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From 1998, the International Astronomical Union (IAU) adopted a new Celestial Reference System: the International Celestial
Reference System (ICRS).The first optical materialization was the Hipparcos catalogue, defining the Hipparcos Celestial Reference
Frame (HCRF). The compilation of subsequent radio sources catalogues culminated in the current representation of the ICRF,
the ICRF2 catalogue that is not sufficiently dense to cover all astrometrical purposes. Linking Hipparcos and ICRF2 is essential
to uniformize the reference regardless of whether it is visible (HCRF) or not (ICRF). Many working groups provide their own
complementary catalogs, some of whose sources are also in the ICRF2, with different reduction processes for positions.The point is
that they provide information in more than one reference for a small number of objects. Some of these projects have been used by
us to study the Hipparcos-ICRF2 differences: a certain number of couples of catalogs can be interrelated using a set of parameters.
With these couples, we build a closed cycle with the same ending and departure couple.The parameters obtained from each couple
affect the next; thus we have an iterative process whose fixed point is the solution that stabilizes it, providing a preliminary link for
Hipparcos-ICRF2.

1. Introduction

A Reference System, particularly a Celestial Reference Sys-
tem, is a set of prescriptions and conventions together with
the modelling required to define at any time a triad of axes.
Until the end of the 20th century, Celestial Reference Systems
were very much linked to the different earth parameters; thus
it was necessary to update them every few years, but this
situation changed when radio sources began to be used to
define a really inertial, nearly invariant in time, system.

Along the 20th century successive FK catalogs were
compiled, motivated for two main causes: first, the technical
improvements that provide more accurate positions; second,
the need to remove different systematic errors without known
physical origin.Thefinal result was the FK5 [1] (therewas also
a FK6 [2], but it was never used as a materialization for any
Celestial Reference System). As astronomers observed, FK5
presented also some characteristics that set it aside from the
searched inertiality (see, e.g., [3–5]).

It was for these reasons that the International Astronomi-
cal Union (IAU) decided in 1997, at its 23rd general assembly,
that the IAUCelestial Reference Systemwas the International
Celestial Reference System (ICRS) from January 1, 1998,
in replacement of the FK5. The first materialization arose
from Hipparcos mission that provided the catalogue of
the same name defining the Hipparcos Celestial Reference
Frame (HCRF) [6]. To this aim, several radio sources were
considered to align the HCRF (see [7] and its references
for more details), approximately, with the theoretical ICRS.
It is necessary to highlight that this catalogue contains
approximately 118000 visible wavelengths stars. In order to
assure the continuity of the Celestial Reference Systems,
different authors have carried out the study of the relations
between HCRF and the FK5 (see [3–5, 8] among others).

As previously stated, the new system is expected to be
inertial (but it is not) and it is for this reason that several
observational programs have been developed on the basis
of Very Large Baseline Array (VLBA) in order to obtain
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the positions of celestial objects without significant proper
motions. These programs have provided the ICRF series of
nonvisible wavelengths catalogues [9], of which the ICRF2
[10] is currently in use.The ICRF series catalogs are not dense
enough to cover all astrometrical purposes and, for this rea-
son,manyworking groups provide their own complementary
catalogs, some of whose positions are also in the ICRF2 but
do not coincide numerically due to several reasons such as the
measuremethods, the different instruments employed for the
compilation, and the method used to reduce the positions.

Linking Hipparcos and ICRF2 is essential in order to uni-
formize the reference independently of whether the source
is visible (HCRF) or not (ICRF). In the future, the Gaia
project (see http://sci.esa.int/gaia/) is expected to provide a
practical solution to this problem but, for the present time,
different efforts have been carried out to obtain a link between
both references. Every observational program has its own
reduction processes for positions, but the question is that each
of them provides information in more than one reference for
a small number of objects. Currently themethod to relate two
catalogs with common sources is to consider the differences
in the data (residuals) and the search of an adjustment for
such residuals. With the word “couple,” we refer to this
process. Next, we list the couples that we use along the present
work.

(a) Assafin et al. [11] provide 300 radio sources, with
positions observed in their Rio Survey (Rio hence-
forth) program, together with the data that such radio
sources have in the ICRF2 (Couple Rio-ICRF2).

(b) We take 82 of the radio sources from Rio that are also
contained in Hipparcos (Couple Rio-Hipparcos).

(c) The comparison of ICRF2-Zach14, where Zach14
refers to N. Zacharias and M. I. Zacharias [12],
provides 682 positions obtained after reducing the
observations with respect to the Tycho-2 [6] (i.e.,
linked to, butmuch denser than theHCRF) and using
the UCAC4 ([13]).

(d) The case UCAC4-Hipparcos is different from the
three previous ones, because it contains high quality
positions in visible wavelength. We have used 104077
common sources. That is why this couple of catalogs
has the greatest influence in the level of reliability of
our results.

