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A new impulsive multi-orders fractional differential equation is studied. The existence and uniqueness results are obtained for a
nonlinear problem with fractional integral boundary conditions by applying standard fixed point theorems. An example for the

illustration of the main result is presented.

1. Introduction

Nowadays, fractional differential equations have attracted
a lot of attention due to its wide range of applications in
many practical problems such as in physics, engineering,
economics, and so on; see [1-5].

Impulsive differential equations have extensively been
studied in the past two decades. Indeed impulsive differential
equations are used to describe the dynamics of processes in
which sudden, discontinuous jumps occur. Such processes
are naturally seen in harvesting, earthquakes, diseases, and
so forth. Recently, fractional impulsive differential equations
have attracted the attention of many researchers. For the
general theory and applications of such equations we refer the
interested reader to see [6-24] and the references therein.

In this paper, we investigate a new impulsive nonlin-
ear differential equation involving multi-orders fractional
derivatives and deviating argument. Precisely, we consider
the following multipoint fractional integral boundary value
problem:

“Difu(t) = f (tu(),u® @),

t; 1<0€kS2,

k=0,1,2,....,p,te],

Au(ty) = I (u(ty)) M (1) = I (u (i)

p
u(0) = ZAkfff”(ﬂk)’ U (0) =0, t <m <ty
k=0

where CD:xf is the Caputo fractional derivative of order «;,
k

and jfkf is fractional Riemann-Liouville integral of order
Be > 0, f € CUxXxRxRR), I, I; € CRR),
deviating argument 8 € C(J,]), ] = [0, T](T > 0),0 =
ty <t < <t < <ty <ty =T ] =
JI it ty, .5t} and Au(ty) = u(ty) — u(ty), where u(t;) and
u(t; ) denote the right and the left limits of u(t) at t =t (k =
1,, 2,..., p), respectively. Au'(t,) have a similar meaning for
u (t).

The paper is organized as follows. Section 2 gives some
definitions and necessary lemmas, while the main results are
presented in Section 3.
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2. Preliminaries

Letusfix J, = [0,t,], J_; = (tx_sti),and k = 1,2,...
with¢,,; = T and introduce a Banach space:

,p+1

PC(J,R)={u:] —>R|ueC(J),k=0,1,...,p,

2)
u(ty) exist, k=1,2,...,p.},

with the norm [[ull = sup,;|u(t)|.
For the reader’s convenience, we present some necessary
definitions from fractional calculus theory and lemmas.

Definition 1. The Riemann-Liouville fractional integral of
order « for a function f: [d,00) — R is defined as

t
T (D) = ﬁ L t=9" F()ds, a>0, (3)

provided the integral exists.

Definition 2. The Caputo fractional derivative of order o for
a function f: [d,00) — R is defined by

C o _ 1 ! _ a1 g(n)
Dy f (1) = Tea - L (t-s) ™ (s)ds, N

n=[a]+1,

where [«] denotes the integer part of real number «.

Lemma 3. For a given y € C[0,T], a function u is a solution
of the following impulsive boundary value problem:

C !
Df‘fu(t):y(t), 1< <2,k=0,1,2,...,p, te],

Ad' (1) = I (u(ty)),

Au (1) = I (u (8))
k=1,2,...,p,

P
u(0) = Z/\kfgk“(ﬁk) , u(0)=0,
k=0

©)

Abstract and Applied Analysis

if and only if u is a solution of the impulsive fractional integral
equation

r("(‘o) o
o — )%
«[t,;( r((xk% )/(.;)dsl
ti ti_s’xifr
% “ Tl Y@l (n))]
k-1 ) -2
(t; - )"
t—t; 4
O O )“ti_lr( T, —1)) W

+ 17 (u (1)) ]

y “ U e (tf))] o

tiy l_‘(061—1 - l)
t e ]k’ k: 1,2,...;p)
(6)
where
-1
apagn —tk)ﬁk>
og=1- Y2k k)
( ,; T (B +1)
S (1 —S)“”ﬁk
X A J —————y(s)ds
{Z D, T
N . /\k(ﬂk—tk)ﬁk
k=1i=1 T (Be+1)

CED IS
X S —
[ LH T (o) Y

+iz/\k(’7k_tk ‘(- t;)

k=1i=1 I‘(ﬁk-i'l)

(s)ds +1I; (u (ti))]

[ ,lr(,lll y(s)ds+1I] (u(t)):l

k )ﬁk+1
I;Z; ﬁk + 2)
t; (ti _ S)oz,»,l—z .

