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We discuss a third-order multipoint boundary value problem under some appropriate resonance conditions. By using the
coincidence degree theory, we establish the existence result of solutions. The emphasis here is that the dimension of the linear
operator is equal to two. Our results supplement other results.

1. Introduction

In this paper, we are concernedwith the following third-order
ordinary differential equation:

𝑥


(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥


(𝑡) , 𝑥


(𝑡)) + 𝑒 (𝑡) , 𝑡 ∈ (0, 1) , (1)

with the boundary conditions

𝑥 (0) =

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝑥 (𝜉
𝑖
) , 𝑥



(0) = 0, 𝑥 (1) = 𝛽𝑥 (𝜂) , (2)

where 𝑓 : [0, 1] × 𝑅
3
→ 𝑅 is a Carathéodory function, 𝑒 ∈

𝐿
1
[0, 1], 0 < 𝜉

1
< ⋅ ⋅ ⋅ < 𝜉

𝑚−2
< 1, 𝛼

𝑖
∈ 𝑅, 𝑖 = 1, . . . , 𝑚 − 2,

𝛽 ≥ 0, and 𝜂 ∈ (0, 1).
In recent years, many authors have paid much attention

to the existence of solutions for multipoint boundary value
problems at resonance: we refer the readers to see [1–11].
If the linear equation 𝐿𝑥 = 𝑥


(𝑡) = 0 with boundary

conditions (2) has nontrivial solutions, that is, dimKer 𝐿 ≥ 1,
the BVP (1)-(2) is called a resonance problem. In [5–11], the
authors all discussed the case that dimKer 𝐿 = 1. In [2, 3],
the authors established the existence results for resonance
boundary value problems with the case of dimKer 𝐿 = 2.
However, we will show that some conditions such as Λ ̸= 0

assumed in [2, 3] are not necessary. We establish existence
of some solutions for BVP (1)-(2) by using the coincidence
degree theory of Mawhin [12] at resonance.

According to the constant 𝛽, the BVP (1)-(2) is divided
into the following five resonance cases:

(C1) 0 < 𝛽 < 1, (1−𝛽)∑
𝑚−2

𝑖=1
𝛼
𝑖
𝜉
2

𝑖
= (1−∑

𝑚−2

𝑖=1
𝛼
𝑖
)(𝛽𝜂
2
−1);

(C2) 𝛽 = 1, ∑
𝑚−2

𝑖=1
𝛼
𝑖
𝜉
2

𝑖
= 0, ∑

𝑚−2

𝑖=1
𝛼
𝑖
= 1;

(C3) 1 < 𝛽 < 1/𝜂
2
, (1−𝛽)∑

𝑚−2

𝑖=1
𝛼
𝑖
𝜉
2

𝑖
= (1−∑

𝑚−2

𝑖=1
𝛼
𝑖
)(𝛽𝜂
2
−

1);
(C4) 𝛽 = 1/𝜂

2
, ∑
𝑚−2

𝑖=1
𝛼
𝑖
𝜉
2

𝑖
= 0, ∑

𝑚−2

𝑖=1
𝛼
𝑖
= 1;

(C5) 1/𝜂
2
< 𝛽, (1−𝛽)∑

𝑚−2

𝑖=1
𝛼
𝑖
𝜉
2

𝑖
= (1−∑

𝑚−2

𝑖=1
𝛼
𝑖
)(𝛽𝜂
2
−1).

Du et al. [1] studied the existence results of BVP (1)-
(2) under the resonance conditions (𝐶

2
) and (𝐶

4
), that is,

dimKer 𝐿 = 1, but they did not discuss the other three cases.
In this paper, under the resonance conditions, (𝐶

1
), (𝐶
3
), or

(𝐶
5
), we could imply dimKer 𝐿 = 2; thus we supplement the

results in [1].
The layout of this paper is as follows. In Section 2, we

briefly present somenotations and an abstract existence result
due to Mawhin. In Section 3, we study BVP (1)-(2) under
the condition (𝐶

1
) and obtain some existence results. In

Section 4, we give an example of the existence results in
Section 3.

2. Preliminary

Now, we briefly recall some notations and an abstract exis-
tence result by Mawhin [12].

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 931217, 8 pages
http://dx.doi.org/10.1155/2014/931217

http://dx.doi.org/10.1155/2014/931217
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Let 𝑌, 𝑍 be real Banach spaces and let 𝐿 : dom 𝐿 ⊂

𝑌 → 𝑍 be a linear operator which is a Fredholm map of
index zero and let 𝑃 : 𝑌 → 𝑌, 𝑄 : 𝑍 → 𝑍 be continuous
projectors such that Im𝑃 = Ker 𝐿, Ker𝑄 = Im 𝐿 and𝑌 =

Ker 𝐿⊕Ker 𝑃, 𝑍 = Im 𝐿⊕Im 𝑄. It follows that 𝐿|dom𝐿∩Ker𝑃 :
dom 𝐿 ∩ Ker 𝑃 → Im 𝐿 is invertible; we denote the inverse
of that map by 𝐾

𝑃
. Let Ω be an open bounded subset of 𝑌

such that dom 𝐿 ∩ Ω ̸= 𝜙; the map 𝑁 : 𝑌 → 𝑍 is said
to be 𝐿-compact on Ω if the map 𝑄𝑁(Ω) is bounded and
𝐾
𝑃
(𝐼 − 𝑄)𝑁 : Ω → 𝑌 is compact. For more details we refer

the reader to the lecture of Mawhin [12].
The theoremwe use in this paper isTheorem IV.13 of [12].

