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We introduce a new space, @ (R") space, of several real variables with nondecreasing functions K. By giving basic properties of
the weighted function K, by establishing a Stegenga-type estimate, and by introducing the K-Carleson measure on R”*', we obtain

various characterizations of @ (R") space.

1. Introduction

Recall that a locally integrable function f belongs to
BMO(R") if

1f lentomry = sup1]™! J |f () - fi]ldx <00, (1)
IR I

where I denotes a cube in R" with edges parallel to the
coordinate axes and |I| denotes the Lebesgue measure of I
and

fr=1 Lf(x) dx. 2)

Via the John-Nirenberg inequality [1], one can show an
equivalent condition of BMO(R") as follows:

I vioen = supltl?[[ 1 0 £ Gfdxdy. @)

C. Fefferman’s famous equation, (H 1Y* = BMO, describes
a deep relation between BMO and the Hardy space (cf. [2, 3]).
Thisleads quite naturally to increased study of these functions
from the point of real variable theory and complex function
theory views in the recent fifty years. See [2-9] for more
results about BMO(R") space.

As a generalization of BMO(R"), the space @, (R"), « €
R, introduced by Essén et al. in [10], is defined to be the class
of all locally integrable functions f € L] (R") such that

loc

2
lf(x)_]:ﬁgj;ﬂ dxdy<oo,
P

(4)

where €(I) = |I Il/ " denotes the edge length of the cube I.

It is easy to see that @Q,(R") is always a subclass of
BMO(R") and @,(R") = BMO(R") by choosing & = —n/2.
Moreover, we know by [10] that @,(R") = BMO(R") if and
onlyifa < 0. Also, we see that @, (R) is trivial (containing a.e.
constant functions only) if and only if &« > 1/2 and @Q,(R"),
n > 2, is trivial if and only if & > 1.

11 = suple P

In this paper, we introduce and develop a more general
space O (R") of several real variables, which can be viewed
as an extension and improvement of @,(R") spaces as well
as BMO(R"). A theory of @y (D) spaces on unit disc D has
been extensively studied for recent years in the context of
a wide class of function spaces; see, for example, [11-15].
Motivated by the theory of analytic @ (D) spaces, we define
the following.

Definition 1. Let K : [0,00) — [0,00) be a nondecreasing
function. A function f € LTOC(IR") is said to belong to the
space @ (R") if

(s

If ) - F )P (|x—y|> ©)
= K dxd .
Iscu[RRJ’JI |x_y|2n E(I) xay < 00
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If we take K(t) = "%, for « € R, then Qg(R") =
@,(R™). Modulo constants, @ (R") is a Banach space under
the norm defined in (5).

Our paper is organized as follows.

In Section 2, we investigate the relationship between
Ox(R™) and BMO(R") and give a sufficient and necessary
condition for space Qi (R") which is nontrivial.

In Section 3, we give several results about the weight
function K on which @ (R") obviously depends. In the study
of @ (R"), the auxiliary function ¢y defined by

(s) = su K (st)
Pt = P K@)

0<s<oo, (6)
still works well as the analytic @ (D) spaces.

In Section 4, we define the K-Carleson measure on
R*!. By establishing a Stegenga-type estimate, we obtain a
characterization of @ (R") spaces in terms of the K-Carleson
measure.

Throughout this note, a < b means that there is a positive
constant C such that a < Cb. Moreover, if both a < b and
b < a hold, then one says that a = b. For the convenience
of calculation, in this paper, we always assume that K :
[0,00) — [0, c0) is nondecreasing and K(2t) = K(t).

2. Basic Properties of @, (R")

Our first observation is that @ (R") is invariant under the
conformal mappings and rotations; that is, for any conformal
map ¢(x) = Ax + x5, A#0 and x, € R", or any rotation
y(x) = xM for an orthogonal matrix M of order n,

"f ° ¢"@K(R") = "f"@K(R”)’

"f ° ‘/’“@K(R") = ”f”@K(ER")
hold for any f € Qg (R").
We say that the space @ (R") is trivial if @ (R") contains

only a.e. constant functions. To discuss this problem, we recall
the space CIS(R"), the class of all functions f € C Y(R™), with

1 = suplr @ | [9f o dx <00, @)

where Vf(x) = (0f (x)/0x;, ..
that

.,0f (x)/0x,,). By [16], we know

(1+1x?) " ecis(R?), In(1+|x) e CIS(R), o
9
n> 2.

Thus CIS(R") is not trivial for n > 2. However, CIS(R) is
trivial.

For any cube I, if x, y € I, then |x — y| < +/nf(I). For
t > 0, tI means that the cube has the same center as I and
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the edge length té(I). If x € I and |y| < €(I), then x + y € 31.
By the change of variable, f € @ (R") if and only if

wp| [l -reof

I
(10)
K<M> ly|"dx dy < oo.

e(I)

Theorem 2. The following statements are true.