| e

)
Proof. Let u be a solution of (5). For any t € ], we have
ut) =75y () —c —ct

(8)

t
=7 @) L (t—9)%"y(s)ds—c —ot, te],
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for some ¢, ¢, € R. Differentiating (8), we get

! _; ! _ xp—2 _
u(t)—r(%_l) L(t )Py (s)ds—¢c, te],. (9)

Ift € J;, then

1 - B a
u(t) = F(ocl)j (t—s)"y(s)ds—d, —d,(t-t)),
X , (10)
! - - 2 _
”m‘r@-nL“s”*”S%
for some d,,d, € R. Thus,
I -
w) =y |, 69y 0 ds—a—an,
u(ty)= -dy,
(11)
1 1 o=
u(ty) = mj (t -9y () ds— o,
u' (t)) = —d,.
Using the impulse conditions
Au(ty) = u () —u(ty) = I (u(tr), )
Au' (1) =o' (1) o' () = I} (u(11)),
we find that
~d,
L [ g -
" T(a) L (ti=9)" y()ds—q -t + 1 (u(ty)),
1 *
= s |, =9y O ds e eI ().
0
(13)
Consequently,
_ 1 ! o -1
u(t) = ) L (t—=9)""y(s)ds
1 (" -
+ () L (t, =)y (s) ds
_— o (14)
+F(oc0—1),[ (t, =) "y (s)ds

+ 1 (u () + (- 0) I (u(t))) - -

tej.

By a similar process, we can get

u (t)

_qu—w%*
- e T (“k)
k

Z[rt})$ﬂ9¢+awm»]

1

y(s)ds

-+Z(u—t)“' gdsfu)y@wh+1( m»]

k
+ Z (t-t)
i
t t—s a1 =2 )
" “tu %y(s) ds+I; (u (ti)):| -q -ot,
te,k=12,...,p.
(15)

The boundary condition ©'(0) = 0 implies ¢, = 0. For
t € Ji, we have

Thu(t)

t %1
= J (t-s) y(s)ds
bk

T (o + Br)

o\ a7l
Zt t) “ (ti - )) y(s)ds+l(u(f))]

:1F(/3k+1) T (o,
+ IHM
i; T(Be+1)
k _ Br+1 -2
+;$gfln[Lla()_)y@de((mﬂ
qt—t)™ tk)ﬁk
r (ﬁk +1)°
ZAkj u (1)
B )(xk+ﬁk—1
Z th —ﬁk)y (s)ds

Ay — tk)
+sz@w0

k=1i=1



X “ti (t; —s) "
i r ((Xifl) 4
2R M (e - tk)ﬁk (t — ;)
T (Be+1)

(s)ds +I; (u (ti))]

+
k=1i=1

x“ &”Lby@mumww]

& - tk)ﬁ e
ZZ T (B +2)

k=1i=1

r(ll

X[J (1_5)_ll)y(s)ds+1 ( (t,)):|

CSahm— t)™
k=0 r (/3k + 1)
(16)

Applying the boundary condition u(0) = i:o Ak
jifu(r/k), then

e =[1- 2 A (i — )™ >_1
1‘@ Ty
p ?] _S)Otk*'ﬁk—l
" {ZAk th T (o + B

j y(s)ds
& A - tk)
1;12;' T (B +1)

X [f_ —(tir_(;?_;_;_ y(s)ds+1I (u (tl)):|

— )% (t - 1,)

T(Be+1)

qu)tk ’
+ZZ (n

k=1i=1

><|:L (r(;s? 1)y(s)d5+1 (u(t)):|

L&y - tk)ﬁ e
’ 1;; T (B +2)

_ )06,-_1—2

[ e |

17)

Substituting the value of ¢; (i = 1,2) in (8) and (15), we obtain
(6). Conversely, assume that u is a solution of the impulsive
fractional integral equation (6); then by a direct computation,
it follows that the solution given by (6) satisfies (5). This
completes the proof. O
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3. Main Results
Define an operator & : PC(J,R) — PC(J,R) by

Lu(t)

- Lk (tr(S)a;

f(su(s),u(@(s)))ds

+
M=

1
ONCED i
< | ey OO ds 1 (1)

i-1 r ((Xifl
k-1
+ Z (tk - tl)
i=1

x “ %f(s u(s),u(@())ds+ I (ult, ))]

| aa——

(4 _ \%-12
x L_l %f(&u(s),u(@ () ds+I (u (tl)):|

e A - tk)ﬁk>
*O 2T
o +P—1

4 e (1 = s)
g {%Ak L T (o + Bi)

