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This paper deals with the absolute stability for a class of nonlinear singular systems with time delay. By employing a new Lyapunov-
Krasovskii functional with the idea of partitioning delay length, improved delay-dependent stability criteria are established. The
resulting condition is formulated in terms of linear matrix inequalities (LMIs), which is easy to be verified by exiting LMI
optimization algorithms. A numerical example is given to show the effectiveness of the proposed technique and its improvements
over the existing results.

1. Introduction

Since the concept of absolute stability and the Lur’e prob-
lem were introduced, the absolute stability of Lur’e control
systems has received considerable attention and many rich
results have been proposed during the last decades [1]. Time
delays widely exist in practical systems, which is a source
of instability and deteriorated performance [2–4]. Therefore,
great efforts have been made to investigate the absolute
stability of Lur’e systems with time delay and many results
have been achieved [4–9].

Recently, an integral inequality approachwas proposed to
investigate the Lur’e system with time delay and new absolute
stability criteria were obtained [7]. In addition, as it is impos-
sible to reduce the conservatism of the derived conditions
by employing simple Lyapunov-Krasovskii functional, some
other efforts are made to improve the delay-dependent
conditions via introducing new Lyapunov-Krasovskii func-
tionals. For example, improved results for time delay systems
were obtained by introducing the augmented Lyapunov-
Krasovskii functional [10] and the delay-partitioning Lyapu-
nov-Krasovskii functional [5]. By employing a discretized
Lyapunov-Krasovskii functional, new absolute stability
condition for a class of nonlinear neutral systems is derived
in [11]. Although [11] can achieve less conservative results,

the condition was much more complicated than those based
on simple Lyapunov-Krasovskii functionals.

On the other hand, singular systems have been exten-
sively studied in the past few years due to the fact that
singular systems describe physical systems better than state-
space ones [12–15]. Depending on the area of application,
these models are also called descriptor systems, semistate
systems, differential-algebraic systems, or generalized state-
space systems. Therefore, the study of the absolute stability
problem for the Lur’e singular system with time delay is of
theoretical and practical importance [16].

In this paper, by employing the delay-partitioning
approach proposed in [17], we construct a new Lyapunov-
Krasovskii functional to investigate the absolute stability
of Lur’e singular systems with time delay. Improved delay-
dependent absolute stability criteria are presented. The cri-
teria are easy to follow, and those criteria obtained in [16] by
using simple Lyapunov-Krasovskii functional are involved in
our results. Numerical example is given to demonstrate the
advantage of the proposed method.
Notation. Throughout this paper, R𝑛 denotes the n-
dimensional Euclidean space; R𝑛×𝑚 is the set of all 𝑛 × 𝑚

real matrices; for a real matrix 𝑃, 𝑃 > 0 (resp., 𝑃 < 0) means
that 𝑃 is real symmetric and positive definite (resp., negative
definite); 𝐼 is an identity matrix of appropriate dimensions,
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and the symmetric terms in a symmetric matrix are denoted
by “∗.”

2. Problem Statement and Preliminaries

Consider the following system with time delay and sector-
bounded nonlinearity:

𝐸𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − ℎ) + 𝐷𝑤 (𝑡) ,

𝑧 (𝑡) = 𝑀𝑥 (𝑡) + 𝑁𝑥 (𝑡 − ℎ) ,

𝑤 (𝑡) = − 𝜑 (𝑡, 𝑧 (𝑡)) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ, 0] ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector of the system; 𝑤(𝑡) ∈

R𝑚 and 𝑧(𝑡) ∈ R𝑚 are input vector and output vector,
respectively; 𝐸,𝐴, 𝐵,𝐷,𝑀,𝑁 are constant matrices, where 𝐸
may be singular and it is assumed that rank𝐸 = 𝑟 ≤ 𝑛 and that
the scalarℎ > 0 is the delay of the system; the initial condition,
𝜙(𝑡), is a continuous vector-valued function of 𝑡 ∈ [−ℎ, 0].
𝜑(𝑡, 𝑧(𝑡)) ∈ R𝑚 is a nonlinear function, which is piecewise
continuous in 𝑡, globally Lipschitz in 𝑧(𝑡), 𝜑(𝑡, 0) = 0, and
satisfies the following sector condition:

[𝜑 (𝑡, 𝑧 (𝑡)) − 𝐾
1
𝑧 (𝑡)]
𝑇

[𝜑 (𝑡, 𝑧 (𝑡)) − 𝐾
2
𝑧 (𝑡)] ≤ 0, (2)

where𝐾
1
and𝐾

2
are constant realmatrices and𝐾 = 𝐾

2
−𝐾
1
is

a symmetric positive definitematrix. It is customary that such
a nonlinear function 𝜑(𝑡, 𝑧(𝑡)) is said to belong to a sector
[𝐾
1
, 𝐾
2
].

In this paper, we also investigate the robust absolute
stability of the following uncertain system:

𝐸𝑥̇ (𝑡) = (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡) + (𝐵 + Δ𝐵 (𝑡))

× 𝑥 (𝑡 − ℎ) + 𝐷𝑤 (𝑡) ,

𝑧 (𝑡) = 𝑀𝑥 (𝑡) + 𝑁𝑥 (𝑡 − ℎ) ,

𝑤 (𝑡) = − 𝜑 (𝑡, 𝑧 (𝑡)) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ, 0] ,

(3)

where the uncertainties are of the form

[Δ𝐴 (𝑡) Δ𝐵 (𝑡)] = 𝐿𝐹 (𝑡) [𝐸
𝑎

𝐸
𝑏
] , (4)

where 𝐿, 𝐸
𝑎
, and 𝐸

𝑏
are constant matrices, and 𝐹(𝑡) is a time-

varying matrix satisfying

𝐹
𝑇

(𝑡) 𝐹 (𝑡) ≤ 𝐼, ∀𝑡. (5)

Next, the following definitions and lemmas are intro-
duced, which will be used in the proof of the main results.

Definition 1 (see [12]). (i) The pair (𝐸,𝐴) is said to be regular
if det(𝑠𝐸−𝐴) is not identically zero. (ii)The pair (𝐸,𝐴) is said
to be impulse-free if deg(det(𝑠𝐸 − 𝐴)) = rank E.

Definition 2 (see [12]). (i) The nonlinear singular system (1)
is said to be regular and impulse-free if the pair (𝐸,𝐴) is

regular and impulse-free. (ii) The nonlinear singular system
(1) is said to be globally uniformly asymptotically stable for
any nonlinear function 𝜑(𝑡, 𝑧(𝑡)) satisfying (2) if, for any 𝜖 >

0, there exists a scalar 𝛿(𝜖) such that, for any compatible
initial conditions 𝜙(𝑡) satisfying sup

−ℎ≤𝑡≤0
‖𝜙(𝑡)‖ ≤ 𝛿(𝜖), the

solution 𝑥(𝑡) of the system (1) satisfies ‖𝑥(𝑡)‖ ≤ 𝜖 for 𝑡 ≥ 0.
Furthermore, lim

𝑡→∞
𝑥(𝑡) = 0.

Lemma 3 (see [18]). Consider the function 𝜑 : R+ → R; if 𝜑
is uniformly continuous and ∫

∞

0

𝜑(𝑠)𝑑𝑠 < ∞, lim
𝑡→∞

𝜑(𝑡) =

0.

Lemma 4 (see [19]). For any symmetric positive-definite
matrix 𝑀 ∈ R𝑛×𝑛 and a scalar 𝛾 > 0, if there exists a vector
function𝜔(𝛼) : [−𝛾, 0] → R𝑛 such that the following integrals
are well defined, then

− 𝛾∫

0

−𝛾

𝜔̇(𝑡 + 𝛼)
𝑇

𝐸
𝑇

𝑀𝐸𝜔̇ (𝑡 + 𝛼) 𝑑𝛼

≤ [

𝜔 (𝑡)

𝜔 (𝑡 − 𝛾)
]

𝑇

[

−𝐸
𝑇

𝑀𝐸 𝐸
𝑇

𝑀𝐸

∗ −𝐸
T
𝑀𝐸

][

𝜔 (𝑡)

𝜔 (𝑡 − 𝛾)
] .