(a) QI/Z(IR) C Qg (R). Moreover, Qi (R) is never trivial.
(b) Forn > 2, @ (R") is not trivial if and only if

\/ﬁ
j If D g < 4oo. )
Moreover, if (11) holds, then
CIS(R") c G (R"). (12)

Proof. (a) For any cube I of R and x, y € I, we have
lx—y|<e). (13)
By assumption on K we have

” If(x)—f(y)lzK(lx—yl)dxdy

x =y’ e

(14)

2
<K(1) ”I%dx dy.

Hence, @Q,/,(R) <€ Qg(R). @;/,(R) is not trivial and so is
Qx(R).
(b) Necessity. It is enough to show that if

dt = +oo0, (15)

JWK(t)
0

tn_l

then @y (R") is trivial. We will prove the necessity by two
steps.

Step 1. If f € Qx(R") N C'(R") and f is nonconstant, we
may assume that f is real. Then there exists a point x, =
(x(l),xg,...,xg) such that Vf(x,)#0. By the Householder
reflector [17, p. 71], there exists an orthogonal matrix M =
(a;), i, j = 1,2,...,n, such that

Vf (x0) M = (|Vf (x0)],0,...,0), (16)
which gives
n Eif - n jzf; )
;a_x, (x0) ain = |Vf (x0)] ;axi (x0) a; =0, 1)
j=2,3...,n

Denote by M” the transpose of the matrix M. Set
glx) = f(xMT). Since det(MT)#0, there exists a point
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Vo = (y?,yg,...,yg) such that yOMT = X,. Write y = xMT
for convenience as follows:
yj= inaji, j=12,...,n (18)
i=1
Consequently,
. of
3 00) = Za— (roM") ay = Vf (x)]. (19)
Similarly,
99 .
a—xi(yo)=0, i=23,...,n (20)
Thus
Vg (¥) = (|Vf (x0)],0,...,0). (21)

Note that g € C'(R"). Then there exist a positive constant &
and a small cube I centered at y, on which dg(x)/dx; > 28
and ag(x)/axj <8, j = 2. Define

D= {x:(xl,...,xn) €R": |x,|

eI 22
ot x| < x < %}

If x,y € I and x — y € D, using the mean value theorem, we
get

gx)=g(y)>8(x; - y). (23)
Thus

[l 0=k (B vy

l9(x+2)-g @)’ ( Jel Vg o)
= L/z dx JI x |z|*" K 5(1)>dz

8%z,
2J dxj |zzl| K<ﬂ>dz
1/2 p |z e(I)

If z € D, then |z| = z,. Hence
2
H |g(x)—gz(ny)| K(lx—yl)dxdy
I |x-y| e
2
EJ de |ZI|ZK(M)dz
112 oz [\ e

BRI (25)
~L zf“K(f(I))le

dz,---dz,

dt =+

L5

It means that g is not an element of @x(R"). On the other
hand, g € Qx(R") since @ (R") is invariant under rotations.
This is a contraction.

Step 2. Note that @y (R") is conformal invariant. By
Minkowski’s inequality, if f € @ (R") and g € L'(R"), then
f#ge@Qg(R")and

1 * Sl = b [ J9 DIy 29

where
(f * 9)(x) = JW fx=y)g(y)dy. (27)

In particular, if g € C;°, the class of smooth functions with
compact support, then f * g € Q(R")NC'(R™). Thus f * g is
constant by Step 1. By [10], there exits a sequence {g,} ¢ C;°

with g, > 0, _[ g, = 1, and supp g, shrinking to 0 such that
f *g, — f ae Itfollows that f is constant a.e. Thus, we
complete the proof of necessity.

Sufficiency. Give a cube I and suppose f € CIS(R"). By

If(x+y)-f(¥) < IIVf(nyllxldt (28)
we have
[f f@ -1 ) K('x_y|)dxdy
PR

- J J'|z|<f€ ) <J |Vf e+ tz)|dt> (29)

1 |z] )
—— K dzdx.
. |z|>"2 < eI

It follows by Minkowski’s inequality that
2 1/2
b a0
1
< \Y% +t
Jo <J1 J|z|<vze(1 I fx Z)I |z |2” -2
Iz 1/2
k() o)
e(I)
1 |z| >
< ——K|—)d
<J|z|<f€(1) |22 <€(I) ‘ (30)

1/2
2
X L\MI |Vf (w)] dw)
< | flles

(VD ¢ 12
Kt
UK )”

Thus, CIS(R") € Qx(R") and @ (R") is not trivial. O




Theorem 3. The space Q(R") is a subset of BMO(R").
Furthermore,

(a) if [, (K(©)/£")dt < oo, then G (R") = BMOR");
(b) if Gg(R") = BMOR™), then, for all f < 1,
[ (K@) )t < co.

