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In this paper, we continue our investigations on control and synchronization of the complex Lorenz systems by investigating
impulsive control and synchronization. Nonlinear systems involving impulse effects, appear as a natural description of observed
evolution phenomena of several real world problems; For example, many biological phenomena involving thresholds, bursting
rhythm models in medicine and biology, optimal control models in economics, population dynamics and so forth do exhibit
impulsive effects. Some new and more comprehensive criteria for global exponential stability and asymptotical stability of
impulsively controlled complex Lorenz systems are established with varying impulsive intervals. The effectiveness of the proposed
technique is verified through numerical simulations.

1. Introduction

In the last 30 years, chaotic systems involving both real and
complex variables governed by complex ordinary differential
equations have been widely studied and investigated which
contain one or more complex variables that make multiplica-
tion of variables that appear in many important applications
in engineering; for example, in communications, where
doubling the number of variables may be used to increase
the content and security of the transmitted information,
used to describe and simulate the physics of detuned laser
and thermal convection of liquid flows, the electric field
amplitude and the atomic polarization amplitude are both
complex (see [1–5]).

In applied sciences and engineering, there are a lot of
problems which are described by these complex systems, for
example, in many important fields of physics, engineering,
and computer science, such as laser physics, control, flow
dynamics and liquid mixing, electronic circuits, secure com-
munications, and information sciences (see [6–13]).

In 1963, Lorenz introduced the real Lorenz system (i.e.,
system involves real variables):

�̇� = 𝑎 (𝑦 − 𝑥) , ̇𝑦 = 𝑐𝑥 − 𝑦 − 𝑥𝑧,

�̇� = −𝑏𝑧 + 𝑥𝑦,

(1)

where 𝑎 > 0, 𝑐 > 0, and 𝑏 > 0. This system describes the
thermal convection in fluids, problems of laser physics, and
disk dynamos (see [7, 14–17]).

In recent years, there has been considerable interest
in the control of chaos in nonlinear dynamical systems.
For the past years, many different techniques have been
proposed to control chaos, including Ott, Grebogi, and Yorke
(OGY)method, Pecore and Carroll (PC) technique, and back
stepping approach (see [18–22]).

As the key technology of secure communication, chaotic
synchronization has been widely developed since Pecora
and Carroll (see [18]) proposed the principle of chaos
synchronization and realized it in the circuit in 1990. The
basic behavior and chaotic synchronization of (1) have been
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studied by several researchers (see [16, 23–25]). The concept
of synchronization consists in making two chaotic systems
(identical or different) oscillate in a synchronized manner.
A wide variety of methods have been proposed and applied
for the synchronization of chaotic systems which include,
for example, active control, global synchronization, adaptive
control, linear and nonlinear feedback, and back stepping
design (see [16, 25, 26] and references therein).

Many evolution processes are characterized by the fact
that at certain moments of time they experience a change
of state abruptly. These processes are subject to short-term
perturbations whose duration is negligible in comparison
with the duration of the process. Consequently, it is natural
to assume that these perturbations act instantaneously, that is,
in the form of impulses.The impulsive differential equations,
that is, differential equations involving impulse effects, appear
as a natural description of observed evolution phenomena
of several real world problems; for example, many biological
phenomena involving thresholds, bursting rhythmmodels in
medicine and biology, optimal control models in economics,
and population dynamics do exhibit impulsive effects (see
[27–31]). Recently, impulsive control has been widely used to
stabilize and synchronize chaotic systems (see [32–34]). Its
necessity and importance lie in the fact that, in some cases,
the system cannot be controlled by continuous control. For
example, a government cannot change savings rates of its
central bank every day. Additionally, impulsive control may
give a more efficient method to deal with systems that can-
not endure continuous disturbance. Furthermore, impulsive
method can also greatly reduce the control cost. A chaotic
system is a nonlinear deterministic problem that displays
complex and unpredictable behavior. Chaotic synchroniza-
tion has been investigated and studied in physical systems
involving real variables over the last 25 years. However, there
are alsomany interesting systems involving complex variables
which have not been actively explored.