(6)

Lemma 5 (see [20]). Let 𝐻,𝐸, and 𝐹(𝑡) be real matrices of
appropriate dimensions with 𝐹(𝑡) satisfying 𝐹

𝑇

(𝑡)𝐹(𝑡) ≤ 𝐼.
Then, for any scalar 𝜀 > 0,

𝐻𝐹 (𝑡) 𝐸 + (𝐻𝐹 (𝑡) 𝐸)
𝑇

≤ 𝜀
−1

𝐻𝐻
𝑇

+ 𝜀𝐸
𝑇

𝐸. (7)

3. Main Results

Firstly, bymeans of the loop transformation suggested in [21],
it can be concluded that the absolute stability of system (1)
in the sector [𝐾

1
, 𝐾
2
] is equivalent to that of the following

system in the sector [0, 𝐾
2
− 𝐾
1
]:

𝐸𝑥̇ (𝑡) = 𝐴̄𝑥 (𝑡) + 𝐵̄𝑥 (𝑡 − ℎ) + 𝐷𝑤 (𝑡) ,

𝑧 (𝑡) = 𝑀𝑥 (𝑡) + 𝑁𝑥 (𝑡 − ℎ) ,

𝑤 (𝑡) = − 𝜑 (𝑡, 𝑧 (𝑡)) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ, 0] ,

(8)

where 𝐴̄ = 𝐴 − 𝐷𝐾
1
𝑀, 𝐵̄ = 𝐵 − 𝐷𝐾

1
𝑁.

Thus, for the absolute stability of system (1), we have the
following result.

Theorem 6. Given integer 𝑘 and scalar 𝜏 = ℎ/𝑘 > 0, the
system (1) with nonlinear connection function satisfying (2) is
absolutely stable in the sector [𝐾

1
, 𝐾
2
] if there exist a scalar

𝜀 > 0, matrices

𝑃 = 𝑃
𝑇

> 0,

𝑄
𝑎
=

[

[

[

[

[

𝑄
11

𝑄
12

⋅ ⋅ ⋅ 𝑄
1𝑘

∗ 𝑄
22

⋅ ⋅ ⋅ 𝑄
2𝑘

∗ ∗ d
...

∗ ∗ ∗ 𝑄
𝑘𝑘

]

]

]

]

]

≥ 0,

𝑍
𝑖
= 𝑍
𝑇

𝑖
> 0, (𝑖 = 1, 2 . . . , 𝑘) ,

(9)
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and a matrix 𝑆 with appropriate dimensions, such that the
following LMI holds:

Φ =
[

[

Φ
11

Φ
12

Φ
13

∗ Φ
22

0

∗ ∗ Φ
33

]

]

< 0, (10)

where

Φ
11

=
[

[

[

Π
1

𝑃 𝐵̄ + 𝐸
𝑇

𝑍
1
𝐸 𝑃̃𝐷 − 𝜀𝑀

𝑇

(𝐾
2
− 𝐾
1
)
𝑇

∗ −𝑄
𝑘𝑘

− 𝐸
𝑇

𝑍
𝑘
𝐸 −𝜀𝑁

𝑇

(𝐾
2
− 𝐾
1
)
𝑇

∗ ∗ −2𝜀𝐼

]

]

]

,

Φ
12

=
[

[

𝐸
𝑇

𝑍
1
𝐸 + 𝑄

12
𝑄
13

⋅ ⋅ ⋅ 𝑄
1𝑘

−𝑄
𝑇

1𝑘
⋅ ⋅ ⋅ −𝑄

𝑇

(𝑘−2)𝑘
𝐸
𝑇

𝑍
𝑘
𝐸 − 𝑄

𝑇

(𝑘−1)𝑘

0 ⋅ ⋅ ⋅ 0 0

]

]

,

Π
1
= 𝑃 𝐴̄ + 𝐴̄

𝑇

𝑃̃ + 𝑄
11

− 𝐸
𝑇

𝑍
1
𝐸, 𝑃̃ = 𝐸

𝑇

𝑃 + 𝑆𝑅
𝑇

,

Φ
22

=

[

[

[

[

[

[

[

Λ
1

Λ̄
1

𝑄̄
13

⋅ ⋅ ⋅ 𝑄̄
1(𝑘−1)