Theorem 1. Let 𝐿 be a Fredholm map of index zero and let𝑁
be 𝐿-compact on Ω. Assume that the following conditions are
satisfied.

(i) 𝐿𝑥 ̸=𝑁𝑥 for every (𝑥, 𝜆) ∈ [(dom 𝐿 \ Ker 𝐿) ∩ 𝜕Ω] ×

(0, 1).
(ii) 𝑁𝑥 ∉ Im 𝐿 for every 𝑥 ∈ Ker 𝐿 ∩ 𝜕Ω.
(iii) deg (𝑄𝑁| Ker𝐿 , Ω ∩ Ker 𝐿, 0) ̸= 0, where 𝑄 : 𝑍 → 𝑍

is a continuous projector as above with Im 𝐿 = Ker 𝑄.
Then the abstract equation 𝐿𝑥 = 𝑁𝑥 has at least one solution
in dom 𝐿 ∩ Ω.

In the following, we will use the classical spaces
𝐶[0, 1], 𝐶

1
[0, 1], 𝐶

2
[0, 1], and 𝐿

1
[0, 1]. For 𝑥 ∈ 𝐶

2
[0, 1],

we use the norms ‖𝑥‖
∞

= max
𝑡∈[0,1]

|𝑥(𝑡)| and ‖𝑥‖ =

max{‖𝑥‖
∞
, ‖𝑥

‖
∞
, ‖𝑥

‖
∞
}, denote the norm in 𝐿1[0, 1] by

‖ ⋅ ‖
1
, and define the Sobolev space𝑊3,1(0, 1) as

𝑊
3,1

(0, 1) = {𝑥 : [0, 1] → 𝑅 | 𝑥, 𝑥

, 𝑥
 are absolutely

continuous on [0, 1]with 𝑥

∈ 𝐿
1

[0, 1]} .

(3)

Let 𝑌 = 𝐶
2
[0, 1], 𝑍 = 𝐿

1
[0, 1], and define the linear

operator 𝐿 : dom 𝐿 ⊂ 𝑌 → 𝑍 as 𝐿𝑥 = 𝑥

, 𝑥 ∈ dom 𝐿,

where

dom 𝐿 = {𝑥 ∈ 𝑊
3,1

(0, 1) :

𝑥 satisfies boundary conditions (2) } .

(4)

We define𝑁 : 𝑌 → 𝑍 as

𝑁𝑥 = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥


(𝑡) , 𝑥


(𝑡)) , 𝑡 ∈ (0, 1) . (5)

Then BVP (1)-(2) can be written as 𝐿𝑥 = 𝑁𝑥.

3. Existence Results

Lemma 2. If the condition (𝐶
1
) holds, then there exist 𝑝 ∈

{1, 2, . . . , 𝑚 − 2}, 𝑞 ∈ 𝑁
+
, 𝑞 ≥ 𝑝 + 1, such that

Λ (𝑝, 𝑞) =

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑞+2

𝑖
(1 − 𝛽𝜂

𝑝+2
)

−

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑝+2

𝑖
(1 − 𝛽𝜂

𝑞+2
) ̸= 0,

(6)

where𝑁+ = {1, 2, . . .}.

Proof. We prove that, for any 𝑙 ∈ 𝑁, there exists 𝑘
𝑙
∈ {𝑙(𝑚 −

2) + 1, . . . , (𝑙 + 1)(𝑚 − 2)}, such that ∑𝑚−2
𝑖=1

𝛼
𝑖
𝜉
𝑘𝑙+2

𝑖
̸= 0.

If else, one has ∑𝑚−2
𝑖=1

𝛼
𝑖
𝜉
𝑘𝑙+2

𝑖
= 0, any 𝑘

𝑙
∈ {𝑙(𝑚 − 2) +

1, 𝑙(𝑚 − 2) + 2, . . . , (𝑙 + 1)(𝑚 − 2)}; that is,

(

𝜉
𝑙(𝑚−2)+3

1
. . . 𝜉

𝑙(𝑚−2)+3

𝑚−2

... d
...

𝜉
(𝑙+1)(𝑚−2)+2

1
⋅ ⋅ ⋅ 𝜉
(𝑙+2)(𝑚−2)+2

𝑚−2

)(

𝛼
1

...
𝛼
𝑚−2

) = (

0

...
0

) . (7)

Since
















𝜉
𝑙(𝑚−2)+3

1
⋅ ⋅ ⋅ 𝜉

𝑙(𝑚−2)+3

𝑚−2

... d
...

𝜉
(𝑙+1)(𝑚−2)+2

1
⋅ ⋅ ⋅ 𝜉
(𝑙+1)(𝑚−2)+2

𝑚−2

















=

𝑚−2

∏

𝑗=1

𝜉
𝑙(𝑚−2)+3

𝑗




















1 ⋅ ⋅ ⋅ 1

𝜉
1

⋅ ⋅ ⋅ 𝜉
𝑚−2

... d
...

𝜉
𝑚−3

1
⋅ ⋅ ⋅ 𝜉
𝑚−3

𝑚−2




















=

𝑚−2

∏

𝑗=1

𝜉
𝑙(𝑚−2)+3

𝑗
∏

1≤𝑖<𝑗≤𝑚−2

(𝜉
𝑗
− 𝜉
𝑖
) ̸= 0,

(8)

thus 𝛼
𝑖
= 0, 𝑖 = 1, 2, . . . , 𝑚 − 2.

It is clear that

(1 − 𝛽)

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
2

𝑖
= 0,

(1 −

𝑚−2

∑

𝑖=1

𝛼
𝑖
)(𝛽𝜂

2
− 1) = 𝛽𝜂

2
− 1 < 0,

(9)

which is a contradiction to the condition (𝐶
1
).