In this paper, we study the impulsive control and synchro-
nization of complex Lorenz chaotic system described by the
following differential equation:

�̇� = 𝑎 (𝑦 − 𝑥) , ̇𝑦 = 𝑐𝑥 − 𝑦 − 𝑥𝑧,

�̇� = −𝑏𝑧 +

1

2

(𝑥𝑦 + 𝑥𝑦) ,

(2)

where 𝑎, 𝑐, 𝑏 are positive (real or complex) parameters,
𝑥 and 𝑦 are complex variables, 𝑧 is a real variable, an
over bar denotes complex conjugate variable, and dots rep-
resent derivatives with respect to time. This system arises
in many important applications in physics, for example, in
laser physics and rotating fluids dynamics. These variables
have relations with the electric field amplitude, the atomic
polarization amplitude, and the population inversion; for
more details, see [2, 14, 15] and references therein.

Numerically we show that this system is chaotic and
exhibits chaotic attractors. Analytical and numerical calcu-
lations are presented to achieve synchronization. Impulsive
control technique is used to synchronize chaotic attractors of
(2).

2. Impulsive Control of a Nonlinear System

The mathematical description of these impulsive systems
of differential equations is usually defined as an ordinary
differential equation coupled with a system of difference
equations as expressed in the following system:

�̇� = 𝑓 (𝑡, 𝑥) , 𝑡 ̸= 𝑡𝑘,

Δ𝑥|𝑡𝑘
= 𝑥 (𝑡

+

𝑘
) − 𝑥 (𝑡

−

𝑘
) , 𝑡 = 𝑡𝑘,

𝑥 (𝑡

+

0
) = 𝑥0 (𝑘 = 1, 2, 3, . . .) ,

(3)

where 𝑡 ∈ 𝐽 = [𝑡0, +∞), 𝑡0 ≥ 0, 𝑥 ∈ 𝑅
𝑛 is the state variable,

and 𝑓 : 𝐽 × 𝑅𝑛 → 𝑅

𝑛 is a continuous-valued function. The
impulsive control law of system (3) is given by the sequence
{𝑡𝑘, 𝑢𝑘(𝑥(𝑡𝑘))}, which has the effect of suddenly changing the
state of the system at the instants 𝑡𝑘, where 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑘 <
⋅ ⋅ ⋅ , lim𝑘→∞𝑡𝑘 = ∞ and 𝑡0 < 𝑡1.The difference equations are
given by

Δ𝑥|𝑡𝑘
= 𝑥 (𝑡

+

𝑘
) − 𝑥 (𝑡

−

𝑘
) = 𝑢𝑘 (𝑥 (𝑡𝑘)) , (4)

where 𝑥(𝑡+
𝑘
) = lim𝑡→ 𝑡+

𝑘

𝑥(𝑡) and 𝑥(𝑡−
𝑘
) = lim𝑡→ 𝑡−

𝑘

𝑥(𝑡). For
simplicity, we assume that 𝑥(𝑡−

𝑘
) = 𝑥(𝑡𝑘) and 𝑢𝑘(𝑥(𝑡𝑘)) can be

chosen as 𝐵𝑘𝑥(𝑡𝑘) where 𝐵𝑘 is 𝑛 × 𝑛 matrices. The objective
is to find some (sufficient) conditions on the constant control
gains, 𝐵𝑘, and the impulsive intervals 𝜏𝑘 = 𝑡𝑘 −𝑡𝑘−1 < ∞ (𝑘 =

1, 2, 3, . . .), such that the impulsively controlled system (3) is
stable.

2.1. Impulsive Control of the Complex Lorenz System. The
complex Lorenz system is described by

�̇� = 𝑎 (𝑦 − 𝑥) , ̇𝑦 = 𝑐𝑥 − 𝑦 − 𝑥𝑧,

�̇� = −𝑏𝑧 +

1

2

(𝑥𝑦 + 𝑥𝑦) ,

(5)

where 𝑥 = 𝑥1 + 𝑖𝑥2, 𝑦 = 𝑥3 + 𝑖𝑥4 are complex state variables,
𝑧 = 𝑥5 is real state variable, and 𝑎 > 0, 𝑏 > 0, and 𝑐 > 0 are
real parameters (or complex).