∗ Λ
2

Λ̄
2

⋅ ⋅ ⋅

...
∗ ∗ d d 𝑄̄

(𝑘−3)(𝑘−1)

∗ ∗ ∗ Λ
𝑘−2

Λ̄
𝑘−2

∗ ∗ ∗ ∗ Λ
𝑘−1

]

]

]

]

]

]

]

,

𝑄̄
𝑖𝑗
= 𝑄
(𝑖+1)(𝑗+1)

− 𝑄
𝑖𝑗
, Λ
𝑖
= −𝐸
𝑇

𝑍
𝑖
𝐸 − 𝐸

𝑇

𝑍
𝑖+1

𝐸 + 𝑄̄
𝑖𝑖
,

(𝑖, 𝑗 = 1, 2, . . . , 𝑘 − 1) ,

Λ̄
𝑖
= 𝐸
𝑇

𝑍
𝑖+1

𝐸 + 𝑄̄
𝑖(𝑖+1)

, (𝑖 = 1, 2, . . . , 𝑘 − 2) ,

Φ
13

= 𝜏Γ
𝑇

𝑘

∑

𝑖=1

𝑍
𝑖
, Φ
33

= −

𝑘

∑

𝑖=1

𝑍
𝑖
, Γ = [𝐴̄ 𝐵̄ 𝐷]

(11)

and 𝑅 ∈ R𝑛×(𝑛−𝑟) is any matrix with full column rank and
satisfying 𝑅𝑇𝐸 = 0.

Proof. Firstly, dividing the delay ℎ into 𝑘 equal segments, the
length of each segment is denoted as 𝜏; that is, 𝜏 = ℎ/𝑘.
Choosing a Lyapunov-Krasovskii functional is as follows:

𝑉 (𝑡, 𝑥
𝑡
) = 𝑥
𝑇

(𝑡) 𝐸
𝑇

𝑃𝐸𝑥 (𝑡) + ∫

𝑡

𝑡−𝜏

𝜁
𝑇

1
(𝑠) 𝑄
𝑎
𝜁
1
(𝑠) 𝑑𝑠

+

𝑘

∑

𝑖=1

∫

−(𝑖−1)𝜏

−𝑖𝜏

∫

𝑡

𝑡+𝜃

𝜏𝑥̇
𝑇

(𝑠) 𝐸
𝑇

𝑍
𝑖
𝐸𝑥̇ (𝑠) 𝑑𝑠 𝑑𝜃,

(12)

where

𝑃 > 0,

𝑄
𝑎
=

[

[

[

[

[

𝑄
11

𝑄
12

⋅ ⋅ ⋅ 𝑄
1𝑘

∗ 𝑄
22

⋅ ⋅ ⋅ 𝑄
2𝑘

∗ ∗ d
...

∗ ∗ ∗ 𝑄
𝑘𝑘

]

]

]

]

]

≥ 0,

𝑍
𝑖
> 0, (𝑖 = 1, 2, . . . , 𝑘)

(13)

are to be determined and 𝜁
1
(𝑡) = [𝑥

𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝜏) ⋅ ⋅ ⋅

𝑥
𝑇

(𝑡 − (𝑘 − 1)𝜏)]
𝑇

.

Calculating the derivative of each 𝑉(𝑡, 𝑥
𝑡
) along the

solutions of system (8) yields

𝑉̇ (𝑡, 𝑥
𝑡
) = 𝑥
𝑇

(𝑡) (𝐸
𝑇

𝑃𝐴̄ + 𝐴̄
𝑇

𝑃𝐸) 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) 𝐸
𝑇

𝑃𝐵̄𝑥 (𝑡 − ℎ) + 2𝑥
𝑇

(𝑡) 𝐸
𝑇

𝑃𝐷𝑤 (𝑡)

+ 𝜁
𝑇

1
(𝑡) 𝑄
𝑎
𝜁
1
(𝑡) − 𝜁

𝑇

1
(𝑡 − 𝜏)𝑄

𝑎
𝜁
1
(𝑡 − 𝜏)

+ 𝜏
2

𝑥̇
𝑇

(𝑡)

𝑘

∑

𝑖=1

𝐸
𝑇

𝑍
𝑖
𝐸𝑥̇ (𝑡)

−

𝑘

∑

𝑖=1

∫

𝑡−(𝑖−1)𝜏

𝑡−𝑖𝜏

𝜏𝑥̇
𝑇

(𝑠) 𝐸
𝑇

𝑍
𝑖
𝐸𝑥̇ (𝑠) 𝑑𝑠.