Proof. Let f € Qx(R").Foranycube I andx, y € I,ifr > O1is
small enough, we know that the Lebesgue measure of the set

{zeI:min(|x-z|,|y-z|) > reD)} (31

is bigger than |I|(1 — (47" "2 1uT'(n/2))). Since K is nonde-
creasing,

Lmi“<K(|);<_I)Z|>’K<|y€(_1)2|))dz

> J min (K <u> >
{zeLmin(lx—zl, | y—zl)>re(D)} () )
(=) .
()
n_nf2
> K ()| <1 - :;(2/2))'
Consequently,
n n/2
K () (1 o /2)) P [[ 17 - £ Paxdy

< III‘Smllf @ - fOI
<min(K (575
K(%))dxdydz

< 2|I|‘3”J1|f ) - f (K < "; (‘I)Z' ) dx dy dz

+ 2|I|_SJJJI|f(y - fIK ( li(I) i > dxdydz

([ O -F@F (-2
_4n”1 - K( )d dz.

|y—z|2 e

(33)

For a small enough r > 0, we obtain

"f”ZBMO(IR”) S SI;P”' f (|y) ZJIC(Z | K ( |); (_I)Zl ) dydz.

(34)

Thus Qx(R") € BMO(R").
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(a) Note that

I i = supltt™ [ 1 G = () xy
I I
(35)
< suplt™ [ | @) - fif'ax
I I

For a cube I and for every y € R" with |y| < +/nl(I),

[ 17 Gt 9) - f @

< I

< 11 f Pntome-

Therefore,

If @) - f I (Ix—yl)
”1 |x—y|2n K 10 dxdy

< JWM) J, 17 G )= r o)

 Klyl/em)

|y|2n

[0 - (36)

dxdy (37)

K (|y|/e 1)

|2n

2
< 1 o | day

lyl<vmen |y

K ()
o [ St

Thus BMO(R") € @ (R"), and this deduces that @, (R") =
BMO(R™).

(b) Consider the Schwartz space §(R") consisting of all
those C* functions ¢ on R” such that

¢ (D) ()] < 0o (38)

for all multi-indices ¢ = («;,...,,) and § = (B;,...,,)
of nonnegative integers, where x* = xJ'.--x% and DF =
@/0x,)P -+ 0/0x,)P".

Let ¢ € S(R") be a fixed function such that the Fourier
transform ¢ of ¢ has support in the unit ball and ¢ # 0 on the

cube [-37m,37]". Let {a;} be a sequence of real numbers and
define

gx) = Zak exp (kali) , (39)
k=1

where x, is the first coordinate of x. By [10], f =
BMO(R") if and only if Y12, a7 < co.

Suppose that @ (R") = BMO(R"). Set a,f = (1/2K0-R)
for B < 1. We know that f € Qx(R"). Choosing I = [-7,7]",
we have

Jypn L G0 = F PR

P9 €

dxdy < 00. (40)
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Since |p(x + y)| = ¢ > 0 for x € I and |y| < 27,
lg (x+y) - g (x)[*
<lfx+y)-fef (41)

2 2
+1g @[] (x+y) - .
Since ¢ € S(R"), we have |p(x + ) — ¢(x)| < |y|. Hence,

| [t ) - @K () mdxdy
Iyl<2n ly |
< K
J KO sy
o 2
xj Zak exp (kali) dx
[=mrl” |k
i Jwa
- (2
Writing y = (y,, '), ¥ € R""!, we obtain
1
o> [ [ lg(x+y) - gl K (y]) gy
|yl<2m JI |y|
) k. 2 1
= a (€ 1) K ——d
Jp 2l (7 = O K D -ty
\C 2 k.| 1
2 Zakj , '2 N 7y (43)
k=1 Dy Iyl
- i 2k ZJ K(t)
PR
2 JO tn+’8
O

For any cube I of R", when x, y € I, we have that [x— y| <
\/né(I). By the definition, the @ (R") space depends on K(t)
when 0 < ¢ < +/n.In fact, @ (R") depends only on K(#) when
t is near origin, which can be found by the following theorem.
Here the proof of the theorem is left to the reader.

Theorem 4. The following statements are true.

(a) Suppose that K(r) > 0 for some r > 0. One defines

K, (t) = min(K(r), K(t)). Then @y (R") = @x(R").
(b) Let
K@), 0<t<l,
K= {K(l)t”_l, t>1. (44)

’17’13” @KI(RH) = @K(RH).

Remark 5. If K(0) > 0, we have Qi (R") = @, ,(R"). Since
@,/>(R") is trivial for n > 2, we only pay attention to the case
K(0) =0

3. Weighted Functions

The characterization of @ (R") depends on the properties
of the weight function K obviously. In this section we give
several results about the weight functions that are needed for
the next section.

In the analytic @ (D) spaces, the auxiliary function

(s) = su K(st)
P KD

0<s<o00, (45)

plays a key role; see [12, 14, 15], for example.
To study @ (R") spaces, we need some more constraints
on K as follows:

1
JO Pk (8) ———~ ds < 00, (46)

min (s, s"!)

o0 d
L 0] Sn_+51 < 0. (47)

Note that (46) implies the following two conditions:
1
| o= <co (18)
0 S

n>2. (49)

jISDK (s) d

In particular, if we choose K(t) = "%, then condition
(47) holds if and only if « > 0; condition (48) holds if and

only if n > 2e; and condition (49) holds if and only if & < 1.
Lemma 6. Let K satisfy

(t)
s [ A0 £ )

for some 0 < b < 0o. Then one can find another nonnegative
weight function K* with K*(0) = 0 such that Qg-(R") =
Qg (R"), and the new weight function K* has the following
properties.