& - tk)
*eran

k=1i=1

-1

f(ssu(s),u(@(s))ds

o;_1—1
X[Llhlfn Flous),u@Nds

+I; (u(t;)) ]

o, —2
" [Ll (Ft(;, 1) )f(S »u(s),u(0(s)) ds

+I;7 (u(t;)) ]

&y — tk)
e F(Be+2)

k=1i=1
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t; (ti _ S)aH 2
- “ T 1y 40O ds

+17 (u(t;)) ] } :

Notice that problem (1) has a solution if and only if the
operator & has a fixed point.
For convenience, we will give some notations:

(18)

T" = max {T"}, I = min {I' ()},

0<i<p 0<i<p
P A, T Pr Py B
ST (g + B+ 1) r(:Bk"' 1)’

/\kTﬁk p /\k(ﬂk_tk)ﬁk -1
A= Y2 I P AL S Ve
= 258+ 2) ‘ 2T ()

k=1

v 3 +A[A N RN I8 A3],
I* I*
p(x)=Yxl+(1+A,)pL,+[(p—-1)TA, + pTA,]L

(19)
Theorem 4. Assume the following.

(H1) There exists a nonnegative function a(t) € L(0, T) such
that

If (v <a@+ &l + &M 0<p o<1, (20)

where &,, &, are nonnegative constants.

(H2) There exist positive constants L, and L such that

| ()] < L, |I; )| <L, forte],ueR, o

k=12,...,p.

Then problem (1) has at least one solution.

Proof. Firstly, we will prove that @ : PC(J,R) — PC(J,R) is
a completely continuous operator. Obviously, the continuity
of functions f, Iy, and I;; ensures the continuity of operator
g.

Let O ¢ PC(J,R) be bounded. Then, there exist positive
constants L; > 0 (i = 1,2,3) such that |f(t,u)] < L,,

[T (w)] < L, and |I;; (u)
u € Q, we have

< L; for all u e Q. Thus, for any

|Gu ()]

SJ (=)™
t F(OC

k t; _ )%t
+Z“'l—3——vmuwmw®mﬁ

i= 1 1

If (s, (s),u (0 (s)))| ds

+|1; (u (1)) ]

k-1
+ z (te—t;)
i=1

£ (ti _ s)“H—Z
XUQFG:TSV@u®mwwm&

wﬁwmm]
+Z(t—tk)

. -
(I e e moonis

+[17 (u(t))] ]

-1

1- i/\k(ﬂk ~ 1)
& TP+ 1)
)“k*ﬁk*l

e

Ak i — fk)
*erwwn

1i=1

|f (s,u(s),u(6(5))|ds

t; L o -1
’ “ % [ (s u(s),u@(s))]ds

+|1 (u(t))] ]

2R M (e - tk)ﬁk (t — ;)
T (B +1)

+
k=1i=1

t; (t _ ):1 -2
- [L T(a,-1) |f (s, u(s),u(0(s))|ds

+ |17 (u ()] ]



S ’7k_tk
ZZ r(/3k+2)

k=1i=1

a_1—2
" “t % |f (s u(s),u(0(s))| ds

+wwmmH

(t_tk s
T Z r(a,1+1)+L2]

+Z(tk t)[Ll—(i (’a;_):;l_lﬂg]

+Z(t te) [Ll% +L3]

{ z & (e - tk)ak+pk

o T (o + B+ 1)

L& Ml - tk) (t;—t,,)""
P e v

LIS M — 1) (tk - ;)
o (Bt 1)

k=1i=1

o1
ol (ti=tiy)™" ‘L
' r(“z’—1) ’

k=1i=1

oAl =) =)
ZZ T(Be+2) |:L1 (o) +L3H>
p+1 3
12 r((X 1+1 *PLa

)(x 1 -1
+TL, -1)TL
121: F( o 1) (p ) 3
)oc 11
+TL1Z iy ) + pTL,
Qi1

Z E Nl — i) ak+ﬁk
T (g + B +1)

LI zz)‘k(ﬂk_tk) (= t)"

k=1i=1 ﬁk+1r(“zl+1)

A =t
ZZZ (Wﬁk:l)

k=1i=1

tifl)ai_l_l

(g - tk) (e —t;) (t; -
L3y LB+ D ()

k=1i=1

Abstract and Applied Analysis

Ay - tk) (t —t;)
322 IF(B+1)

k=1i=1

LI szk(ﬂk - tk) +l(ti - ti—l)aH_l

P T (Be+2)T (ey)