(14)

Let 𝜃 = −∫

𝑡−(𝑖−1)𝜏

𝑡−𝑖𝜏

𝜏𝑥̇
𝑇

(𝑠)𝐸
𝑇

𝑍
𝑖
𝐸𝑥̇(𝑠)𝑑𝑠; using Lemma 4, we

have

𝜃 ≤ [

𝑥 (𝑡 − (𝑖 − 1) 𝜏)

𝑥 (𝑡 − 𝑖𝜏)
]

𝑇

[

−𝐸
𝑇

𝑍
𝑖
𝐸 𝐸
𝑇

𝑍
𝑖
𝐸

∗ −𝐸
𝑇

𝑍
𝑖
𝐸

]

× [

𝑥 (𝑡 − (𝑖 − 1)) 𝜏

𝑥 (𝑡 − 𝑖𝜏)
] .

(15)

From (1) and (2), for 𝜑(𝑡, 𝑧(𝑡)) ∈ [0, 𝐾
2
− 𝐾
1
] and a scalar

𝜀 > 0, it can be deduced that

0 ≤ −2𝜀𝑤
𝑇

(𝑡) 𝑤 (𝑡) − 2𝜀𝑤
𝑇

(𝑡) (𝐾
2
− 𝐾
1
)

× [𝑀𝑥 (𝑡) + 𝑁𝑥 (𝑡 − ℎ)] .

(16)

Noting that 𝑅𝑇𝐸 = 0, we can deduce

0 = 𝑅
𝑇

𝐴̄𝑥 (𝑡) + 𝑅
𝑇

𝐵̄𝑥 (𝑡 − ℎ) + 𝑅
𝑇

𝐷𝑤 (𝑡) . (17)

From (14)–(17), we get

𝑉̇ (𝑡, 𝑥
𝑡
) ≤ 𝜁
𝑇

(𝑡) [Ψ + 𝜏
2

Γ̄
𝑇

𝑘

∑

𝑖=1

𝑍
𝑖
Γ̄] 𝜁 (𝑡) , (18)

where

Ψ = [

Φ
11

Φ
12

∗ Φ
22

] , Γ̄ = [𝐴̄ 𝐵 𝐷 0]

𝜁 (𝑡) = [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − ℎ) 𝑤
𝑇

(𝑡) 𝜁
𝑇

2
(𝑡)]

𝑇

,

𝜁
𝑇

2
(𝑡) = [𝑥

𝑇

(𝑡 − 𝜏) 𝑥
𝑇

(𝑡 − 2𝜏) ⋅ ⋅ ⋅ 𝑥
𝑇

(𝑡 − (𝑘 − 1) 𝜏)]

𝑇

.

(19)

IfΨ+ 𝜏
2

Γ̄
𝑇

∑
𝑘

𝑖=1
𝑍
𝑖
Γ̄ < 0, which is equivalent to (10) by Schur

complements [22], then 𝑉̇(𝑡, 𝑥
𝑡
) < 0 holds.

In what follows, we show that the nonlinear singular
system (1) is regular and impulse-free. Since rank 𝐸 = 𝑟 ≤ 𝑛,
there exist two invertible matrices 𝐺 and𝐻 ∈ R𝑛×𝑛 such that

𝐸̄ = 𝐺𝐸𝐻 = [

𝐼
𝑟

0

0 0
] . (20)
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Then, 𝑅 can be parameterized as

𝑅 = 𝐺
𝑇

[

0

Φ̄

] , (21)

where Φ̄ ∈ R(𝑛−𝑟)×(𝑛−𝑟) is any nonsingular matrix.
Like in (20), we define

𝐴̄ = 𝐺𝐴𝐻 = [

𝐴̄
11

𝐴̄
12

𝐴̄
21

𝐴̄
22

] ,

𝑃̄ = 𝐺
−𝑇

𝑃𝐺
−1

= [

𝑃̄
11

𝑃̄
12

𝑃̄
21

𝑃̄
22

] ,

̄
𝑍
𝑖
= 𝐺
−𝑇

𝑍
𝑖
𝐺
−1

= [

̄
𝑍
𝑖11

̄
𝑍
𝑖12

̄
𝑍
𝑖21

̄
𝑍
𝑖22

] , (𝑖 = 1, 2, . . . , 𝑘) ,

̄𝑆 = 𝐻
𝑇

𝑆 = [

̄𝑆
11

̄𝑆
21

] , 𝑅̄ = 𝐺
−𝑇

𝑅 = [

0

Φ̄

] .