(a) K™ is nondecreasing on [0, c0).

(b) K* = K on [0,00), and thus K" satisfies condition
(50).

(c) K*(2t) = K*(t) on [0, 00).

(d) K~ is differentiable (up to any given order) on (0, 00).

(e) For some small enough ¢ > 0, K*(t)/t"° is non-

increasing on (0,00). Consequently, K*(¢)/t" is also
nonincreasing on (0, o).

Proof. By Theorem 4, we may assume that K(t) = K(1)t"™"
for t > 1. Since K satisfies condition (50), we claim that

o K (t) Js tn—l
S dt dt < co. 51
0<?<13x> L gl o K(t) GV




If b = 00, the claim is true. If 0 < b < 00, the claim will be
confirmed by showing

dt < oo,

®© K s 4n—1
sup J Etl) dtj d
0<s<b Js £ 0 K(t)

0 s 4n—1
sup J Kﬁ) dtj d dt < oo.
b<s<oo Js t" 0 K(t)

(52)

For the case of 0 < s < b, by (50),

0 K(t) Js tn 1
dt dt
J tn+l 0 K (t)

B K (¢) K(t) s gl

= (L e =l dr + L o t) L K—(t)dt (53)
© K@), (b !

<C+ L i L o

Taking s = (b/2) in (50), we have

b tn—l 4
. 5
Lwa<m (54)

Since K(t) = K(1)t" !, for t > 1, we have

JOO K (1)

tn+1

b tn 1
dtJ dt < co. (55)
o K(t)

Thus

“u J K ()
0<s£)b s ¢+l

s t 1
dt L <o (56)

Now, we prove

(f)
sop [T Ra [ <. o)

Infact,ifb<s<oo,b>1,

j I;E?dtj Kn—(:)dt

boyn-1 a1
gK(l)L K(t)dt+K(1)s L mdt (58)

b tn—l
<K(1) L K(t)dt+ 1.

Iftb<s<oo,0<b<lands<1,

| ’;5? !, %
K@),

tn+1

)

b o K (t » K(t)

1 tn—l dt) (59)

< 0.
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Ifb<s<o0o,0<b<lands>1,

© K (t) r 1
J et | et

0 1 -1 [
gJ K(t)dtj ! dt+J
b ¢l 0 K(t) s

(o'} 1 n—1
sj K(t)dtj LA
b 0

s yn—1
K@ dtj "
lian 1 K (t)

tn+1 K (t)
(60)
Hence,
[e's) K(t s tn—l
sup J nEI) dtj dt < co. (61)
b<s<co Js t 0 K(t)
Therefore, our claim above has been confirmed. Let
XK (s)
. t ——=ds, 0<t<oo0,
K*(t) = J TR (62)
0, t=0.

Then K*(t) = K(1)¢" ' fort > 1.
(a) Fix 0 < t; < t, < 0o and consider the difference

K™ (t;) =K (1) = (5 - 1))

y L K@) JtZK(s) . (63)

n+1 Sn+1

Since K is nondecreasing and nonnegative, we have

K" () -K" (t,) 2 (t; - 1)) K (t,)
® ds
X L Sn+1

(b) Using the assumption that K is nondecreasing again,
we obtain

bods
ty

(64)

K*(t) = t"K (1) ro ds _ KT(t) (65)

Sn+1

for 0 < t < 0o. On the other hand,

t n-1 -1
K*(t)StnOoIsqs)dS) <K(), 0<t<oo. (66)

Thus, K* = K on (0, 00) and Q- (R") = Qx(R").
(c) For any t > 0, we have

K @) _ by (K@/S)ds

= < 2" 67
K* (1) [ (K (s) /) ds = (©7

Since K* is nondecreasing, K™ (¢) < K*(2t).

(d) If we repeat the construction K — K", then we can
make the new weight function differentiable up to any desired
order.
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(e) Note that if ¢ > 0 is sufficiently small, then we have

" (K () - K (1) <0, 0<t< oco.

(68)

(tc—nK* (t))’ —

This means that K*(¢t)/t"™° is nonincreasing. The proof is
complete. O

The following result shows that there is no essential
difference between (47) and (50).

Lemma 7. The following are equivalent.

(a) Equation (50) holds for K.

(b) There exists a weight K,, comparable with K, such
that, for some small enough ¢ > 0, K,(t)/t" ¢ is
nonincreasing on (0, o).

(c) Equation (47) holds for K.
Proof. We assume that K(¢) = K(1)" " fort > 1.