Set

𝑆 =

{

{

{

𝑘
𝑙
∈ 𝑁
+
: 1 − 𝛽𝜂

𝑝+2
=

∑
𝑚−2

𝑖=1
𝛼
𝑖
𝜉
𝑝+2

𝑖
(1 − 𝛽𝜂

𝑘𝑙+2
)

∑
𝑚−2

𝑖=1
𝛼
𝑖
𝜉
𝑘𝑙+2

𝑖

}

}

}

.

(10)

Then 𝑆 is a finite set.
If else, there exists a monotone sequence {𝑘

𝑙𝑟
}, 𝑟 =

1, 2, . . ., 𝑘
𝑙𝑟
< 𝑘
𝑙𝑟+1

, such that

1 − 𝛽𝜂
𝑝+2

=

∑
𝑚−2

𝑖=1
𝛼
𝑖
𝜉
𝑝+2

𝑖
(1 − 𝛽𝜂

𝑘𝑙𝑟
+2
)

∑
𝑚−2

𝑖=1
𝛼
𝑖
𝜉

𝑘𝑙𝑟
+2

𝑖

. (11)

From 0 < 𝛽𝜂
𝑝+2

< 1, we get
𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑝+2

𝑖
̸= 0. (12)

Thus

1 − 𝛽𝜂
𝑝+2

= lim
𝑘𝑙𝑟
→∞

∑
𝑚−2

𝑖=1
𝛼
𝑖
𝜉
𝑝+2

𝑖
(1 − 𝛽𝜂

𝑘𝑙𝑟
+2
)

∑
𝑚−2

𝑖=1
𝛼
𝑖
𝜉

𝑘𝑙𝑟
+2

𝑖

= ∞. (13)

So it is a contradiction. Thus the Lemma is proved.
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Lemma 3. Let (𝐶
1
) hold and Λ(𝑝, 𝑞) ̸= 0; then 𝐿: dom 𝐿 ⊂

𝑌 → 𝑍 is a Fredholm map of index zero. Furthermore, the
linear continuous projector operator 𝑄 : 𝑍 → 𝑍 can be
defined by

𝑄𝑦 (𝑡) = (𝑇
1
𝑦) 𝑡
𝑝−1

+ (𝑇
2
𝑦) 𝑡
𝑞−1
, (14)

where

𝑇
1
𝑦 =

𝑝 (𝑝 + 1) (𝑝 + 2)

Λ (𝑝, 𝑞)

× [(𝛽𝜂
𝑞+2

− 1)𝑄
1
𝑦 +

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑞+2

𝑖
𝑄
2
𝑦] ,

𝑇
2
𝑦 = −

𝑞 (𝑞 + 1) (𝑞 + 2)

Λ (𝑝, 𝑞)

× [(𝛽𝜂
𝑝+2

− 1)𝑄
1
𝑦 +

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑝+2

𝑖
𝑄
2
𝑦] ,

𝑄
1
𝑦 =

𝑚−2

∑

𝑖=1

𝛼
𝑖
∫

𝜉𝑖

0

∫

𝑠

0

∫

𝜏

0

𝑦 (V) 𝑑V 𝑑𝜏 𝑑𝑠,

𝑄
2
𝑦 = ∫

1

0

∫

𝑠

0

∫

𝜏

0

𝑦 (V) 𝑑V 𝑑𝜏 𝑑𝑠

− 𝛽∫

𝜂

0

∫

𝑠

0

∫

𝜏

0

𝑦 (V) 𝑑V 𝑑𝜏 𝑑𝑠.

(15)

And the linear operator 𝐾
𝑃
: Im 𝐿 → dom 𝐿 ∩ Ker𝑃 can be

written by

𝐾
𝑃
𝑦 (𝑡) = ∫

𝑡

0

∫

𝑠

0

∫

𝜏

0

𝑦 (V) 𝑑V 𝑑𝜏 𝑑𝑠, 𝑦 ∈ Im 𝐿. (16)

Furthermore




𝐾
𝑃
𝑦




≤




𝑦



1
, 𝑦 ∈ Im 𝐿. (17)

Proof. It is clear that Ker 𝐿 = {𝑥 ∈ dom 𝐿 : 𝑥 = 𝑎 + 𝑐𝑡
2
, 𝑎 =

((𝛽𝜂
2
− 1)/(1 − 𝛽))𝑐, 𝑐 ∈ 𝑅}.

Now we show that

Im 𝐿 = {𝑦 ∈ 𝑍 : 𝑄
1
𝑦 = 𝑄

2
𝑦 = 0} . (18)

The equation

𝑥

= 𝑦, (19)

has a solution 𝑥(𝑡) satisfying (2) if and only if

𝑄
1
𝑦 = 𝑄

2
𝑦 = 0. (20)

In fact, if (19) has a solution 𝑥(𝑡) such that (2), then from
(19) we have

𝑥 (𝑡) =

𝛽𝜂
2
− 1

1 − 𝛽

𝑐 + 𝑐𝑡
2
+ ∫

𝑡

0

∫

𝑠

0

∫

𝜏

0

𝑦 (V) 𝑑V 𝑑𝜏 𝑑𝑠. (21)

According to the condition (𝐶
1
), we obtain

𝑄
1
𝑦 = 𝑄

2
𝑦 = 0. (22)

On the other hand, if (20) holds, let

𝑥 (𝑡) =

𝛽𝜂
2
− 1

1 − 𝛽

𝑐 + 𝑐𝑡
2
+ ∫

𝑡

0

∫

𝑠

0

∫

𝜏

0

𝑦 (V) 𝑑V 𝑑𝜏 𝑑𝑠, (23)

where 𝑐 is an arbitrary constant; then 𝑥(𝑡) is a solution of (19)
and (2). Hence (18) holds.

