and this node is considered a bad-node. If
this is a valid conflict, then the number of times this conflict
has been found is incremented. If the number of times this
conflict has been found is greater than the number of times
it was originally found, this node is considered a bad-node.
This way, bad-nodes are detected much faster than without
CDR.

5. Complexity Analysis

It was shown in [19] that conauto-1.0 is able to solve the
GI problem in polynomial time with high probability if
at least one of the two input graphs is a random graph
𝐺(𝑛, 𝑝) for𝑝 ∈ [𝜔(ln4𝑛/𝑛 ln ln 𝑛), 1−𝜔(ln4𝑛/𝑛 ln ln 𝑛)]. Using

a similar analysis, it is not hard to show a similar result for the
complexity of conauto-2.0 solving the GA problem. That is,
conauto-2.0 solves the GA problem in polynomial time with
high probability if the input graph is a random graph 𝐺(𝑛, 𝑝)
for 𝑝 ∈ [𝜔(ln4𝑛/𝑛 ln ln 𝑛), 1 − 𝜔(ln4𝑛/𝑛 ln ln 𝑛)].

We argue now that the techniques proposed in this work
only increase the asymptotic time complexity of conauto-
2.0 by a polynomial additive term. This implies that there
is no risk that if a graph is processed in polynomial time
by conauto-2.0, by using these techniques, it will require
superpolynomial time with conauto-2.03. Let us consider
each of the techniques proposed independently.

DCS only increases the execution time during the com-
putation of the first-path. This follows since it is only used
by the cell selector to choose a cell, and the cell selector is
only used to choose the first-path. (Every time the cell selector
returns a cell index, this index is recorded to be used in the
rest of the search tree exploration.)The cell selector is called at
most a linear number of times in 𝑛, where 𝑛 is the number of
vertices of the graph.Then, DCS is applied a linear number of
times. Each time it is applied it may require to explore a linear
number of branches. Each branch is exploredwith a call to the
partition refiner function, whose time complexity if 𝑂(𝑛3).
Therefore, DCS increases the asymptotic time complexity of
the execution by an additive term of 𝑂(𝑛5). However, in our
experiments, the increase in the number of nodes traversed
is always far below this asymptotic bound.

Regarding EAD, like DCS, it requires additional process-
ing while the first-path is created. In particular, for each
partition 𝜋 in the first-path, the closest partition down the
path which is a subpartition of 𝜋 is determined. This process
always finishes, since the leaf of the first-path is a trivial
subpartition of all the other partitions in the first-path.There
is at most a linear number of partitions 𝜋 and, hence, at
most a linear number of candidate subpartitions. Moreover,
checking if a partition is a subpartition of another takes at
most linear time. Hence, EAD adds a term 𝑂(𝑛

3
) to the

time complexity of processing the first-path. On the other
hand, when the rest of the search tree is explored, checking
the condition to apply EAD has constant time complexity. If
EAD can be applied, an automorphism is generated in linear
time. Observe that if EAD were not used, then an equivalent
automorphism would have been found, but at the cost of
exploring a larger portion of the search tree (which takes
at least linear time and may have up to exponential time
complexity). Hence the application of EAD does not increase
the asymptotic time complexity of exploring the rest of the
search tree, and may in fact significantly reduce it.

The time complexity added by BJ to the processing of the
first-path is similar to that of EAD, that is, 𝑂(𝑛3), since for
each partition in 𝜋 the task is finding the closest partition
up the first-path which is not a subpartition of 𝜋 (if such
a partition exists). The application of BJ in the exploration
of the rest of the search tree takes constant time to check
and to apply, while the time complexity reduction can be
exponential.

CDR on its hand involves no processing during the
generation of the first-path. Then, during the exploration of
the rest of the search tree, every time a conflict is detected,
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the hash of that conflict is computed and the corresponding
counter has to be updated (see Section 4). This takes in total
at most linear time. Observe that conflict detection, which
takes at least linear time, has to be done in any case. Hence,
CDR does not increase the asymptotic time complexity of the
algorithm.

6. Example of the Effectiveness of
the New Techniques

Most algorithms that follow the individualization-refinement
scheme work in the following way. They start by generating
the first-path, recording which cells are used for individu-
alization at each node of the first-path for future use. Then,
starting from the first-leaf and moving towards the root, they
explore each alternative branch in the search tree. When
a leaf node compatible with the first-leaf is reached, an
automorphism is found and a generator is stored. After all
the branches of some node are either explored or discarded
by automorphismpruning, the algorithmmoves to the parent
node to explore new branches of the search tree.This process
continues until the root node of the search tree has been
explored.