The real version of (5) reads

�̇�1 = 𝑎 (𝑥3 − 𝑥1) , �̇�2 = 𝑎 (𝑥4 − 𝑥2) ,

�̇�3 = 𝑐𝑥1 − 𝑥1𝑥5 − 𝑥3,

�̇�4 = 𝑐𝑥2 − 𝑥2𝑥5 − 𝑥4, �̇�5 = −𝑏𝑥5 + (𝑥1𝑥3 + 𝑥2𝑥4) .

(6)

We can rewrite the above systems into the matrix form:

[

[

[

[

[

[

�̇�1

�̇�2

�̇�3

�̇�4

�̇�5

]

]

]

]

]

]

=

[

[

[

[

[

[

−𝑎 0 𝑎 0 0

0 −𝑎 0 𝑎 0

𝑐 0 −1 0 0

0 𝑐 0 −1 0

0 0 0 0 −𝑏

]

]

]

]

]

]

[

[

[

[

[

[

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

]

]

]

]

]

]

+

[

[

[

[

[

[

0

0

−𝑥1𝑥5

−𝑥2𝑥5

𝑥1𝑥3 + 𝑥2𝑥4

]

]

]

]

]

]

.

(7)
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The impulsive control of the complex Lorenz system is then
given by

�̇� = 𝐴𝑥 + Φ (𝑥) , 𝑡 ̸= 𝑡𝑘,

Δ𝑥|𝑡𝑘
= 𝐵𝑘𝑥, 𝑡 = 𝑡𝑘,

𝑥 (𝑡

+

0
) = 𝑥0 (𝑘 = 1, 2, 3, . . .) ,

(8)

where𝐴 is the linear partmatrix of the corresponding system,
Φ(𝑥) = (0, 0, −𝑥1𝑥5, −𝑥2𝑥5, 𝑥1𝑥3 +𝑥2𝑥4)

𝑇, and 𝑡𝑘 denotes the
instant when impulsive control occurs.

For convenience, define the following notations:

𝜆2 (𝐴) =

1

2

𝜆max (𝐴 + 𝐴
𝑇
) ,

𝛽𝑘 = 𝜆max [(𝐼 + 𝐵𝑘)
𝑇
(𝐼 + 𝐵𝑘)] ,

(9)

where 𝐼 is the 𝑛 × 𝑛 identity matrix and 𝜆max(𝑄) is the
maximal eigenvalue of matrix 𝑄.

Theorem 1. (I) If 2𝜆2(𝐴) = 𝜆 < 0 (𝜆 is a constant) and there
exists a constant 0 ≤ 𝛼 < −𝜆, such that

ln𝛽𝑘 − 𝛼 (𝑡𝑘 − 𝑡𝑘−1) ≤ 0, 𝑘 = 1, 2, . . . , (10)

then the trivial solution of system (8) is globally exponentially
stable.

(II) If 2𝜆2(𝐴) = 𝜆 ≥ 0 (𝜆 is a constant) and there exists a
constant 𝛼 ≥ 1, such that

ln (𝛼𝛽𝑘) + 𝜆 (𝑡𝑘 − 𝑡𝑘−1) ≤ 0, 𝑘 = 1, 2, . . . , (11)

then 𝛼 = 1 implies that the trivial solution of system (8) is
stable and 𝛼 > 1 implies that the trivial solution of system (8)
is globally asymptotically stable.

Notes 1. Theorem 1 gives sufficient conditions for the global
exponential stability and global asymptotical stability for
controlling the systems to the origin. The results are new
and comprehensive for the impulsive control of the Lorenz
systems family. Also, the conditions imply that the impulsive
intervals may not be equidistant.

Corollary 2. Assume that 𝜏𝑘 = 𝜏 > 0 and matrices 𝐵𝑘 =
𝐵 (𝑘 = 1, 2, . . .).

(i) If 2𝜆2(𝐴) = 𝜆 < 0 (𝜆 is a constant) and there exists a
constant 0 ≤ 𝛼 < −𝜆, such that ln𝛽 − 𝛼𝜏 ≤ 0, then the
trivial solution of system (8) is globally exponentially
stable.

(ii) If 2𝜆2(𝐴) = 𝜆 ≥ 0, (𝜆 is a constant) and there exists
a constant 𝛼 ≥ 1, such that ln(𝛼𝛽) + 𝜆𝜏 ≤ 0, then the
conclusion of Theorem 1 holds.