Set

𝑇
1
𝑦 =

𝑝 (𝑝 + 1) (𝑝 + 2)

Λ (𝑝, 𝑞)

× [(𝛽𝜂
𝑞+2

− 1)𝑄
1
𝑦 +

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑞+2

𝑖
𝑄
2
𝑦] ,

𝑇
2
𝑦 = −

𝑞 (𝑞 + 1) (𝑞 + 2)

Λ (𝑝, 𝑞)

× [(𝛽𝜂
𝑝+2

− 1)𝑄
1
𝑦 +

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑝+2

𝑖
𝑄
2
𝑦] .

(24)

Then we define

𝑄𝑦 (𝑡) = (𝑇
1
𝑦) 𝑡
𝑝−1

+ (𝑇
2
𝑦) 𝑡
𝑞−1
. (25)

It is clear that dim Im𝑄 = 2.
Again from

𝑇
1
((𝑇
1
𝑦) 𝑡
𝑝−1

) =

𝑝 (𝑝 + 1) (𝑝 + 2)

Λ (𝑝, 𝑞)

× [ (𝛽𝜂
𝑞+2

− 1)𝑄
1
((𝑇
1
𝑦) 𝑡
𝑝−1

)

+

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑞+2

𝑖
𝑄
2
((𝑇
1
𝑦) 𝑡
𝑝−1

)]

=

1

Λ (𝑝, 𝑞)

[ (𝛽𝜂
𝑞+2

− 1) 𝑝 (𝑝 + 1)

× (𝑝 + 2)𝑄
1
(𝑡
𝑝−1

)

+ 𝑝 (𝑝 + 1) (𝑝 + 2)

×

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑞+2

𝑖
𝑄
2
(𝑡
𝑝−1

)]

× (𝑇
1
𝑦) = 𝑇

1
𝑦,
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𝑇
1
((𝑇
2
𝑦) 𝑡
𝑞−1
) =

𝑝 (𝑝 + 1) (𝑝 + 2)

Λ (𝑝, 𝑞)

× [ (𝛽𝜂
𝑞+2

− 1)𝑄
1
((𝑇
2
𝑦) 𝑡
𝑞−1
)

+

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑞+2

𝑖
𝑄
2
((𝑇
2
𝑦) 𝑡
𝑞−1
)]

=

1

Λ (𝑝, 𝑞)

[ (𝛽𝜂
𝑞+2

− 1) 𝑝 (𝑝 + 1)

× (𝑝 + 2)𝑄
1
(𝑡
𝑞−1
)

+ 𝑝 (𝑝 + 1) (𝑝 + 2)

×

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑞+2

𝑖
𝑄
2
(𝑡
𝑞−1
)]

× (𝑇
2
𝑦) = 0,

𝑇
2
((𝑇
1
𝑦) 𝑡
𝑝−1

) = −

𝑞 (𝑞 + 1) (𝑞 + 2)

Λ (𝑝, 𝑞)

× [ (𝛽𝜂
𝑝+2

− 1)𝑄
1
((𝑇
1
𝑦) 𝑡
𝑝−1

)

+

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑝+2

𝑖
𝑄
2
((𝑇
1
𝑦) 𝑡
𝑝−1

)]

= −

𝑞 (𝑞 + 1) (𝑞 + 2)

Λ (𝑝, 𝑞)

× [ (𝛽𝜂
𝑝+2

− 1)𝑄
1
(𝑡
𝑝−1

)

+

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑝+2

𝑖
𝑄
2
(𝑡
𝑝−1

)]

× (𝑇
1
𝑦) = 0,

𝑇
2
((𝑇
2
𝑦) 𝑡
𝑞−1
) = −

𝑞 (𝑞 + 1) (𝑞 + 2)

Λ (𝑝, 𝑞)

× [ (𝛽𝜂
𝑝+2

− 1)𝑄
1
((𝑇
2
𝑦) 𝑡
𝑞−1
)

+

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑝+2

𝑖
𝑄
2
((𝑇
2
𝑦) 𝑡
𝑞−1
)]

= 𝑇
2
𝑦.

(26)
One has

𝑄
2
𝑦 = 𝑄 ((𝑇

1
𝑦) 𝑡
𝑝−1

+ (𝑇
2
𝑦) 𝑡
𝑞−1
)

= 𝑇
1
((𝑇
1
𝑦) 𝑡
𝑝−1

+ (𝑇
2
𝑦) 𝑡
𝑞−1
) 𝑡
𝑝−1

+ 𝑇
2
((𝑇
1
𝑦) 𝑡
𝑝−1

+ (𝑇
2
𝑦) 𝑡
𝑞−1
) 𝑡
𝑞−1

= 𝑇
1
((𝑇
1
𝑦) 𝑡
𝑝−1

) 𝑡
𝑝−1

+ 𝑇
1
((𝑇
2
𝑦) 𝑡
𝑞−1
) 𝑡
𝑝−1

+ 𝑇
2
((𝑇
1
𝑦) 𝑡
𝑝−1

) 𝑡
𝑞−1

+ 𝑇
2
((𝑇
2
𝑦) 𝑡
𝑞−1
) 𝑡
𝑞−1

= (𝑇
1
𝑦) 𝑡
𝑝−1

+ (𝑇
2
𝑦) 𝑡
𝑞−1

= 𝑄𝑦.