(a) = (b) is obvious by Lemma 6.
Suppose that (b) holds. We have

b s n—-1
j Kl—(t)dtJ t—dt<J — Cdtj Ut = 2. (69)
s tn+1 Kl (t)

We obtain that (50) holds for K since K is comparable with
K. It means that (b) = (a) holds.
For (c) = (b), assume that (47) holds for K. We claim that

K®

hm 131f (70)
If s > 1, it is clear that
K (1)
< s 71
and by (47)
(o9 -1
J K(s )*1 ds - J K<l> N )
1 s Sn+1

Thus, we have

t" _ ds ! _, ds
K@ < KO Js ~LK(S) g <

which gives the claim. We define

K, (t) = 1" I Eas,

0<t<oo. (74)

It is easy to check that K,(t) is nondecreasing. Since K is
nondecreasing, it follows that K(¢) < K;(t), 0 < t < co. We
note that, for 0 <t < 1,

[ s <o [ 2bas < KO [T 26y,
1
J, s =xm <2
1S

(75)

Thus, we obtain that

(PK()
st

K(t)<K(t)<J +1>, 0<t<l. (76)

Fort € 1, 00), we have

K, (t) = t" Loo Kﬁ?ds K1)

=K(). (77)

Therefore, we get that K, = K on (0, 00). Note that if c is
sufficiently small, then we have

(K, (1) = £ (K, (1) = K (1)) < 0, o9
0<t<oo.

This means that K; (t)/t"“ is nonincreasing.
Suppose that K, (¢)/t""¢ is nonincreasing on (0, 0co). For
s>1,

(st)"°K, (st) (st)""

S) =
#, (9 o<ltlg1 K, (¥)
(79)
ap SOTK O
B O<t£1 K1 (t) ’
which gives
0 d
J Px, (5) ~o < 00, (80)
1 S
Thus (b) = (c) holds. ]

Lemma 8. Let K satisfy (49). Then one can find another
nonnegative weight function K, such that Q. (R") = Qx(R"),
and the new weight function K, has the following properties.

(a) K, is nondecreasing on (0, 00).
(b) K, = K on (0, 00), and thus K, satisfies condition (49).

(c) For some small enough ¢ > 0, K,(t)/t"** is non-
decreasing on (0, 00). Consequently, K, /"2 is also
nondecreasing on (0, 0o). Conversely, if K, )/t s
nondecreasing, for some ¢ > 0, then (49) holds for K.

(d)

S K, (1) JOO "
su dt dt < oo. 81
0<s<Ic)>o J‘0 tn_l s K1 (t) ( )

Proof. Assume that K(t) = K(1)t" ! fort > 1. Define

t
-2 K(s)g, 0<t<l,
0
K, (t) = 1 (82)
' JK() ‘jsl, t>1.



Note that (49) is a condition for n > 1. Then, consider the
following.

(a) is obvious.

(b)For0<t<1,

1 d 1
K@= K60 55 <Ko [ o E®

On the other hand, since we always assume that K(2t) = K(t),
we obtain that

K, (1) > t"°K (%) J:/z Sfi > K(t). (84)

Thus, K; = Kon (0,1). For t > 1, clearly, K;(t) =~ K(t).
Therefore, K; = K on (0,00) and we get that @KI(IR") =

Ok (R,
(c) If 0 < t < 1, for some small enough ¢ > 0,
K t I —C—1
(tn£2(+c)> =t (K (1) - K (1) > 0. (89)

Ift > 1, K,(t)/t"** = K,(1)t' is nondecreasing. Thus
K, (t)/t" s nondecreasing on (0, 00).

Conversely, if K, (t)/ 1 s nondecreasing, for some ¢ >
0, then, for0 < s <1,

(St)nJrcfZKl (Sl’) (St)anfc

(s) = su
(PKI 0<t£1 K1 (t)
(86)
(St)n+c_2K1 (t) t2—n—c n+c—2
< sup =s ,
0<t<1 Ky (¥)
which gives
! d
| o 025 <o (87)
0

(d) Note that K, (£)/t" > is nondecreasing. For 0 < s <
00, we have

s Kl (f) J-oo tn—3 J-s 1 J-oo 1 5
dt dt < | ——dt —dt=c".
JO tnfl R Kl (t) 0 tlfc R t1+c c
(88)

The proof is complete. O

We end this section by giving an example. Fix 0 < 8 < 1,
and set

tn+ﬁ—1 1
T 1 t < )
Ky (1) = 1 [logt| e (89)
e Pl s o
e

Since
le dt lfe dt (90
J-O Kl; (t) t”_’l < 00, JO Kﬁ (t) ﬂl_Jrﬁ = 00, )
we obtain that @ Ks (R") is not trivial and

@y, (R") § BMO (R"). o)

Moreover, a direct calculation shows that (46) and (47) hold
for K B
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4. Carleson-Type Measures

Let I be a cube of R" and let R denote the upper half space
based on R". Define the Carleson box as follows:

S ={xteR™M:xeLo<t<eD}. (92)

For p > 0 and a positive Borel measure y on R’ p4 s said to
be a p-Carleson measure if

p(S(I)) < Me(I)P" (93)

for some M < co and all cubes I € R".