The sample graph shown in Figure 1 is used to illustrate
the reduction, in the search tree size, attained with the
combined use of DCS and EAD. This graph is a relabeling
of the smallest graph of the TNN family described in the
Appendix. The search tree obtained for this graph when
using the cell selector of conauto-2.00 (and automorphism
pruning) but no EAD is shown in Figure 2. (Note that the
EAD based on Observation 1 is already used in conauto-
2.00). This search tree has 75 nodes (not all of them have
been numbered). Each branch is labeled with the vertex that
is individualized. The partitions corresponding to the most
relevant nodes of the search tree are shown in Table 1.

The root node (node 0) corresponds to the degree
partition, which is already equitable. The cell selector used
chooses the smallest cell, which is the leftmost one (see
Table 1). Among the vertices of this cell, the first is chosen,
namely 𝑎. After individualizing vertex 𝑎 and subsequent
refinement, node 1 is obtained. The next nodes of the first-
path (denoted by solid lines) are generated in the same way.
The first-leaf is node 11, which defines the base used for
the automorphism group computation. Since, at node 10,
vertex 𝑑 was individualized to generate the first-leaf, vertex
𝑗 is subsequently individualized to generate node 12, which
is compatible with the first-leaf. Hence, an automorphism
has been found and a generator of the automorphism group
is stored. When node 39 is reached, an automorphism is
dicovered which puts vertices 𝑚 and 𝑢 in the same orbit. At
node 3, vertex𝑚 is individualized but node 40 is a bad-node
(denoted by a striped pattern) since, as it can be easily seen
in Table 1, the partition of node 40 is not compatible with
that of node 4. Then, since vertices 𝑚 and 𝑢 are in the same
orbit, it is not necessary to try vertex 𝑢. This is an example
of orbit pruning. There are other examples of orbit pruning.
For example, at the root node, vertices 𝑟, 𝑢 and 𝑦 are not
considered because vertex 𝑟 is in the orbit of 𝑏, and vertices
𝑢 and 𝑦 are in the same orbit as 𝑎 and 𝑚. The total number

of bad-nodes found directly determines the effectiveness of
an algorithm. A search tree with no bad-nodes has a number
of nodes which is polynomial in the number of nodes of the
graph, since the number of leaves (base + generators of the
automorphism group) is bounded by the number of nodes of
the graph. In this case, the number of generators found is 10.
This search tree is similar to those generated by nauty-2.5 and
bliss-0.72 (without EAD).

Figure 3 shows the tree traversed when generating the
first-path using DCS. Note that, in this case, at each level,
several children nodes are explored before one is chosen (and
revisited). At each node, the kernel of the corresponding
colored graph is shown. At each branch, the individualized
vertex is shown. The first benefit from using DCS is that the
length of the first-path is shortened and, thus, the search
tree is less deep than that of Figure 2. The nodes of the first-
path are revisited to avoid extra storing. However, it pays
off as it will be seen. DCS finds subpartitions twice, what
can subsequently be used by EAD, applying Theorem 10.
Remember that the leaf nodes are those with an empty
kernel, not necessarily those with a discrete partition. Thus,
Observation 1 is applied only at the first-leaf.

Figure 4 shows the search tree generated after DCS has
been used in the generation of the first-path. In this case, EAD
is extensively used to prune the search tree. The first-path is
denoted by solid lines. The other paths explored are denoted
with dashed lines. The first-leaf yields 4 generators (applying
Observation 1), one for each nonsingleton cell in the kernel
complement. Each other path explored yields a new generator
(applying Theorem 10), what yields 4 more generators. Note
that only one leaf node (apart from the first-leaf) is reached,
since EAD makes it unnecessary in every other case. Thus,
the total number of generators found is 8. In this example, the
combined use of DCS and EAD allows for a reduction of the
number of nodes of the search tree, from 75 to 17. Note that
some of them are counted twice because they are revisited
during the generation of the first-path. Besides, the number
of bad-nodes is 0. That is, all the work done is useful.