(27)

Thus the operator 𝑄 is a projector.
Nowwe show that Ker𝑄 = Im 𝐿. If 𝑦 ∈ Ker𝑄, from𝑄𝑦 =

0, we have
𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑞+2

𝑖
𝑄
2
𝑦 + (𝛽𝜂

𝑞+2
− 1)𝑄

1
𝑦 = 0,

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑝+2

𝑖
𝑄
2
𝑦 + (𝛽𝜂

𝑝+2
− 1)𝑄

1
𝑦 = 0.

(28)

Because of




















𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑞+2

𝑖
𝛽𝜂
𝑞+2

− 1

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑝+2

𝑖
𝛽𝜂
𝑝+2

− 1





















= −Λ (𝑝, 𝑞) ̸= 0, (29)

𝑄
1
𝑦 = 𝑄

2
𝑦 = 0, which yields 𝑦 ∈ Im 𝐿. On the other hand,

if 𝑦 ∈ Im 𝐿, from 𝑄
1
𝑦 = 𝑄

2
𝑦 = 0 and the definition of 𝑄, so

𝑄𝑦 = 0; thus 𝑦 ∈ Ker𝑄. Hence, Ker𝑄 = Im 𝐿.
For 𝑦 ∈ 𝑍, from 𝑦 = (𝑦 − 𝑄𝑦) + 𝑄𝑦, (𝑦 − 𝑄𝑦) ∈ Ker𝑄 =

Im 𝐿, 𝑄𝑦 ∈ Im𝑄, we have 𝑍 = Im 𝐿 + Im𝑄. And if 𝑦 ∈

Im 𝐿 ∩ Im𝑄, from 𝑦 ∈ Im𝑄, there exist constants 𝑎, 𝑏 ∈ 𝑅,
such that 𝑦(𝑡) = 𝑎𝑡𝑝−1 + 𝑏𝑡𝑞−1.

From 𝑦 ∈ Im 𝐿, we obtain

𝑎𝑞 (𝑞 + 1) (𝑞 + 2)

×

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑝+2

𝑖
+ 𝑏𝑝 (𝑝 + 1) (𝑝 + 2)

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑞+2

𝑖
= 0,

𝑎𝑞 (𝑞 + 1) (𝑞 + 2) (1 − 𝛽𝜂
𝑝+2

)

+ 𝑏𝑝 (𝑝 + 1) (𝑝 + 2) (1 − 𝛽𝜂
𝑞+2
) = 0.

(30)

In view of















𝑞 (𝑞 + 1) (𝑞 + 2)

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑝+2

𝑖
𝑝 (𝑝 + 1) (𝑝 + 2)

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑞+2

𝑖

𝑞 (𝑞 + 1) (𝑞 + 2) (1 − 𝛽𝜂
𝑝+2

) 𝑝 (𝑝 + 1) (𝑝 + 2) (1 − 𝛽𝜂
𝑞+2
)
















= −𝑞 (𝑞 + 1) (𝑞 + 2) 𝑝 (𝑝 + 1) (𝑝 + 2)Λ (𝑝, 𝑞)

̸= 0,

(31)

therefore (30) has a unique solution 𝑎 = 𝑏 = 0, which implies
Im 𝐿 ∩ Im𝑄 = {0}. So we have 𝑍 = Im 𝐿 ⊕ Im𝑄. Since
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imKer 𝐿 = dimIm𝑄 = codimIm 𝐿 = 2, thus 𝐿 is a Fredholm
map of index zero.

Let 𝑃 : 𝑌 → 𝑌 be defined by

𝑃𝑥 (𝑡) = 𝑥 (0) +

1

2

𝑥


(0) 𝑡
2
, 𝑡 ∈ [0, 1] . (32)

Then, the generalized inverse 𝐾
𝑃
: Im 𝐿 → dom 𝐿 ∩ Ker𝑃

can be written by

𝐾
𝑃
𝑦 (𝑡) = ∫

𝑡

0

∫

𝑠

0

∫

𝜏

0

𝑦 (V) 𝑑V 𝑑𝜏 𝑑𝑠, 𝑦 ∈ Im 𝐿. (33)

In fact, for 𝑦 ∈ Im 𝐿, we have

(𝐿𝐾
𝑃
) 𝑦 (𝑡) = (𝐾

𝑃
𝑦)


= 𝑦 (𝑡) , (34)

and for 𝑥 ∈ dom 𝐿 ∩ Ker𝑃, we know

(𝐾
𝑃
𝐿) 𝑥 (𝑡) = (𝐾

𝑃
) 𝑥


(𝑡)

= ∫

𝑡

0

∫

𝑠

0

∫

𝜏

0

𝑥


(V) 𝑑V 𝑑𝜏 𝑑𝑠

= 𝑥 (𝑡) − [𝑥 (0) +

1

2

𝑥


(0) 𝑡
2
]

= 𝑥 (𝑡) − 𝑃𝑥 (𝑡) .

(35)

Taking note that 𝑥 ∈ dom 𝐿 ∩ Ker𝑃, 𝑃𝑥(𝑡) = 0, thus
(𝐾
𝑃
𝐿)𝑥(𝑡) = 𝑥(𝑡).
It is clear that ‖𝐾

𝑃
𝑦‖ ≤ ‖𝑦‖

1
.

Theorem 4. Let the condition (𝐶
1
) hold and Λ(𝑝, 𝑞) ̸= 0.

Assume the following.