Denote by 8(x) the distance of the point x € R”*" to the
boundary OR"*'. Also ¥ stands for the symmetric point of
y € R™! with respect to R"; that is, if ¥ = (y1,- -+, ¥, Ynr1)>

then ¥ = (¥, o> Voo —Vur1)-
A positive Borel measure p is said to be a K-Carleson

1 . .
measure on R, as a modification of p-Carleson measure,

provided

sup J K (&) (8 (x)) "du (x) < 0. (94)
ek Jsay - \ € (D)

Clearly, if K(t) = t", then y is a K-Carleson measure
on R™" if and only if (8(x))""*'™"du(x) is a p-Carleson
measure on IRTI. Now, we give a characterization of K-
Carleson measure as follows.

Theorem 9. Let K satisfy (48). Let u be a positive Borel
measure on R, Then p is a K-Carleson measure if and only

if

sup
yE RZ+1

J K<8(x) 6 ()"

Ix _ j/.|(1'1+1)/n ) (8 (x))l_nd[/‘ (x) < 0.

(95)

Proof (sufficiency). Let I be a cube and take y to be the center
of the Carleson box S(I). Then 6(y) = €(I)/2.1f x € S(I), then
|x — ¥| < €(I) and hence

sx) ()"
| 11<<—(") ooy )(5 ()" ()
R |x -7

§ J K ( 8 (%) (8 ()"
S(I)

|x - 5/«|(n+1)/n ) (6 () "dp (x) (96)

> Lm K (%) (6 (0" du ().

Thus, if (95) holds, then p is a K-Carleson measure.

Necessity. For y = (¥, y,,1) € R™, let I c R" be the cube
with center y' and edge length 8(y). Set E,), to be the Carleson
box S(21) for each positive integer m. It is clear that

|x—j7|26(y), x € Ey,

) ©7)
|x -7 =278 (),

x€E, . \E,.
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Then

8 (x) (8 (y))"
JWIK( x)(8(y)) )(6( N ()

| |(n+1

8(x) (8 ()"
- | K<—(x) BoN >(6 () "y ()
B\ |x-7]

s ()"
K ( R (~|<(,£3/n ) (6 () "dp (x)
m Y

[ -

k(280 6 ' "du o)

K< 4 (x)

1-n
m) (8 (x)) "du (x).

(98)

Since p is a K-Carleson measure,

8 (X) 1-n
Lm K ( e > @) "dux) <1 (99)

This together with (48) yields

8 (x) (8 ()"
JWH K < % ) (8 (x) "du (x)

x=

(100)
— 1 ! ds
< mZ:‘EQDK(W) = L P (8) — < oo.
O
Let f be a measurable function on R” satisfying
J Lx)lldx < 00. (101)
R 1+ |x|™*
Its Poisson integral is defined by
fen=| RGE=yfOdn a0
where
P (x) = c,t . IT'((n+1)/2)
t - (t2 R |x|2)(n+1)/2’ n T T )2 (103)
The gradient of f(x,1) is
of (x,t) of (x,t) of (x, t))
V s t) = e > .
f et ( ax, ox, ot (104)

It is known that (101) holds for f € BMO(R") (see [9]).
The following main theorem generalizes the result of
0,(R") in [10].

Theorem 10. Suppose that (47) and (81) hold for K. Let
f e LIOC(R") with (101). Then f € Q(R") if and only if
[Vf(x, t)|*dxdt is a K-Carleson measure.

In order to prove Theorem 10, we need the following
Hardy-type inequalities.

Lemma 11 (see [18]). Let 0 < b < 00, 1 < p < 00, and

p' = (p/(p-1)). Assume that functions y and v are measurable
and nonnegative in the interval (0,b). Then

Lb <L 1@ dt)pM (s)ds<C J: fP(s)v(s)ds  (105)

holds for all measurable functions f > 0 if and only if

A = sup (J;bpt(t) dt)l/pq (v (t)P dt>1/p, < 00,

0<s<b

b/ b P b
J (J f(t)dt) pt(s)dsSCJ fP(s)v(s)ds
0 s 0

(106)
holds for all measurable functions f > 0 if and only if
s 1p 1/p'
B := sup (J u(t) dt) (J (v ()P dt) < 00.
0<s<b \JO
(107)

Here C depends only on p, A, or B.

The following Stegenga-type estimate will be used in the
proof of Theorem 10.

Lemma 12. Suppose that (81) holds for K and

K(t) J 3n—
dt dt .
ok j N I

(108)

Let I and ] be cubes in R” centered at x, with £(J) = 3£(I)
and let f € LIOC(R”) satisfy (101). Then, there is a constant C
independent of f, I, and ], such that

j IVf (x, t)|K< )Hldxdt

e(I)
<C ~ 5
- lelsﬁé’(]) J] |f (x+y) - f(x)