2.2. Impulsive Synchronization of the Complex Lorenz System.
We study the impulsive synchronization of the complex
Lorenz system. For simplifying the problem, we assume that
we have two identical complex Lorenz systems and denote the

drive system by the subscript 𝑑, while the response system
to be controlled is denoted by the subscript 𝑟. Our aim is to
design an impulsive controller andmake the response system
follow the drive system and become ultimately the same.The
drive and response systems are defined, respectively, as

�̇�𝑑 = 𝑎 (𝑦𝑑 − 𝑥𝑑) ,
̇𝑦𝑑 = 𝑐𝑥𝑑 − 𝑦𝑑 − 𝑥𝑑𝑧𝑑,

�̇�𝑑 = −𝑏𝑧𝑑 +

1

2

(𝑥𝑑𝑦𝑑 + 𝑥𝑑𝑦𝑑
) ,

(12)

�̇�𝑟 = 𝑎 (𝑦𝑟 − 𝑥𝑟) ,
̇𝑦𝑟 = 𝑐𝑥𝑟 − 𝑦𝑟 − 𝑥𝑟𝑧𝑟,

�̇�𝑟 = −𝑏𝑧𝑟 +

1

2

(𝑥𝑟𝑦𝑟 + 𝑥𝑟𝑦𝑟
) ,

(13)

where 𝑥𝑑 = 𝑥1𝑑 + 𝑖𝑥2𝑑, 𝑦𝑑 = 𝑥3𝑑 + 𝑖𝑥4𝑑 are complex state
variables, 𝑧𝑑 = 𝑥5𝑑 is real state variable, 𝑥𝑟 = 𝑥1𝑟 + 𝑖𝑥2𝑟, 𝑦𝑟 =
𝑥3𝑟 + 𝑖𝑥4𝑟, 𝑧𝑟 = 𝑥5𝑟, and ( −... ) denotes the complex conjugate.

The complex systems (12) and (13) can be rewritten,
respectively, as five real first-order ODEs of the form

�̇�1𝑑 = 𝑎 (𝑥3𝑑 − 𝑥1𝑑) ,

�̇�2𝑑 = 𝑎 (𝑥4𝑑 − 𝑥2𝑑) ,

�̇�3𝑑 = 𝑐𝑥1𝑑 − 𝑥3𝑑 − 𝑥1𝑑𝑥5𝑑,

�̇�4𝑑 = 𝑐𝑥2𝑑 − 𝑥4𝑑 − 𝑥2𝑑𝑥5𝑑,

�̇�5𝑑 = − 𝑏𝑥5𝑑 + (𝑥1𝑑𝑥3𝑑 + 𝑥2𝑑𝑥4𝑑) ,

(14)

�̇�1𝑟 = 𝑎 (𝑥3𝑟 − 𝑥1𝑟) ,

�̇�2𝑟 = 𝑎 (𝑥4𝑟 − 𝑥2𝑟) ,

�̇�3𝑟 = 𝑐𝑥1𝑟 − 𝑥3𝑟 − 𝑥1𝑟𝑥5𝑟,

�̇�4𝑟 = 𝑐𝑥2𝑟 − 𝑥4𝑟 − 𝑥2𝑟𝑥5𝑟,

�̇�5𝑟 = − 𝑏𝑥5𝑟 + (𝑥1𝑟𝑥3𝑟 + 𝑥2𝑟𝑥4𝑟) .

(15)

We define the error states between the response system that
is controlled and the controlling driving system as

𝑒𝑥1
+ 𝑖𝑒𝑥2

= 𝑥𝑟 − 𝑥𝑑 = (𝑥1𝑟 − 𝑥1𝑑) + 𝑖 (𝑥2𝑟 − 𝑥2𝑑) ,

𝑒𝑥3
+ 𝑖𝑒𝑥4

= 𝑦𝑟 − 𝑦𝑑 = (𝑥3𝑟 − 𝑥3𝑑) + 𝑖 (𝑥4𝑟 − 𝑥4𝑑) ,

𝑒𝑥5
= 𝑧𝑟 − 𝑧𝑑 = 𝑥5𝑟 − 𝑥5𝑑.