(22)

Since 𝐴𝑇(𝑃𝐸 + 𝑅𝑆
𝑇

) + (𝐸
𝑇

𝑃 + 𝑆𝑅
𝑇

)𝐴 + 𝑄
11

− 𝐸
𝑇

𝑍
1
𝐸 < 0

and𝑄
11

≥ 0, we can formulate the following inequality easily:

𝜓 = 𝐴
𝑇

(𝑃𝐸 + 𝑅𝑆
𝑇

) + (𝐸
𝑇

𝑃 + 𝑆𝑅
𝑇

)𝐴 − 𝐸
𝑇

𝑍
1
𝐸 < 0. (23)

Pre- and postmultiplying 𝜓 < 0 by 𝐻
𝑇 and 𝐻, respectively,

yield

𝜓̄ = 𝐻
𝑇

𝜓𝐻 = 𝐴̄
𝑇

𝑃̄ 𝐸̄ + 𝐴̄
𝑇

𝑅̄ ̄𝑆
𝑇

+ 𝐸̄
𝑇

𝑃̄ 𝐴̄ + ̄𝑆 𝑅̄
𝑇

𝐴̄ − 𝐸̄
𝑇

̄
𝑍
1
𝐸̄

= [

𝜓̄
11

𝜓̄
12

∗ 𝐴̄
𝑇

22
Φ̄ ̄𝑆
𝑇

21
+ ̄𝑆
21
Φ̄
𝑇

𝐴̄
22

] < 0.

(24)

As 𝜓̄
11
and 𝜓̄

12
are irrelevant to the results of the following

discussion, the expressions about these two variables are
omitted here. It is easy to deduce from (24) that

𝐴̄
𝑇

22
Φ̄ ̄𝑆
𝑇

21
+ ̄𝑆
21
Φ̄
𝑇

𝐴̄
22

< 0 (25)

and thus 𝐴̄
22

is nonsingular. Otherwise, supposing 𝐴
22

is
singular, there must exist a nonzero vector 𝜍 ∈ R𝑛−𝑟 which
ensures that 𝐴̄

22
𝜍 = 0. And then it can be concluded that

𝜍
𝑇

(𝐴̄
𝑇

22
Φ̄ ̄𝑆
𝑇

21
+ ̄𝑆
21
Φ̄
𝑇

𝐴̄
22
)𝜍 = 0, and this contradicts (25). So

𝐴̄
22
is nonsingular. Then, it can be shown that

det (𝑠𝐸 − 𝐴) = det (𝐺−1) det (𝑠𝐸̄ − 𝐴̄) det (𝐻−1)

= det (𝐺−1) det (−𝐴̄
22
)

× det (𝑠𝐼
𝑟
− (𝐴̄
11

− 𝐴̄
12
𝐴̄
−1

22
𝐴̄
21
)) det (𝐻−1)

(26)

which implies that det(𝑠𝐸 − 𝐴) is not identically zero and
deg(det(𝑠𝐸 − 𝐴)) = 𝑟 = rank 𝐸. Then, the pair of (𝐸, 𝐴)

is regular and impulse-free, which implies that system (1) is
regular and impulse-free.