K( bl )
e/ P
K Gs) K(s)
+C(J0 =y 5+L/8 e s)
-1 _ 2d
T | 1F 0=

TG HEEPAY
——d .
ve| LS s<e(1) [ —
(109)
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Proof. Without loss of generality, we may assume that x, = 0.
Let ¢ be a function with 0 < ¢ < 1 such that ¢ = 1 on (2/3)],
supp ¢ € (3/4)], and

lpx)-9(»)|<e)'|x-y], xyeR". (110

Following Stegenga [19], we write

f=H+(-He+(f-f)0-9) =fi+t L+ fs

(111)

Then we have

f(x)t)=f1(x>t)+f2(x’t)+f3(x>t) (112)

for the corresponding Poisson integrals. Since f; is constant,

it contributes nothing to the integral with the gradient square.
Note that

OP, (y) (n+3)/2
—(n+1)¢,sy;(s” + |y ,
ayj i( ) (113)
j=1,...,n
‘We obtain
oP, (y)
*rdy=0, j=1,...,n 114
Jo =0 (114
Hence,
of (x,5) [ OP(x-y)
ox, JR»« ox, ! (v)dy
= J.Rn (n+1)c,s (yj - xj)
2\ —(n43)/2
x(S+ly-x) " fdy o)
0P, (y)
= - — +y)d
JW %, fx+y)dy
9P (y)
= (f (%) = f(x+y))dy.
J n ay
A direct calculation shows that
oP, () 2\~(1+3)/2
=== syl (7 + )
(116)
o\ (n+1)/2
<(s+D)
which gives
aPs (y) —-n—1 aPs (y) < | I—n—l (117)
Byj - Byj -
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Therefore,

of (x,s)
axj

L2(R™)

Com Jl - If (x+¥) = £ @) 2 nydy (118)

| dy.

o] ) = Ol
|yl>s
We write y = r¢ € R"” withr = |y| and |€] = 1. Let

AO= [ 1= f @l @9)

Then
‘af(x,s) <s ™ 1J- A 1dr+J. A@r)rdr
0x; 2(R") s 0)
120
Thus,
2
of (x,s)

J‘S(I)

S 1-n
K <m ) s "dxds
“n af (x 5) 1-n
<), i < ¢ (1)) &

< J':(I) <€(I)> - I(L A(r) r”_ldr>2ds -
(1)
' L <e(1)> (J

- JIK(S);
- 0 3n+lp(T)"

1 1 [e%s) 5 2
+ L K (s) —5"‘15(1)” <L ADr)r dr) ds.
Note that

ax.

(o)

A(r)r dr> ds

(J A" 1dr) ds

1 s 43n-1
05(12)1 L in(fl) dt L ;((t)dt < 00. (122)
By Lemma 11,
1 s 2
RCE= (L A(e)r) r”_ldr> ds
(123)
< Ll K (s) n+1A (e()s)ds.
Since (81) holds for K, by Lemma 11 again,
1 1 oo 5 2
J K (s) ﬁ(J ADr)r dr) ds
o (124)

< JOO K (s) - A% (¢ (I) 5) ds.
0 N
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Therefore,

of (x.s)[
axj

J K<L>sl_"dxds
S(D) e(I)

0 S\ ~leny2
SJO K(Z(I)>S A~ (s)ds.

By Holder’s inequality,

J K<L>sl_"dxds
S e(I)

® 2
< JO szl If (e +58) = £ )22

K (ﬁ) sIdE ds

- JW [ fw |f (x+y)-f (x)|2dx]

|y| —2n
K(m ly| "dy

+yf =+ D] (s + |y

of (x,s) ?
axj

Note that

aPs(y) =c [52
Os "

Hence,

laPS(y)|S(52+|}’|2)(S +| |) "+3)/2

Js
It follows that
aPs (y) Ss—n—l, aPs (y) < | |—n—1.
ds ds
Since
J P (y)dy =1,
Rn
this deduces that
9P (y)
——dy =0.
JR" Os
We have
of (x,5) J 9P, (y)
= - dy.
3 o Ty - f@)dy
Repeating the procedure above, we also can obtain
of (x,9)|*
J f () K<L>sl_”dxds
say|  Os ¢

J H |f (x+y) - f ()] dx] (J(yll))lyl

(125)

(126)

) (n+3)/

127)

(128)

(129)

(130)

(131)

(132)

(133)

1

Therefore,

1-n
J |Vf, (x S)|K<€(I)> dxds

< [J e poofs( 2 ) axay
NS A
NJ][R” |x - y| < e(I) >dxdy

STRRRY |
x,y€] x¢],y€3/4] y¢J,xe3/4]

= B, + B, + Bs.