7. Evaluation of the Techniques in
Conauto-2.03

In this section we start showing how adding the proposed
techniques to conauto-2.0 affects the size of the search tree.
Then, we compare the size of the search tree of conauto-2.03
(which includes all the proposed techniques) against those of
nauty, Traces, saucy, and bliss. This comparison shows how
the application of these techniques to other algorithms could
drastically improve their performance by reducing the size of
their search trees.

The experiments have been carried out in an Intel(R)
Core(TM) i5 750 @2.67GHz, with 16GiB of RAM under
Ubuntu Server 9.10. All the programs have been compiled
with gcc 4.4.1 and optimization flag “-O2,” and all the results
have been verified to be correct. For the experiments, we have
used all the undirected graphs described in the Appendix,
which includes a variety of graph families with different
characteristics.
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Figure 1: Sample graph used for automorphism group computation.
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Figure 2: Search tree when the basic cell selector and no EAD are used.

7.1. First Experiment: Conauto-2.03 versus Conauto-2.0. First,
we evaluate the proposed techniques separately. To do so, we
consider the number of nodes that are explored during the
search, since we consider this to be the key parameter that
reflects the performance of an algorithm.The execution times
measured present a similar behavior as the one shown by
the number of nodes explored. The corresponding plots are
shown in Figure 5.Then, we evaluate the impact of their joint
use in conauto-2.03 with respect to conauto-2.0, on the size of
the search tree and the running time. These plots are shown
in Figure 6.

When counting the number of nodes of the search tree,
each execution was terminated when the node count reached
10
8. For the time comparison, a timeout of 5,000 seconds

was established. When an execution reached the limit, its
corresponding point is placed on the boundary of the plotting
area.

As can be observed in the plots, EAD, BJ, and CDR
never increase the number of nodes explored. This number
slightly increases with DCS in some graphs but only in a few
executions with small search trees, and the benefit attained

for most graphs is very noticeable. In fact, many executions
that reached the count limit without DCS, lay within the limit
when DCS is used (see the rightmost boundary of the plot).

In the case of component-based graphs with subsets
of isomorphic components, EAD is able to prune many
branches, but with other graph families it has no visible
effect. That is why the diagonal of the plot is crowded. BJ
has a similar effect but for different classes of graphs. It is
mostly useful for component-based graphs which have few
automorphisms, so they are complementary. EAD exploits
the existence of automorphisms, and BJ exploits the absence
of automorphisms.

CDR is useful with a variety of graphs. It is mostly
useful when the target cells used for individualization are
big and there are few automorphisms. It has been observed
experimentally that when EADor BJ are combinedwithDCS,
their effect increases, since DCS favours the subpartition
condition, generating more nodes in the search tree at which
EAD and BJ are applicable. Hence, when all the techniques
proposed are used together (in conauto-2.03), the gain is
general (big search trees have disappeared from the diagonal),
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Figure 3: Generation of the first-path using DCS.
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Figure 4: Search tree using DCS and EAD (other techniques do not apply here).

and the overhead generated by DCS is compensated by the
other techniques in almost all cases.

The techniques presented help pruning the search tree,
but they have a computational cost. Hence, we have compared
the time required by conauto-2.0 and conauto-2.03, to evalu-
ate the computation time paid for the pruning attained. The
results obtained show that the improvement in processing
time is general and only a few runs are slower (with running
time below one second). Additionally, many executions that
timed out in conauto-2.0 are able to complete in conauto-2.03
(see the rightmost boundary of the time plot in Figure 6).

7.2. Second Experiment: Conauto-2.03 versus Nauty-2.5, Tra-
ces-2.5, Saucy-3.0 and Bliss-0.72. In the second experiment,
we compare the search-space of conauto-2.03 against those
of nauty-2.5, Traces-2.5, saucy-3.0, and bliss-0.72. When
counting the number of nodes of the search tree explored,
each execution was terminated when the count reached
1.5 ⋅ 10

8 (observe that we are more permissive in this
experiment). Again, when an execution reached the limit, its
corresponding point is placed on the boundary of the plotting
area. The plots are shown in Figure 7.

Comparing conauto-2.03 against nauty-2.5, we observe
that in most cases conauto-2.03 explores many fewer nodes
than nauty-2.5 and there are many cases in which nauty-
2.5 exceeds the limit, while conauto-2.03 remains in values
below 104 nodes. However, there are also some cases in which
conauto-2.03 exceeds the limit, while nauty-2.5 explores
around 104 nodes. All these cases correspond to graphs of

the same family, the F-LEX-srg, which is the only one for
which conauto-2.03 exceeds the limit (see Table 2). A very
remarkable fact is that there are no cases in which both
conauto-2.03 and nauty-2.5 exceed the limit.