Defining 𝜉(𝑡) = [
𝜉
1
(𝑡)

𝜉
2
(𝑡)

] = 𝐻
−1

𝑥(𝑡), then we have

̄
𝜆
1

󵄩
󵄩
󵄩
󵄩
𝜉
1
(𝑡)

󵄩
󵄩
󵄩
󵄩

2

− 𝑉 (𝑥 (0)) ≤ 𝜉
𝑇

(𝑡) 𝐸̄
𝑇

𝑃̄ 𝐸̄𝜉 (𝑡) − 𝑉 (𝑥 (0))

= 𝑥
𝑇

(𝑡) 𝐸
𝑇

𝑃𝐸𝑥 (𝑡) − 𝑉 (𝑥 (0))

≤ 𝑉 (𝑥 (𝑡)) − 𝑉 (𝑥 (0))

= ∫

𝑡

0

𝑉̇ (𝑥 (𝑠)) 𝑑𝑠

≤ −
̄

𝜆
2
∫

𝑡

0

‖𝑥 (𝑠)‖
2

𝑑𝑠

≤ −
̄

𝜆
2
‖𝐻‖
2

∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
𝜉 (𝑠)

󵄩
󵄩
󵄩
󵄩

2

𝑑𝑠,

(27)

where ̄
𝜆
1
= 𝜆min(𝑃̄11),

̄
𝜆
2
= −𝜆max(Φ).

Taking into account (27), we can deduce that

̄
𝜆
1

󵄩
󵄩
󵄩
󵄩
𝜉
1
(𝑡)

󵄩
󵄩
󵄩
󵄩

2

+
̄

𝜆
2
‖𝐻‖
2

∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
𝜉 (𝑠)

󵄩
󵄩
󵄩
󵄩

2

𝑑𝑠 ≤ 𝑉 (𝑥 (0)) . (28)

Noting that ‖𝑥(𝑡)‖ and ∫

𝑡

0

‖𝑥(𝑠)‖
2

𝑑𝑠 are bounded, it fol-
lows that ‖𝜉(𝑡)‖ and∫

𝑡

0

‖𝜉(𝑠)‖
2

𝑑𝑠 are bounded; fromLemma 3,
one can conclude that lim

𝑡→∞
𝜉(𝑡) = 0; thus lim

𝑡→∞
𝑥(𝑡) = 0.

According to Definition 2, the singular system (8) is globally
uniformly asymptotically stable for 𝜑(𝑡, 𝑧(𝑡)) ∈ [0, 𝐾

2
−

𝐾
1
]. Thus the singular system (8) is absolutely stable in

the sector [0, 𝐾
2
− 𝐾
1
], which is equivalent to the absolute

stability of system (1) in the sector [𝐾
1
, 𝐾
2
]. This completes

the proof.

For uncertain system (3), substituting 𝐴 + 𝐿𝐹(𝑡)𝐸
𝑎
and

𝐵 + 𝐿𝐹(𝑡)𝐸
𝑏
for 𝐴 and 𝐵 in (10) and utilizing Lemma 5 and

Schur complements [22], we have the following result.

Theorem 7. Given integer 𝑘 and scalar 𝜏 = ℎ/𝑘 > 0,
the system (3) with nonlinear connection function satisfying
(2) and time-varying structured uncertainties satisfying (4) is
robustly absolutely stable in the sector [𝐾

1
, 𝐾
2
] if there exist

scalars 𝜀 > 0, 𝜆 > 0, matrices

𝑃 = 𝑃
𝑇

> 0,

𝑄
𝑎
=

[

[

[

[

[

𝑄
11

𝑄
12

⋅ ⋅ ⋅ 𝑄
1𝑘

∗ 𝑄
22

⋅ ⋅ ⋅ 𝑄
2𝑘

∗ ∗ d
...

∗ ∗ ∗ 𝑄
𝑘𝑘

]

]

]

]

]

≥ 0,

𝑍
𝑖
= 𝑍
𝑇

𝑖
> 0, (𝑖 = 1, 2 . . . , 𝑘) ,

(29)

and a matrix 𝑆 with appropriate dimensions, such that the
following LMI holds:

[

[

[

[

[

[

[

[

[

Φ
11

Φ
12

Φ
13

𝑃̂𝐿 𝜆𝐸

∗ Φ
22

0 0 0

∗ ∗ Φ
33

𝜏

𝑘

∑

𝑖=1

𝑍
𝑖
𝐿 0

∗ ∗ ∗ −𝜆𝐼 0

∗ ∗ ∗ ∗ −𝜆𝐼

]

]

]

]

]

]

]

]

]

< 0, (30)
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Table 1: Maximum upper bounds of ℎ.