(134)
To estimate B,, we note that
x,y €R" (135)

lo(x) - (y)| < e |x-y|,

Thus

|f2 (x) - f> (J’)l S |f(x) _f()’)l

+ N - yl1f ) - £l
We have

” ) -fy IK(I —yl)dxdy
J |x—y| E(I)
|)’| ) —2n
K[ 224
lels\/ﬁf(l) <€ ) b

<[ 17 (e 9) = £ ey
S -6 (=)l
eon (| m—— K( i )dx dy
M) 2-2n
k()0
x L |f (x+y) - i dxdy

|}’| ) —2n
< K[| 2L
Lywﬁe(n (‘f ) o

x J If (x + y) - f ()] dx dy
J

-2 M 2-2n
HEa) Jmsvze(n K ( [40)) ) o

X J.] |f (x) - f,|2dxdy

(136)

N

-2
<)) JMSWU)



12
|;V| ) —2n
< K| —=—
8 lels\/ﬁe(]) (f(]) b
| 17 (e 9) = £ ey
\m
N L fnfﬁ)dq e L 1f (o) - f;[dx.
(137)
Hence,

|y| ) —2n )
() - dxd
b JIyls\W(J)K(E(]) b J; |f (x+y) - f ()] dxdy

K -
o], s | 10—

(138)
To handle B,, note that
1
e=y> 560 L@ -LOIIFB)-fi
(139)
x¢], ye3/4].
We obtain

IEM—ﬁmV(MﬂU

B, = K dxd

’ ngé] Le3/4} |x - y|2" e(I) T
< _ Zd < |Z| —2nd
) Jyea/u F =i yJ|z|>(1/s)e(1)K f(]))' [~z

K (s) - 2
< [ asr [ 175 - fifay.
(140)

Similarly,

©K(s), ._
B; < L/s Snfl ds|j|™ J] lf (») —f,|2dy. (141)

Moreover, if (x,s) € S(I) and y € R"\ (2/3)], then

1

(S + Ix _ y|)n+1 |

<ly (142)

and, by [VP,(y)| < (s + |y|)’”’1, we have

J |Vfs (x,5)| K<€(I)> s' dx ds

<[ ([ IvnG-lls0l)

x K <L> s dx ds
e(I)
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If (») - £ dy>2

s L(z) <JR"\(2/3 (s+]|x-y)
N 1-n
<« K (m> s dxds
2
Mdy> |

1
<| K—f?ds(w)[ A%
o s" RN\Q3 |yl

Combining the inequalities above, Lemma 12 is proved. [J

(143)

Proof of Theorem 10. We assume that K(¢) = K (D" fort >
1. By Lemma 7, K satisfies (47) if and only if

1 K (t) J-s tn—l
su —=dt dt < co.
0<s£)1 ~|-s ¢+l o K(t)

(144)

Sufficiency. Let I be a cube and f(x, t) is the Poisson integral
of f. Note that

Jy of (1) 4, (145)
0

fxly]) - o

By Minkowski’s inequality, we have

(LVWM%meQW

(P75 o)

Iyl , 2
sj (J IV (e0dx) .
0 1
Hence,

[ (et 5
|y|<€(1) 14

<@ nLl ey <J J |Vf(x, € (1) s)| dx) )zdr

2 () g
< L(z) |Vf (x,1)] K<€(I)>t dxdt.

(146)

IN

8t

J,1f el - £ ofax ) dy

(147)

The last inequality above holds by Lemma 11 since K satisfies

1 K(t) Js tn—l
su —=dt dt < oo. 148
0<s§1~[ gl o K(t) (148)
Thus,
sup J- K (%) —12n
|yl<e(I)
b b (149)

X (L |f (= |y]) - f(x)|2dx> dy < c0.
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For |y| < €(I),

L f (x+ 3, |9]) - f (x+ y)'dx

(150)
< [ 17 Gl - £ fax
31
Similarly, we get
supJ K (M)
1 dpicen N e ) |y
<([ 1o nlo = o)) dy <o,
(151)
Note that
|f (x+ 1)) = f (= [5])]
Iyl
< L |Vf (x + te, | y])| d, (152)
_y
7D

When |y| < €(I), we employ Minkowski’s inequality to get

([ LG b - see o)
< J'Olyl (L |Vf (x +te, |y|)|2dx>1/2dt (153)

<ol ([ 19 e bobax)

Hence,

bl )
K
il J|y|<€(1) (f(l) y

X(L [f (e + 2yl -

£ (G yDPex) dy

< supj |Vf (x,1)] K( >t1_"dxdt < 0.
1

eI
(154)
By the triangle inequality, we get
sup J K ( %) —12n
[yl<e(n)
Ay Iyl (155)
x <J |f (x+y) —f(x)|2dx>dy < 00.
1
Thus f € Qx(R").
Necessity. Note that
K (t) Jr 31’1 1
su dt | ——=dt
0<s§1 L g3+l o K (t)
1 (156)
1 s 4n—
< sup J K—(tl)dtj ! dt.
O<s<l Js t 0 K (t)

13

Thus K satisfies the conditions of Lemma 12. Let I and ] be
cubes in R” centered at x, with &(J) = 3£(I). Since f €
0k (R") € BMO(R"), by [10, p. 590], we have

7 .[R"\(zm)] %dx < Flovogny:  A57)
Note that
| 17 0= g
- J'Iylsﬁe(I)J 7 Geey) - f K (Ji}l)) y" xdr.
(158)
Lemma 12 gives
J |Vf (x,1)] K<€(I)>t1 "dx dt .
S ||f||2@K(R") + “f”]ZSMO(R”)‘
The proof of Theorem 10 is complete. 0
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