(16)

In an impulsive configuration, the driving system and the
response system are modeled by the following impulsive
equations:

�̇�𝑑 = 𝐴𝑥𝑑 + Φ (𝑥𝑑) , 𝑡 ̸= 𝑡𝑘,

Δ𝑥𝑑







𝑡𝑘
= 𝐵𝑘𝑥𝑑, 𝑡 = 𝑡𝑘,

𝑥𝑑 (𝑡
+

0
) = 𝑥𝑑 (𝑡0) (𝑘 = 1, 2, 3, . . .) ,

(17)

�̇�𝑟 = 𝐴𝑥𝑟 + Φ (𝑥𝑟) , 𝑡 ̸= 𝑡𝑘,

Δ𝑥𝑟







𝑡𝑘
= 𝐵𝑘𝑥𝑟, 𝑡 = 𝑡𝑘,

𝑥𝑟 (𝑡
+

0
) = 𝑥𝑟 (𝑡0) (𝑘 = 1, 2, 3, . . .) .

(18)
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Figure 1: Left figure: Two numerical solutions of (5) for 𝑎 = 14; 𝑐 = 35; 𝑏 = 3.7 with 𝑡0 = 0; 𝑥1(0) = 2; 𝑥2(0) = 1; 𝑥3(0) = 5; 𝑥4(0) = 3;
𝑥5(0) = 4 (the solid curve) and 𝑥1(0) = 2.001; 𝑥2(0) = 1; 𝑥3(0) = 5; 𝑥4(0) = 3; 𝑥5(0) = 4.01 (the dotted curve) (𝑡 = 𝑡𝑖𝑚𝑒/10). Right figure:
Chaotic attractor of (5) at 𝑎 = 14; 𝑐 = 35; 𝑏 = 3.7 in (𝑥1; 𝑥2; 𝑥5) space.

If we defined

Ψ (𝑥𝑟, 𝑥𝑑) = Φ (𝑥𝑟) − Φ (𝑥𝑑)

=

[

[

[

[

[

[

0

0

−𝑥𝑟1
𝑥𝑟5

+ 𝑥𝑑1
𝑥𝑑5

−𝑥𝑟2
𝑥𝑟5

+ 𝑥𝑑2
𝑥𝑑5

𝑥𝑟1
𝑥𝑟3

+ 𝑥𝑟2
𝑥𝑟4

− 𝑥𝑑1
𝑥𝑑3

− 𝑥𝑑2
𝑥𝑑4

]

]

]

]

]

]

,

(19)

then the error system of the impulsive synchronization is
given by

̇𝑒 = 𝐴𝑒 + Ψ (𝑥𝑟, 𝑥𝑑) , 𝑡 ̸= 𝑡𝑘,

Δ𝑒|𝑡𝑘
= 𝐵𝑘𝑒, 𝑡 = 𝑡𝑘,

𝑒 (𝑡

+

0
) = 𝑥𝑟 (𝑡0) − 𝑥𝑑 (𝑡0) (𝑘 = 1, 2, 3, . . .) .

(20)

Note that there exists a positive constant 𝑀 for the chaotic
system (6) such that |𝑥(𝑡)| ≤ 𝑀 for all 𝑡. For convenience,
define the following notations:

𝜆2 (𝐴) =

1

2

𝜆max (𝐴 + 𝐴
𝑇
) ,

𝛽𝑘 = 𝜆max [(𝐼 + 𝐵𝑘)
𝑇
(𝐼 + 𝐵𝑘)] .

(21)

Notes 2. From the analysis above, it follows that a necessary
and sufficient condition for synchronizing chaos is that the
origin of (20) is asymptotically stable. It is obvious that the
origin is one of the equilibriums of (20). Also, the origin is
the unique equilibrium of (20) because Δ𝑒|𝑡𝑘 = 𝐵𝑘𝑒, 𝑡 = 𝑡𝑘.

Theorem 3. (𝐼) If 2𝜆2(𝐴) + 2𝑀 = 𝜆 < 0 (𝜆 is a constant) and
there exists a constant 0 ≤ 𝛼 < −𝜆, such that ln𝛽𝑘 − 𝛼(𝑡𝑘 −
𝑡𝑘−1) ≤ 0, 𝑘 = 1, 2, . . ., then the trivial solution of system (20)
is globally exponentially stable; that is, system (18) is globally
exponentially synchronous with system (17).