𝛼

0.15 0.5 1 1.5 2.5 3.5
[16, Theorem 3] 2.6556 2.3358 1.9489 1.6352 1.1780 0.8749
Theorem 7, 𝑘 = 2 3.7209 3.2715 2.7269 2.2848 1.6396 1.2103
Theorem 7, 𝑘 = 3 3.9351 3.4592 2.8824 2.4141 1.7303 1.2748
Theorem 7, 𝑘 = 4 4.0114 3.5262 2.9379 2.4600 1.7625 1.2976

where

𝑃̂ =
[

[

(𝐸
𝑇

𝑃 + 𝑆𝑅
𝑇

)

0

0

]

]

, 𝐸 =

[

[

[

[

𝐸
𝑇

𝑎

𝐸
𝑇

𝑏

0

]

]

]

]

(31)

and 𝑅 ∈ R𝑛×(𝑛−𝑟) is any matrix with full column rank and
satisfying 𝑅

𝑇

𝐸 = 0; Φ
11
, Φ
12
, Φ
13
, Φ
22
, Φ
33

are defined in
Theorem 6.

Remark 8. It is worth mentioning that the conservatism is
reduced with the increase of 𝑘. At the same time, morematrix
variables are involved in the corresponding LMI, which will
increase the computing complexity.

Remark 9. In [5], some absolute stability conditions have
been obtained for Lur’e system with time delay based on a
delay-partitioning approach. However, the results proposed
in this paper achieve some improvement and are more
general than [5]. Let 𝐸 = 𝐼, 𝑆 = 0, and 𝑄

𝑖𝑗
= 0 (𝑖 ̸= 𝑗) in

(30); Theorem 7 reduces to Theorem 3 in [5].

4. Numerical Example

In this section, we provide a numerical example to demon-
strate the effectiveness of the proposed method.

Example 10. Consider uncertain system (3) with the follow-
ing parameters:

𝐸 = [

1 0

0 0
] , 𝐴 = [

0.5 0

0 −1
] ,

𝐵 = [

−1.1 1

0 0.5
] , 𝐷 = [

0.2 0

0 0.1
] ,

𝑀 = [

0.4 0

0 0.5
] , 𝑁 = [

0.2 0

0 0.1
] ,

𝐾
1
= [

0.1 0

0 0.2
] , 𝐾

2
= [

0.2 0

0 0.5
] ,

𝐿 = [

𝛼 0

0 𝛼
] , 𝛼 ≥ 0, 𝐸

𝑎
= 𝐸
𝑏
= [

0.1 0

0 0.1
] .

(32)

In this example, we choose 𝑅 = [0 1]

𝑇. For various
𝛼, the maximum upper bounds of time delay obtained by
Theorem 7 are listed in Table 1 in comparison with those
obtained by [16]. It is clear that our approach provides larger

stability region than [16]. Furthermore, it is concluded from
the table that larger upper bounds of ℎ can be obtained as 𝑘
increases.

5. Conclusions

The absolute stability problem has been investigated for time
delay singular systems with sector-bounded nonlinearity.
Some improved conditions have been derived based on the
delay-partitioning approach. A numerical example has been
given to verify the effectiveness of the proposed methods.
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[14] S. Xu, P. vanDooren, R. Ştefan, and J. Lam, “Robust stability and
stabilization for singular systemswith state delay and parameter
uncertainty,” IEEE Transactions on Automatic Control, vol. 47,
no. 7, pp. 1122–1128, 2002.

[15] Z.-G. Wu and W.-N. Zhou, “Delay-dependent robust stabi-
lization for uncertain singular systems with state delay,” Acta
Automatica Sinica, vol. 33, no. 7, pp. 714–718, 2007.

[16] H. Wang, A. Xue, and R. Lu, “Absolute stability criteria for a
class of nonlinear singular systems with time delay,” Nonlinear
Analysis:Theory, Methods & Applications, vol. 70, no. 2, pp. 621–
630, 2009.

[17] F. Gouaisbaut and D. Peaucelle, “Delay-dependent stability
analysis of linear time delay systems,” in Proceedings of the 6th
IFACWorkshop on Time-Delay Systems, 2006.
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