&gy - tk)l;k+1 }
3;1; T (B +2)

P+l pl*

<LIZT— +pL, +TL1Z—

*

p
T
~1)TL,+TL,Y — + pTL
+(p-1)TL; + 1;1"* + plls
p AT‘)‘k"'ﬁk
A{L
' {lzr(“ﬁﬁk*l) +rh
Xi A TRT® i A TFe
ET (B +1) r* L, ~T (B +1)

i A TPeT*
T(Be+1)r*

Z AkTﬁk+l
T(B+1)

Py, TPeT* Ay Thetl
'”“Zr& DI Zum+n}
]}L

1)TA, + pTA,] L

NG DN L)
r* I
+(1+A,)pLy+[(p-1)TA, + pTA;]L
=YL, +(1+A,)pL, +[(p-
(22)

which implies
IGull <YL, + (1+A,) pLy + [(p— 1) TA, + pTA;5] L,

:= & (constant) .
(23)

On the other hand, for any t € J;, 0 < k < p, we have
(5w’ ()|
o =2

(t—s)™ " S)“k
= J;k r(‘xk
0 |f(s u(s), u(@(s)))|ds

i[lﬁ;—r( S

+ |17 (u (1)) ]

|f (s;u(s),u(0(s))|ds
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)Oc,',l—Z

5L1J (t- s)jkl)d +Z|: J;H o, =1 )ds+L3:|

- o;—1
. T% 1L1 . leaxosispT LI
T (o)

miny;,l' (o)

*

L,T
<(p+1) Tl — + pLy == £ (constant) .

(24)

Hence, for 7;, 7, € J;, with 7, < 7, and 0 < k < p, we have

[(Fu) (1,) - (%u) (1,)] < j J(@w) (9)|ds < 2 (t, - ).
1 (25)

This implies that ©u is equicontinuous on all [,k =
0,1,2,..., p. Consequently, Arzela-Ascoli theorem ensures
the operator & : PC(J,R) — PC(J,R) is a completely
continuous operator.

Next, we will show that the operator & maps 98 into

3. For that, let us choose R > max{3y, (3Y€1)(1/(1_p)),

(3Y&,)" "1 and define a ball B = {u € PC(J,R) : |lu| <
R}. For any u € 3, by the conditions (H,) and (H,), we have

[Gu(t)]

t =1
< L % [a(s) + & |u(s)]P +&|u O (s)] ds

k . a;—1
bo(ti-s)
*;LL E)
x [a(s) + & u(s)I” + & |u(0(s))|%] ds
+|I (u ()] ]

S)(Xi,l—z

.
+Z(tk |:J l"((x,l—l)
x [a(s) + & |u(s)|P + &, |u (0 (s))|°] ds
+wwmm]
k

i=1

x [a(s) + & [u(s)f +&lu (6 (s)%] ds

+|I7 (u(t))] ]

< [llall + & llul” + &lull®] ———

& A -t
P Iy

(= s) P!
{ZAk th T (o + i)

x [a(s) + & lu(s)P + Elu (0 ())]°] ds

& - tk)
ZZ T (B +1)

=1i=1

x [a(s) + & lu(s)|” + & lu (6 ()|°] ds

+|I (u(t))] ]

LIS (e - fk)ﬁk (tx —t;)

P Y

k=1i=1
J bt - s)

X S —
i r (“i—l - 1)

X [a(s) + & u ()P +&u (O ()] ds

+wwmm]

&g - tk)ﬁk+1
;; T(By +2)

I Gt -s)
X —_—
iy r (“i—l - 1)

x[a(s) + & lu ()P +&lu (@ (s)%] ds

+ |17 (u(t))] ] ]’

(t-t)™

F( 1)

o) ]

k
o3|t -+ )

k-1
+) (- t;) [[Ilall + & ul® + & llul?]
i=1

4 o; -1
X(ti tl—l) + L3
T (o)



k
+3 (- 1) [[nau + &l + Elul)

to—t, )
X( i 1—1)

+ L
r(“z‘—l) ’

tk )“k +Px

& M -
A p 0 AN
+ {[uan F Sl + Sl 2 e Ty

Ay (1 — tk
ZZ T (B + 1)

k=1i=1

X [[Ilall + & llull” + & llul]

(t i)
l"(ocl ) ke
(tk_ti)

PklA —t
+Z k(’1k k
k=1i=1 r(ﬁk+1)

X [[Ilall + &y lull® + & llul®]

1
« (t;— i)™

T(o)

/\k(ﬂk—tk ﬁ
St

k=1i=1

+ L,

[lall + & llul® + & lul]

ot )5
% ( i 1—1) + L3:|}

F(oci,l)
<Yllall+(1+Ay) pLy + [(p = 1) TA, + pTA;] Ly
+ Y& lull” + Y& [lull®

< p (@) + Y& ul® + Y& lul®.