(𝐻
1
) There exist functions 𝛼, 𝛽, 𝛾, 𝜃 ∈ 𝐿

1
[0, 1], such

that




𝑓 (𝑡, 𝑥

1
, 𝑥
2
, 𝑥
3
) + 𝑒 (𝑡)






≤ 𝛼 (𝑡)




𝑥
1





+ 𝛽 (𝑡)





𝑥
2





+ 𝛾 (𝑡)





𝑥
3





+ 𝜃 (𝑡) ,

‖𝛼‖
1
+




𝛽



1
+




𝛾



1
< 1,

(36)

where ∀(𝑥
1
, 𝑥
2
, 𝑥
3
) ∈ 𝑅
3, 𝑡 ∈ [0, 1].

(𝐻
2
)There exists a constant 𝐴 > 0 such that for 𝑥 ∈

dom 𝐿, if |𝑥(𝑡)| > 𝐴 or |𝑥(𝑡)| > 𝐴 for all 𝑡 ∈ [0, 1],
then

𝑄
1
𝑁(𝑥 (𝑡)) ̸= 0 𝑜𝑟 𝑄

2
𝑁(𝑥 (𝑡)) ̸= 0. (37)

(𝐻
3
)There exists a constant 𝐵 > 0 such that for 𝑎, 𝑐 ∈

𝑅, if |𝑎| > 𝐵 or |𝑐| > 𝐵, then either

𝑄
1
𝑁(𝑎 + 𝑐𝑡

2
) + 𝑄
2
𝑁(𝑎 + 𝑐𝑡

2
) > 0 (38)

or

𝑄
1
𝑁(𝑎 + 𝑐𝑡

2
) + 𝑄
2
𝑁(𝑎 + 𝑐𝑡

2
) < 0. (39)

Then BVP (1)-(2) has at least one solution in 𝐶2[0, 1].

Proof. We divide the proof into the following steps.

Step 1. The set Ω
1

= {𝑥 ∈ dom 𝐿 \ Ker 𝐿 : 𝐿𝑥 =

𝜆𝑁𝑥 for some 𝜆 ∈ [0, 1]} is bounded.
For 𝑥 ∈ Ω

1
, since 𝐿𝑥 = 𝜆𝑁𝑥, so 𝜆 ̸= 0,𝑁𝑥 ∈ Im 𝐿; hence

𝑄
1
𝑁(𝑥 (𝑡)) = 0, 𝑄

2
𝑁(𝑥 (𝑡)) = 0. (40)

From (𝐻
2
), there exist 𝑡

0
, 𝑡
1
∈ [0, 1] such that |𝑥(𝑡

0
)| ≤ 𝐴,

|𝑥

(𝑡
1
)| ≤ 𝐴. 𝑥, 𝑥, and 𝑥

 are absolutely continuous for all
𝑡 ∈ [0, 1], and

𝑥 (𝑡) = 𝑥 (𝑡
0
) + ∫

𝑡

𝑡0

𝑥


(𝑠) 𝑑𝑠, 𝑥


(𝑡) = 𝑥


(0) + ∫

𝑡

0

𝑥


(𝑠) 𝑑𝑠

𝑥


(𝑡) = 𝑥

(𝑡
1
) + ∫

𝑡

𝑡1

𝑥


(𝑠) 𝑑𝑠,

(41)

which imply

‖𝑥‖
∞
≤ 𝐴 +






𝑥



∞

,






𝑥



∞

≤ 𝐴 +






𝑥



1
,






𝑥



∞

≤ 𝐴 +






𝑥



1
.

(42)

From (𝐻
1
), we obtain






𝑥



1
= ‖𝐿𝑥‖

1
≤ ‖𝑁𝑥‖

1

≤ ‖𝛼‖
1
‖𝑥‖
∞
+




𝛽



1






𝑥



∞

+




𝛾



1






𝑥



∞

+ ‖𝜃‖
1

≤ (‖𝛼‖
1
+




𝛽



1
+




𝛾



1
)






𝑥



1

+ 𝐴 (2‖𝛼‖
1
+




𝛽



1
+




𝛾



1
) + ‖𝜃‖

1
,






𝑥



1
≤

1

1 − (‖𝛼‖
1
+




𝛽



1
+




𝛾



1
)

× [𝐴 (2‖𝛼‖
1
+




𝛽



1
+




𝛾



1
) + ‖𝜃‖

1
] .

(43)

So there exists a constant𝑀
1
> 0 such that ‖𝑥‖ ≤ 𝑀

1
; that is,

the setΩ
1
is bounded.

Step 2.The setΩ
2
= {𝑥 ∈ Ker 𝐿 : 𝑁𝑥 ∈ Im 𝐿} is bounded.

For 𝑥 ∈ Ω
2
, 𝑥 ∈ Ker 𝐿 implies that 𝑥 = 𝑎 + 𝑐𝑡

2
, 𝑎 =

((𝛽𝜂
2
− 1)/(1 − 𝛽))𝑐, 𝑡 ∈ [0, 1], 𝑐 ∈ 𝑅. From 𝑄𝑁𝑥 = 0,

we get 𝑄
1
𝑁(𝑎 + 𝑐𝑡

2
) = 𝑄

2
𝑁(𝑎 + 𝑐𝑡

2
) = 0. From (𝐻

3
), then

‖𝑥‖ ≤ |𝑎| + |𝑐| ≤ 2𝐵; that is, the setΩ
2
is bounded.