(𝐼𝐼) If 2𝜆2(𝐴) + 2𝑀 = 𝜆 ≥ 0 (𝜆 is a constant) and there
exists a constant 𝛼 ≥ 1, such that ln(𝛼𝛽𝑘)+𝜆(𝑡𝑘−𝑡𝑘−1) ≤ 0, 𝑘 =

1, 2, . . ., then system (18) is globally exponentially synchronous
with system (17).

Corollary 4. Assume that 𝑡𝑘 = 𝜏 > 0 and matrices 𝐵𝑘 = 𝐵
(𝑘 = 1, 2, . . .).

(i) If 2𝜆2(𝐴) + 2𝑀 = 𝜆 < 0 and there exists a constant
0 ≤ 𝛼 < −𝜆, such that ln𝛽 − 𝛼𝜏 ≤ 0, then the system
(18) is globally exponentially synchronous with system
(17).

(ii) If 2𝜆2(𝐴) + 2𝑀 = 𝜆 ≥ 0 (𝜆 is a constant) and there
exists a constant 𝛼 ≥ 1, such that ln(𝛼𝛽) + 𝜆𝜏 ≤ 0,
𝑘 = 1, 2, . . ., then system (18) is globally exponentially
synchronous with system (17).

3. Simulation Results

In this simulation, the chaotic complex Lorenz system will be
taken, for example, to confirm the proposed method.

The equilibria of (6) can be calculated by solving the
equations �̇�1 = 0, �̇�2 = 0, �̇�3 = 0, �̇�4 = 0, and
�̇�5 = 0 to get three equilibria 𝐸0 = (0, 0, 0, 0, 0), 𝐸1,2 =
(±𝑥

∗

1
, ±𝑥

∗

2
, ±𝑥

∗

3
, ±𝑥

∗

4
, 𝑥

∗

5
), where

𝑥

∗

1
= 𝑥

∗

2
= 𝑥

∗

3
= 𝑥

∗

4
=

√

𝑏 (𝑐 − 1)

2

, 𝑥

∗

5
= (𝑐 − 1) .

(22)

For 𝑐 > 1, the nontrivial equilibria exist.
The eigenvalues of the corresponding linearized system at

𝐸0 are

𝜆1 = −𝑏,

𝜆2 = 𝜆3 = −(

𝑎 − 1

2

) +

√

(

𝑎 − 1

2

)

2

+ 𝑎 (𝑐 − 1),

𝜆4 = 𝜆5 = −(

𝑎 − 1

2

) −

√

(

𝑎 − 1

2

)

2

+ 𝑎 (𝑐 − 1).

(23)

The equilibrium 𝐸0 is stable if 𝑐 < 1 and it becomes unstable
if 𝑐 > 1.
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Figure 2: Continued.
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Figure 2: Left figures: Impulsively control complex Lorenz system with 𝜏 = 0.01, Right figures: Impulsively control complex Lorenz system
cannot be stabilized with 𝜏 = 0.2.

Solving the system (6) (or (5)) numerically, we show that
system (6) is a chaotic system since the separation of two
nearby trajectories increases exponentially with time as in
Figure 1. In this figure we show two numerical solutions of
(6) with two close initial conditions 𝑥1(0) = 2, 𝑥2(0) = 1,
𝑥3(0) = 5, 𝑥4(0) = 3, 𝑥5(0) = 4 and 𝑥1(0) = 2.001,
𝑥2(0) = 1, 𝑥3(0) = 2, 𝑥4(0) = 3, 𝑥5(0) = 4.01 (we plot
only (𝑡, 𝑥1) diagram) and with 𝑎 = 14, 𝑐 = 35, and 𝑏 = 3.7.

It is clear from Figure 1 that our system displays sensitive
dependence on initial conditions.

The system (6) exhibits chaotic attractor for 𝑎 = 14,
𝑐 = 35, and 𝑏 = 3.7 with the initial conditions 𝑡0 = 0;
𝑥1(0) = 2, 𝑥2(0) = 1, 𝑥3(0) = 5, 𝑥4(0) = 3, and 𝑥5(0) = 4;
see Figure 1 in (𝑥1, 𝑥2, 𝑥5) space, respectively. The projection
of the chaotic attractor of (6) in (𝑥1, 𝑥2, 𝑥5) space is similar to
Lorenz attractor of (1) as in [2].