Traces-2.5 generates search trees of one node for complete
graphs, what explains the dots in the left boundary. Then, in
the cases where Traces-2.5 remains below 103 nodes there is
no clear winner between conauto-2.03 and Traces-2.5. Above
that point, there are several cases in which Traces-2.5 exceeds
the limit, and there are some cases in which conauto-2.03
is clearly worse that Traces-2.5. These are the case of the
non-desarguesian projective planes of order 16 (PP16 family).
In every case that conauto-2.03 exceeds the limit, Traces-2.5
does too.

In the case of saucy-3.0, conauto-2.03 is better in every
case except the only family that makes conauto-2.03 exceed
the limit, namely F-LEX-srg. However, saucy-3.0 is not as
good as nauty-2.5 for this family. While saucy is especially
suited for large sparse graphs, we have not compared the
respective performance of saucy-3.0 and conauto-2.03 with
these graphs because the latter currently has a limit on the
size of the graphs it can process.

As it can be seen, bliss-0.72 is almost always worse than
conauto-2.03. In fact, there aremany cases in which bliss-0.72
exceeds the limit but conauto-2.03 does not, while there is no
case in which conauto-2.03 exceeds the limit and bliss-0.73
does not.

In order to obtain a further per-graph-family perfor-
mance information, we have compared the maximum search
tree sizes for each algorithm and graph family in the
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Table 1: Partitions at significant nodes of the search tree of Figure 2.