Step 3.The setΩ
3
= {𝑥 ∈ Ker 𝐿 : 𝜆𝐽𝑥 + (1 − 𝜆)𝑄𝑁𝑥 = 0, 𝜆 ∈

[0, 1]} is bounded.
For any 𝑎, 𝑐 ∈ 𝑅, we define the linear isomorphism 𝐽 :

Ker 𝐿 → Im 𝑄 by

𝐽 (𝑎 + 𝑐𝑡
2
) =

𝑎

𝑡
𝑝−1

+ 𝑏

𝑡
𝑞−1

Λ (𝑝, 𝑞)

, (44)
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where

𝑎

= 𝑝 (𝑝 + 1) (𝑝 + 2) [(𝛽𝜂

𝑞+2
− 1) |𝑎| +

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑞+2

𝑖
|𝑐|] ,

𝑏

= −𝑞 (𝑞 + 1) (𝑞 + 2) [(𝛽𝜂

𝑝+2
− 1) |𝑎| +

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑝+2

𝑖
|𝑐|] .

(45)

Set

𝜇 =

𝑝 (𝑝 + 1) (𝑝 + 2)

Λ (𝑝, 𝑞)

(𝛽𝜂
𝑞+2

− 1) ,

] =
𝑝 (𝑝 + 1) (𝑝 + 2)

Λ (𝑝, 𝑞)

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑞+2

𝑖
,

𝜌 = −

𝑞 (𝑞 + 1) (𝑞 + 2)

Λ (𝑝, 𝑞)

(𝛽𝜂
𝑝+2

− 1) ,

𝜔 = −

𝑞 (𝑞 + 1) (𝑞 + 2)

Λ (𝑝, 𝑞)

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝜉
𝑝+2

𝑖
.

(46)

For any 𝑥(𝑡) = 𝑎 + 𝑐𝑡2 ∈ Ω
3
, we obtain

𝜇 [𝜆 |𝑎| + (1 − 𝜆)𝑄
1
𝑁(𝑎 + 𝑐𝑡

2
)]

+ ] [𝜆 |𝑐| + (1 − 𝜆)𝑄
2
𝑁(𝑎 + 𝑐𝑡

2
)] = 0,

𝜌 [𝜆 |𝑎| + (1 − 𝜆)𝑄
1
𝑁(𝑎 + 𝑐𝑡

2
)]

+ 𝜔 [𝜆 |𝑐| + (1 − 𝜆)𝑄
2
𝑁(𝑎 + 𝑐𝑡

2
)] = 0.

(47)

On account of









𝜇 ]
𝜌 𝜔










= −

𝑝 (𝑝 + 1) (𝑝 + 2) 𝑞 (𝑞 + 1) (𝑞 + 2)

Λ (𝑝, 𝑞)

̸= 0,

(48)

therefore, we have

𝜆 |𝑎| + (1 − 𝜆)𝑄
1
𝑁(𝑎 + 𝑐𝑡

2
) = 0,

𝜆 |𝑐| + (1 − 𝜆)𝑄
2
𝑁(𝑎 + 𝑐𝑡

2
) = 0.

(49)

If 𝜆 = 1, then 𝑎 = 𝑐 = 0. If 𝜆 ̸= 1 and |𝑎| > 𝐵 or |𝑐| > 𝐵,
from the above equality and (38), one has

𝜆 (|𝑎| + |𝑐|) = − (1 − 𝜆)

× [𝑄
1
𝑁(𝑎 + 𝑐𝑡

2
) + 𝑄
2
𝑁(𝑎 + 𝑐𝑡

2
)] < 0,

(50)

which contradicts 𝜆(|𝑎| + |𝑐|) ≥ 0; thus ‖𝑥‖ ≤ |𝑎| + |𝑐| ≤ 2𝐵.
So the set Ω

3
is bounded.

Step 4. If (39) holds, similar to the above argument, we can
prove that the set

Ω
3
= {𝑥 ∈ Ker 𝐿 : −𝜆𝐽𝑥 + (1 − 𝜆)𝑄𝑁𝑥 = 0, 𝜆 ∈ [0, 1]}

(51)

is bounded too, where J is defined in (44).

Now, we will prove that all conditions of Theorem 1 are
satisfied.

LetΩ be an open bounded subset of 𝑌 such that ∪3
𝑖=1
Ω
𝑖
⊂

Ω. By the Arzelá-Ascoli theorem, we can prove that 𝐾
𝑃
(𝐼 −

𝑄)𝑁 : Ω → 𝑌 is compact, so𝑁 is 𝐿-compact onΩ.
Then by the above argument, we have

(i) 𝐿𝑥 ̸=𝑁𝑥 for every (𝑥, 𝜆) ∈ [(dom 𝐿 \ Ker 𝐿) ∩ 𝜕Ω] ×
(0, 1);

(ii) 𝑁𝑥 ∉ Im𝐿 for every 𝑥 ∈ Ker 𝐿 ∩ 𝜕Ω

(iii) let𝐻(𝑥, 𝜆) = ±𝜆𝐽𝑥 + (1 − 𝜆)𝑄𝑁𝑥.

According to the above argument in Steps 3 and 4, we
know 𝐻(𝑥, 𝜆) ̸= 0 for every 𝑥 ∈ 𝜕Ω ∩ Ker 𝐿. Thus, by using
the homotopy property of degree, we have

deg (𝑄𝑁| Ker𝐿 , Ω ∩ Ker 𝐿, 0)

= deg (𝐻 (⋅, 0) , Ω ∩ Ker 𝐿, 0)

= deg (𝐻 (⋅, 1) , Ω ∩ Ker 𝐿, 0)

= deg (±𝐽, Ω ∩ Ker 𝐿, 0)

= ±1

̸= 0.

(52)

Then by Theorem 1, 𝐿𝑥 = 𝑁𝑥 has at least one solution in
dom𝐿 ∩ Ω; that is, BVP (1)-(2) has at least one solution in
𝐶
2
[0, 1].