We control system (6) to its equilibrium point
(0, 0, 0, 0, 0)

𝑇; thus

𝐴 + 𝐴

𝑇
=

[

[

[

[

[

[

[

[

[

−2𝑎 0 𝑎 + 𝑐 0 0

0 −2𝑎 0 𝑎 + 𝑐 0

𝑎 + 𝑐 0 −2 0 0

0 𝑎 + 𝑐 0 −2 0

0 0 0 0 −2𝛽

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

−28 0 49 0 0

0 −28 0 49 0

49 0 −2 0 0

0 49 0 −2 0

0 0 0 0 −7.4

]

]

]

]

]

]

]

]

]

.

(24)

Its eigenvalues are −65.69516742, −65.69516742,
7.400000000, 35.69516742, and 35.69516742. Then 2𝜆2(𝐴) =

𝜆 = 35.69516742 ≥ 0. If we choose 𝐵 = diag(𝑏1, 𝑏2, 𝑏3, 𝑏4,
𝑏5) = diag(−0.67, −0.67, −0.77, −0.77, −0.87), then

𝛽 = max {(1 + 𝑏1)
2
, (1 + 𝑏2)

2
, (1 + 𝑏3)

2
, (1 + 𝑏4)

2
, (1 + 𝑏5)

2
}

= 0.1764.

(25)

If 𝜏 < −(ln𝛼𝛽/𝜆), fromTheorem 1, we have that the equi-
librium point of the impulsively controlled system is asymp-
totically stable. Take 𝛼 = 1.01; thus if 𝜏 < 0.04832729273,
system (6) will be stabilized at the origin. Let 𝜏 = 0.01,
respectively; the simulation results are shown in Figure 2,
where the initial conditions are (3.0, 4.0, 3.0, 4.0, 5.0)𝑇. From
Figure 2 we have that the state variables quickly tend to the
origin under impulsive control. If the impulse intervals are
too large, as proved previously, the impulsively controlled
system cannot be stabilized, as shown in Figure 2 with 𝜏 =
0.2.

In Figure 3, we show the error synchronization of two
complex Lorenz systems with the following initial condi-
tions for the drive and response systems are chosen as
(3.0, 4.0, 3.0, 4.0, 5.0)

𝑇 and (6.0, 7.0, 6.0, 7.0, 8.0)𝑇. We can get
from the simulation that the approximate bounds 𝑀 of
system (6) are 85. Thus 𝜆 = 2𝜆2(𝐴0) + 2𝑀 = 35.69516742 +

2𝑀 = 115.69516742. Choose 𝐵 = diag(𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5) =

(−0.67, −0.67, −0.77, −0.77, −0.78). Take 𝛼 = 1.01; thus if
𝜏 < −(ln𝛼𝛽/𝜆) = 0.019, system (17) is globally asymptotically
synchronouswith system (6). Figure 3 shows the results when
𝜏 = 0.01. It is obvious that, with this impulsive control, two
chaotic systems synchronize very fast.

4. Conclusions

Our interest in the present paper is to study the impulsive
control and synchronization of chaotic attractors of the
complex Lorenz system (5). This study can be considered as
a continuation of our studies in the literature for complex
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Figure 3: Synchronization errors solutions of system (20) with 𝜏 = 0.01.
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Lorenz systems. These complex systems arise in several
important fields of physics, for example, laser physics, rotat-
ing fluids dynamics, and disk dynamos. We define chaos as
sensitive dependence on initial conditions and measure it
by computing the rate of separation of two initially nearby
trajectories in phase space. System (5) is a chaotic system and
exhibits chaotic attractors. Sensitive dependence on initial
conditions and on the system’s parameters is prominent
characteristic of chaotic behavior of (5). The projection of
the chaotic attractor of (6) in (𝑥1, 𝑥2, 𝑥5) space is similar
to Lorenz attractor with real variables (1). Some new and
more comprehensive criteria for global exponential stability
and asymptotical stability of impulsively controlled complex
Lorenz systems are established with varying impulsive inter-
vals. The effectiveness of the proposed technique is verified
through numerical simulations, and it can be seen that the
synchronization errors 𝑒𝑥𝑖 converge to zero, as shown in
Figure 3.
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