(26)
Thus,
R R R
1Zull < p(a) + Y& lul® + Y& lul® < 3t373° R.
(27)

This implies & : B — 3B. Hence, we conclude that & :
B — B is completely continuous. It follows from the
Schauder fixed point theorem that the operator & has at least
one fixed point. That is, problem (1) has at least one solution
in &. O
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Theorem 5. Suppose that there exist a nonnegative function
M € C(J, R™) and nonnegative constants N, K such that

[f (tw) = f W) < M®) lu-],
|1 1) =L )] < N|u—v], (28)
I w) - I; 0| < Klu-v],
fort € Ju,v € Rand k = 1,2,..., p. Furthermore, the

assumption (M) < 1 holds. Then problem (1) has a unique
solution.

Proof. For u,v € PC(J,R), we have

|(Gu) (t) = (Zv) (B)]

t (t _S)txk—l
- L (o)

x| f (s, (s),u(@()) = f (5,v(s),v(0(5))] ds

S)MFI—I

+Z “ o)

X|f (s;,u(s),u(0(s) = f (s,v(s),v(0(s))|ds
+|L (u () - L (v (1)) ]

* 2 (et “ (rt(azl) : )

x| f (s,u(s),u(0(s))
—f (v (s),v(0(s))|ds

+ |17 () - 17 (v (1)

S)a 1—2

+;(t_tk) [‘[11 (rt(‘xll 1)

x| f (s,u(s),u(6(s)))
—f(s,v(s),v(0(s))|ds

+ I (u () - 17 (v (1))
S
va {;;)Ak th T (o + i)

X |f (s,u(s),u(0(s)
—f (5,v(s),v(0 ()| ds
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4 k/\k(ﬂk—tk
+ZZ I'(B+1)

k=1i=1

t; L -1
: [J;i—l % |f (S’u(s))u(e (S)))

—f(sv(s),v(0(s)|ds

+[L (u(t) - L (v (1))

EX 1/\k(’1k—tk ‘(- t;)
02} D vy

k=1i=1

t; (ti _ S)ai,l—z
[} Fa g renewom

~f(5,v(s),v(0(s)))|ds

+ |17 (u(8)) - 17 (v (8)]

)ﬁk+l

P /\(;7—1‘
L33 uln o)

k=1i=1

t; (ti _ S)ai,l—z
[} S o

~f(sv(s),v(0()))|ds

}

+ |17 (u(t) - 17 (v()|

<{YIM|+(1+A,)pLy +[(p-1)TA,
+pTA] Ly} lu—v|
=u(M)u-v|.

(29)

As u(M) < 1, we have |[Eu — Ev| < [u—v|. Therefore, & isa
contraction. It follows from the Banach contraction mapping
principle that problem (1) has a unique solution. O

Example 6. For oy = 5/4, «; = 8/5, B, = 1/2, B, = 5/3,
Ao =2/5 A =3/7,1=1/2,m = 4/5,0 < p,o < 1,and

= 3/4, we consider the following impulsive multi-orders
fractional differential equation:

toi 2 (1/2)u(t)
Cpy, o) = e'sin [314 (t)+e ]
t 2 +ut(t)
cos (2t + 5) arctan’u () 0
)+ ———[u ()],

V3 +u(t)

3
0<t<l, tiZ’kZO’l’

lu(3/4)]
2(1+ |u G/

Au<§>:llsin2u(§>, Au’(§>:
4 4 4

1
1
u(0) = ZAkjffu(qk) + -, u' (0)=0
prar? k 2
(30)
Observe that
If (t,u,v)| = eoin’ [3u + <] jCos@tr 5)|u|"
o 2+ut V3 +u?
2
+arctan u|V|g (31)
3

e 1 b4

— 4+ —|u P + —|y Q.

5 \/§| | V|

Clearly, a(t) = €'/2,& = 1/V3,& = n/12, L, = 11, and
L; = 1/2 and the conditions of Theorem 4 hold. Thus, by
Theorem 4, the impulsive multi-orders fractional boundary
value problem (30) has at least one solution.
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