4. Example

Example 1. We consider the following boundary value prob-
lem:

𝑥


(𝑡) = 𝑡
2
+ 4 +

3

8

𝑥 (1 +

1

2

sin𝑥)

+

1

4

𝑡 cos (𝑥)
2

, 𝑡 ∈ (0, 1) ,

𝑥 (0) =

68

59

𝑥 (

1

2

) , 𝑥


(0) = 0, 𝑥 (1) =

1

2

𝑥 (

1

3

) .

(53)

Let

𝑓 (𝑡, 𝑥 (𝑡) , 𝑥


(𝑡) , 𝑥


(𝑡))

= 4 +

3

8

𝑥 (1 +

1

2

sin𝑥) + 1

4

𝑡 cos (𝑥)
2

, 𝑒 (𝑡) = 𝑡
2
,

𝑚 = 3, 𝛼
1
=

68

59

, 𝛽 =

1

2

, 𝜉
1
=

1

2

, 𝜂 =

1

3

.

(54)

Then the condition (𝐶
1
) holds.
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From Lemma 2, one has Λ(1, 2) = −697/9558 ̸= 0. By
Lemma 3, we define

𝑄
1
𝑦 =

68

59

∫

1/2

0

∫

𝑠

0

∫

𝜏

0

𝑦 (V) 𝑑V 𝑑𝜏 𝑑𝑠,

𝑄
2
𝑦 = ∫

1

0

∫

𝑠

0

∫

𝜏

0

𝑦 (V) 𝑑V 𝑑𝜏 𝑑𝑠

−

1

2

∫

1/3

0

∫

𝑠

0

∫

𝜏

0

𝑦 (V) 𝑑V 𝑑𝜏 𝑑𝑠,

𝑇
1
𝑦 = −

57348

697

(−

1

162

𝑄
1
𝑦 +

17

236

𝑄
2
𝑦) ,

𝑇
2
𝑦 =

229392

697

(−

53

54

𝑄
1
𝑦 +

17

118

𝑄
2
𝑦) ,

𝐾
𝑃
𝑦 (𝑡) = ∫

𝑡

0

∫

𝑠

0

∫

𝜏

0

𝑦 (V) 𝑑V 𝑑𝜏 𝑑𝑠, 𝑦 ∈ Im 𝐿.

𝑄𝑦 (𝑡) = (𝑇
1
𝑦) 𝑡
1−1

+ (𝑇
2
𝑦) 𝑡
2−1

= 𝑇
1
𝑦 + (𝑇

2
𝑦) 𝑡.

(55)

Since |𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡), 𝑥(𝑡)) + 𝑒(𝑡)| ≤ (9/16)|𝑥(𝑡)| + 𝑡
2
+

(1/4)𝑡 + 4, then 𝛼(𝑡) = 9/16, 𝛽(𝑡) = 𝛾(𝑡) = 0, 𝜃(𝑡) = 𝑡
2
+

(1/4)𝑡 + 4.
If 𝑥(𝑡) > 1 = 𝐴, |𝑥(𝑡)| > 1 = 𝐴, and 𝐵 = 1, one has

𝑄
1
𝑁𝑥 =

68

59

∫

1/2

0

∫

𝑠

0

∫

𝜏

0

(V2 + 4 +
3

8

𝑥 (1 +

1

2

sin𝑥)

+

1

4

V cos (𝑥)
2

)𝑑V 𝑑𝜏 𝑑𝑠

≥

68

59

∫

1/2

0

∫

𝑠

0

∫

𝜏

0

(V2 + 4 +
3

16

−

1

4

V)𝑑V 𝑑𝜏 𝑑𝑠

=

68

59

∫

1/2

0

∫

𝑠

0

∫

𝜏

0

[(V −
1

8

)

2

+

267

64

] 𝑑V 𝑑𝜏 𝑑𝑠

> 0,

𝑄
2
𝑁𝑥 = ∫

1

0

∫

𝑠

0

∫

𝜏

0

(V2 + 4 +
3

8

𝑥 (1 +

1

2

sin𝑥)

+

1

4

V cos (𝑥)
2

)𝑑V 𝑑𝜏 𝑑𝑠

−

1

2

∫

1/3

0

∫

𝑠

0

∫

𝜏

0

(V2 + 4 +
3

8

𝑥 (1 +

1

2

sin𝑥)

+

1

4

V cos (𝑥)
2

)𝑑V 𝑑𝜏 𝑑𝑠

≥

1

2

∫

1/3

0

∫

𝑠

0

∫

𝜏

0

(V2 + 4 +
3

8

𝑥 (1 +

1

2

sin𝑥)

+

1

4

V cos (𝑥)
2

)𝑑V 𝑑𝜏 𝑑𝑠

≥

1

2

∫

1/3

0

∫

𝑠

0

∫

𝜏

0

(V2 + 4 +
3

16

−

1

4

V)𝑑V 𝑑𝜏 𝑑𝑠

=

1

2

∫

1/3

0

∫

𝑠

0

∫

𝜏

0

[(V −
1

8

)

2

+

267

64

] 𝑑V 𝑑𝜏 𝑑𝑠

> 0,

𝑄
1
𝑁(2 + 𝑡

2
) + 𝑄
2
𝑁(2 + 𝑡

2
) > 0.

(56)
Then BVP (53) satisfies Theorem 4. So it has at least one
solution in 𝐶2[0, 1].

Remark 2. By using a similar method as employed in the
above proof, we could obtain some similar results under the
condition (𝐶

3
) or (𝐶

5
), then we omit them.
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