0 [abmruy⋅cefhklvz⋅dgijnopqstwx] 1 [a⋅y⋅r⋅bmu⋅cfhl⋅kz⋅ev⋅q⋅in⋅w⋅gopstx⋅dj]
2 [a⋅y⋅r⋅bmu⋅cfhl⋅k⋅z⋅ev⋅q⋅in⋅w⋅gopstx⋅dj] 3 [a⋅y⋅r⋅bmu⋅cfhl⋅k⋅z⋅e⋅v⋅q⋅in⋅w⋅gopstx⋅dj]
4 [a⋅y⋅r⋅b⋅mu⋅cfhl⋅k⋅z⋅e⋅v⋅q⋅in⋅w⋅opsx⋅gt⋅dj] 5 [a⋅y⋅r⋅b⋅m⋅u⋅cl⋅fh⋅k⋅z⋅e⋅v⋅q⋅in⋅w⋅sx⋅op⋅t⋅g⋅dj]
6 [a⋅y⋅r⋅b⋅m⋅u⋅c⋅l⋅fh⋅k⋅z⋅e⋅v⋅q⋅in⋅w⋅sx⋅op⋅t⋅g⋅dj] 7 [a⋅y⋅r⋅b⋅m⋅u⋅c⋅l⋅f⋅h⋅k⋅z⋅e⋅v⋅q⋅in⋅w⋅sx⋅op⋅t⋅g⋅dj]
8 [a⋅y⋅r⋅b⋅m⋅u⋅c⋅l⋅f⋅h⋅k⋅z⋅e⋅v⋅q⋅i⋅n⋅w⋅sx⋅op⋅t⋅g⋅dj] 9 [a⋅y⋅r⋅b⋅m⋅u⋅c⋅l⋅f⋅h⋅k⋅z⋅e⋅v⋅q⋅i⋅n⋅w⋅s⋅x⋅op⋅t⋅g⋅dj]
10 [a⋅y⋅r⋅b⋅m⋅u⋅c⋅l⋅f⋅h⋅k⋅z⋅e⋅v⋅q⋅i⋅n⋅w⋅s⋅x⋅o⋅p⋅t⋅g⋅dj] 11 [a⋅y⋅r⋅b⋅m⋅u⋅c⋅l⋅f⋅h⋅k⋅z⋅e⋅v⋅q⋅i⋅n⋅w⋅s⋅x⋅o⋅p⋅t⋅g⋅d⋅j]
12 [a⋅y⋅r⋅b⋅m⋅u⋅c⋅l⋅f⋅h⋅k⋅z⋅e⋅v⋅q⋅i⋅n⋅w⋅s⋅x⋅o⋅p⋅t⋅g⋅j⋅d] 14 [a⋅y⋅r⋅b⋅m⋅u⋅c⋅l⋅f⋅h⋅k⋅z⋅e⋅v⋅q⋅i⋅n⋅w⋅s⋅x⋅p⋅o⋅t⋅g⋅d⋅j]
17 [a⋅y⋅r⋅b⋅m⋅u⋅c⋅l⋅f⋅h⋅k⋅z⋅e⋅v⋅q⋅i⋅n⋅w⋅x⋅s⋅o⋅p⋅t⋅g⋅d⋅j] 21 [a⋅y⋅r⋅b⋅m⋅u⋅c⋅l⋅f⋅h⋅k⋅z⋅e⋅v⋅q⋅n⋅i⋅w⋅s⋅x⋅o⋅p⋅t⋅g⋅d⋅j]
26 [a⋅y⋅r⋅b⋅m⋅u⋅c⋅l⋅h⋅f⋅k⋅z⋅e⋅v⋅q⋅i⋅n⋅w⋅s⋅x⋅o⋅p⋅t⋅g⋅d⋅j] 32 [a⋅y⋅r⋅b⋅m⋅u⋅l⋅c⋅f⋅h⋅k⋅z⋅e⋅v⋅q⋅i⋅n⋅w⋅s⋅x⋅o⋅p⋅t⋅g⋅d⋅j]
39 [a⋅y⋅r⋅b⋅u⋅m⋅f⋅h⋅c⋅l⋅k⋅z⋅e⋅v⋅q⋅i⋅n⋅w⋅o⋅p⋅s⋅x⋅g⋅t⋅d⋅j] 40 [a⋅y⋅r⋅m⋅bu⋅cl⋅fh⋅k⋅z⋅e⋅v⋅q⋅in⋅w⋅gstx⋅op⋅dj]
49 [a⋅y⋅r⋅b⋅m⋅u⋅c⋅l⋅f⋅h⋅k⋅z⋅v⋅e⋅q⋅i⋅n⋅w⋅s⋅x⋅o⋅p⋅t⋅g⋅d⋅j] 59 [a⋅y⋅r⋅b⋅m⋅u⋅c⋅l⋅f⋅h⋅z⋅k⋅e⋅v⋅q⋅i⋅n⋅w⋅s⋅x⋅o⋅p⋅t⋅g⋅d⋅j]
60 [b⋅mu⋅ary⋅ekvz⋅cfhl⋅opsx⋅dijnqw⋅gt] 63 [m⋅u⋅b⋅ary⋅ekvz⋅f⋅h⋅c⋅l⋅g⋅sx⋅t⋅dijnqw⋅op]
64 [m⋅u⋅b⋅a⋅ry⋅ekvz⋅f⋅h⋅c⋅l⋅g⋅sx⋅t⋅inqw⋅dj⋅op] 65 [m⋅u⋅b⋅a⋅r⋅y⋅ev⋅kz⋅f⋅h⋅c⋅l⋅g⋅sx⋅t⋅in⋅w⋅q⋅dj⋅op]
66 [m⋅u⋅b⋅a⋅y⋅r⋅ev⋅kz⋅f⋅h⋅c⋅l⋅g⋅sx⋅t⋅w⋅q⋅in⋅dj⋅op] 74 [m⋅u⋅b⋅r⋅a⋅y⋅e⋅v⋅k⋅z⋅f⋅h⋅c⋅l⋅g⋅s⋅x⋅t⋅i⋅n⋅d⋅j⋅w⋅q⋅o⋅p]

Table 2: Maximum search tree size for each family in the benchmark.

Family conauto-2.03 conauto-2.00 nauty-2.5 Traces-2.5 saucy-3.0 bliss-0.72
STH 15871 57401 57529 1825 365833 17903
LSN 107 59 63 50 557 59
LSP 24 15 28 25 38 22
PAN 19 21 18 17 19 14
PAP 9 8 8 9 9 8
LAT 719 1953 1953 1124 1925 629
TRI 678 990 990 1747 1937 990
USR 23847 158422 >1.5 ⋅ 108 >1.5 ⋅ 108 >1.5 ⋅ 108 28544
CHH 545 18867 >1.5 ⋅ 108 26421020 >1.5 ⋅ 108 >1.5 ⋅ 108

TNN 1135 25680 >1.5 ⋅ 108 61454925 >1.5 ⋅ 108 >1.5 ⋅ 108

MZN 801 5747 5700 1466 >1.5 ⋅ 108 2227
CMZ 1392 >1.5 ⋅ 108 >1.5 ⋅ 108 500 2348 >1.5 ⋅ 108

MSN 743 5710 5678 1613 >1.5 ⋅ 108 2495
MZA 567 5717 >1.5 ⋅ 108 919 >1.5 ⋅ 108 2580
MA2 705 >1.5 ⋅ 108 >1.5 ⋅ 108 204 641 11956
AG2 47 >1.5 ⋅ 108 >1.5 ⋅ 108 215 >1.5 ⋅ 108 165
COM 1999 500500 500500 1 3995 500500
PG2 52 >1.5 ⋅ 108 >1.5 ⋅ 108 222 215 247
F-LEX-reg 6544 3035831 >1.5 ⋅ 108 >1.5 ⋅ 108 39054 12355
F-LEX-srg >1.5 ⋅ 108 >1.5 ⋅ 108 295751 >1.5 ⋅ 108 >1.5 ⋅ 108 >1.5 ⋅ 108

HAD 461668 >1.5 ⋅ 108 >1.5 ⋅ 108 447452 >1.5 ⋅ 108 458466
KEF 747 1865 2994 26558 900 1971
LKG 706 987 987 1760 1846 987
PTO 13 10 10 12 13 10
PP16 35211586 >1.5 ⋅ 108 >1.5 ⋅ 108 63012 >1.5 ⋅ 108 >1.5 ⋅ 108

R1N 1 1 1 1 1 1
G2N 8 8 8 5 7 5

benchmark. The results are shown in Table 2. Thus, we can
have an idea of the worst per-family behaviour of each
algorithm. First of all, it is remarkable how much conauto-
2.03 outperforms conauto-2.00 in some particular cases in
which conauto-2.00 reached the limit, whilst conauto-2.03

keeps the search tree inmanageable sizes (see theCMZ,MA2,
AG2, PG2 andHAD families).The overload imposed by DCS
in small search trees is noticeable, like in the LSN, LSP, PAP,
and PTO families, but, as mentioned before, it tends to be
compensated by the other techniques for big search trees.
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Figure 5: Search-Space comparison for the different techniques in conauto-2.0.

In a general comparison of conauto-2.03 with the other
algorithms, we can say that the worst cases for conauto-
2.03 are F-LEX-srg (where nauty-2.5 is the only one that did
not reach the search tree limit) and PP16 (where Traces-
2.5 and conauto-2.03 did not reach the limit, but Traces-2.5
outperforms conauto-2.03 by two orders ofmagnitude). In all
the other cases, conauto-2.03 is very competitive with at least
one algorithm.

8. Conclusions

We have presented four techniques than can be used to
improve the performance of any GA algorithm that follows
the individualization-refinement approach. In particular, a
new way to achieve early automorphism detection has been
proposed which is simpler and more general than previous

approaches, and its correction has been proved. These tech-
niques have been integrated in the algorithm conauto with
only a polynomial additive increase in asymptotic time
complexity.Wehave experimentally shown that, both isolated
and combined, the proposed techniques drastically prune the
search tree for a large collection of graph instances.

Appendix

A. Graph Benchmark

In this section we describe a wide range of graph families,
which are used in our performance evaluation (Section 7).
This benchmark can be found in [22].Only undirected graphs
have been considered, although directed versions of some
graph families are also available in [22].
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Figure 6: Conauto-2.00 versus conauto-2.03 search-space and running time comparison.

A.1. Strongly Regular Graphs

Steinter Triple Systems [STH]. These are the line graphs
srg(V(V−1)/6, 3(V−3)/2, (V+3)/2, 9) of Steiner triple systems
which have (V(V + 1) − 2)/18 orbits.

Latin Square [LSP, LSN]. This family consists of Latin square
graphs srg(𝑛2, 3(𝑛 − 1), 𝑛, 6), where 𝑛 is the order of the Latin
squares. They are split into two subfamilies: those of prime
order (LSP) and those of prime power order (LSN). Prime
power order Latin square graphs are usually harder than those
of prime order.

Paley [PAP, PAN].These are strongly regular graphs srg(𝑞, (𝑞−
1)/2, (𝑞−5)/4, (𝑞−1)/4), where 𝑞 is the order of the graphs.We
have classified them in two subfamilies: those of prime order
(PAP) and those of prime power order (PAN). Prime power
order graphs are usually harder than prime order ones.

Lattice [LAT]. These are strongly regular graphs srg(𝑛2, 2(𝑛 −
1), 𝑛 − 2, 2).

Triangular [TRI]. These are strongly regular graphs srg(𝑞(𝑞 −
1)/2, 2(𝑞 − 2), 𝑞 − 2, 4).

A.2. Component Based Graphs

Unions of Strongly Regular Graphs [USR]. The graphs of
this family are built using some Strongly Regular Graphs
srg(29, 14, 6, 7) as basic components. Each vertex of each
component is connected to all the vertices of all the other
components. These graphs are extremely dense.

Cubic Hypo-Hamiltonian Clique-Connected [CHH]. The
graphs of this family are built using two nonisomorphic
cubic Hypo-Hamiltonian graphs with 22 vertices as basic

components. Both graphs have four orbits of sizes: one, three,
six, and twelve. A graph CHH cc(𝑚, 𝑛) has 𝑛 complex com-
ponents built from 𝑚 basic components. The components of
a complex component are connected through a complete 𝑚-
partite graph using the vertices that belong to the orbits of size
three of each basic component. The 𝑛 complex components
are interconnected with a complete 𝑛-partite graph using the
vertices of each complex component that belong to the orbits
of size one in the basic components.

Nondisjoint Unions of Undirected Tripartite Graphs [TNN].
We take two nonisomorphic digraphs with 13 vertices as
basic components. Each of these components has 4 vertices
with out-degree 3, 6 vertices with in-degree 4, and 3 vertices
with out-degree 4. Then, each graph in the TNN family
tnn(𝑛) is generated taking 𝑛 pairs of components and joining
them by adding, for each vertex with out-degree 4, out-arcs
connecting it to all the vertices with out-degree 3 of the
other components of the graph and, finally transforming this
digraphs into undirected graphs.

A.3. Miyazaki’s Based Graphs

Base Construction [MZN]. This family contains the original
construction of Miyazaki, not considering colours.

[CMZ].This family is the “cmz” series of the bliss benchmark
[23]. It is a variant of the original Miyazaki’s construction.

Switched [MSN]. The family is obtained from the original
construction of Miyazaki, changing one bridge for a switch.

Augmented [MZA, MA2]. These are the “mz-aug” series
(MZA) of the bliss benchmark [23] and “mz-aug2” series
(MA2) of the bliss benchmark [23].
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Figure 7: Comparison of the search-space of conauto-2.03 against nauty-2.5, Traces-2.5, saucy-3.0 and bliss-0.72.

A.4. Other Graph Families. Affine Geometries [AG2]. This
family is the “ag” series of the bliss benchmark [23]. It
contains point-line graphs of affine geometries AG

2
(𝑞).

Complete [COM]. This family contains simple undirected
graphs, in which every pair of distinct vertices is connected
by an edge.

Desarguesian Projective Planes [PG2].This family contains the
point-line graphs of Desarguesian projective planes PG

2
(𝑞).

F-Lex [F-LEX]. These graphs have been built by Petteri Kaski
following a construction due to Pascal Schweitzer.

Hadamard [HAD]. This family contains graphs defined in
terms of a Hadamard Matrix. It also includes the “had” series
of the bliss benchmark [23].

Hadamard-Switched [HSW]. This family is the “had-sw”
series of the bliss benchmark [23].

Kronecker Eye Flip Graphs [KEF]. This family comes from the
“kef ” series of the bliss benchmark [23].

Line Graphs of Complete Graphs [LKG]. This family contains
the line-graphs of complete graphs (COM).

Paley Tournaments [PTO].This family contains Paley tourna-
ments (digraphs). The vertices of a paley tournament are the
elements of the finite field 𝐹

𝑞
. There is an arc from vertex 𝑎 to

vertex 𝑏 if and only if 𝑎 − 𝑏 is a quadratic residue in 𝐹
𝑞
.

Projective Planes (Order 16) [PP16]. This family contains
projective planes of order 16 [24].
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Random [R1N]. This family comes from the SIVALab bench-
mark [25]. These are graphs in which there is an arc from a
vertex 𝑢 to a vertex V with probability 0.1.

Two-Dimensional Grids [G2N]. This family comes from the
SIVALab benchmark [25]. These are the two-dimensional
meshes in that benchmark.
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