The aim of this paper is the study of the current situation of
the link between HCRF and ICRF2, using the four couples
of catalogs (a), (b), (c), and (d) previously defined to obtain
the links among them. Every relation affects the next pair of
catalogues, of which we obtain the corresponding relations.
This process will continue until the closed cycle made up by
the couples has been completed:

(Rio-ICRF2)-(Rio-Hipparcos)-(Hipparcos-UCAC4)
-(ICRF2-Zach14)

where we identify UCAC4 and Zach14 (see [12]). The depar-
ture point is the couple Rio-ICRF2 and the closed cycle
is completed when we reach Rio-ICRF2 again using the
procedures that we explain later.

Hipparcos-UCAC4

Rio-Hipparcos ICRF2-Zach14

Rio-ICRF2
ΔIi

ΔRi

ΔHi
ΔUi ≡ ΔZi

Figure 1: Fixed point iterative process (see explanation in text).

In each of the substeps, the relations are given by infinites-
imal rotations and deformations between the references
defined by each set of data. Since the process is a closed
circle, as soon as the parameters (infinitesimal rotations and
deformations) are fixed for one of the couples, the process
finishes and the fixed point of the problem has been found.
We give a much more detailed description of the method in
Section 2.

All problems come from the fact that, although we
search the parameters of a certain functional development
(we work with vector fields whose components belong to
the 𝐿

2
(𝑆

2
) Hilbert space), in practice for each couple of

references we have only a discrete set of unnecessary homo-
geneously distributed points on the sphere. This implies that
the method of the discrete least squares (DLS henceforth),
which is currently used to determine the parameters, is
highly unstable (due to an ill conditioned normal matrix.
Equivalently, orthogonality is not preservedwhenwe go from
the theoretic-continuous case to the practical-discrete) and
inefficient (if a higher order of development is needed, all
the coefficients of lower order must be recomputed). See, for
example, [8, 14]. We consider these topics in Section 3.

In Section 4, we implement the method described in
Section 2, using the techniques of Section 3 and we present
the results obtained, that is to say, the fixed point of the
problem.

We finish the paper with a brief discussion about the
results and perspectives of the present work.

2. Searching for the Fixed Point for
the Hipparcos-ICRF2 Corrections

The fixed point implementation applied to the different
couples of catalogs that have been listed in Section 1 is
described in Table 1 and runs as shown in Figure 1 in a closed
circle until the relationships stabilize.

The complete process could be subdivided in the follow-
ing steps.

Step 1(a). Initialization of the process from Rio-ICRF2: we
use 𝑢 to represent the nonparametrical adjustment for the
differences in Rio-ICRF2; VF

𝑢
is the first order vector field

development, with the unknowns Θ
0

𝑅
. The integral on the

sphere is a 𝑔
𝑢
(Θ) function and we obtain its minimum:

min
Θ

𝑔
𝑢
(Θ) = min

Υ,Θ

∫
𝑆
2

[𝑢
0
(𝛼, 𝛿) − VF

𝑢
0 (Θ, 𝛼, 𝛿)]

2

𝑑𝜎 → Θ
0

𝑅
.

(1)
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Table 1: Fixed point iterative process (see explanation in text).

Rio-ICRF2 Rio-Hip Hip-UCAC4 ICRF2-Zach14
(Starting point) Θ0

𝑅
Rio + Θ

0

𝑅
→ Θ

0

𝐻
Hip + Θ

0

𝐻
→ Θ

0

𝑈
Zach14 + Θ

0

𝑈
→ Θ

0

𝐼

ICRF2 + Θ
0

𝐼
→ Θ

1

𝑅
Rio + Θ

1

𝑅
→ Θ

1

𝐻
Hip + Θ

1

𝐻
→ Θ

1

𝑈
Zach14 + Θ

1

𝑈
→ Θ

1

𝐼

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Θ
𝑓

𝑅
Rio + Θ

𝑓

𝑅
→ Θ

𝑓

𝐻
Hip + Θ

𝑓

𝐻
→ Θ

𝑓

𝑈
Zach14 + Θ

𝑓

𝑈
→ Θ

𝑓

𝐼

Let 𝐺
𝑢
be the application of the previously obtained adjust-

ment on one of the catalogs of the couple. Depending on
which catalog we apply the correction, this would be used
with a plus or a minus sign.

Step 1(b). Initialization for Rı́o-Hipparcos: analogously, we
denote the adjustment and the field by V andVFV, respectively.
In V we have applied 𝐺

𝑢
to the Rio positions. Then 𝑔V(Θ) is

the corresponding integral on the sphere whose minimum is
searched in this step

min
Θ

𝑔V (Θ) = min
Θ

∫
𝑆
2

[V0 (𝛼, 𝛿) − VFV0 (Θ, 𝛼, 𝛿)]
2

𝑑𝜎 → Θ
0

𝐻
.

(2)

We denote by 𝐺V the application of this adjustment on one
of the catalogs, in a similar way to Step 1(a). Analogous
procedure is carried out for the rest of couples.

Step 1(c). Let us return to Rio-ICRF2 taking into account
all the previous 𝐺

𝑢
, 𝐺V, . . . already considered and used.

For simplicity, we denote by 𝐺 the composition of all the
transformations; then 𝑢

1
= 𝐺(𝑢) and we proceed with the

adjustment by

min
Θ

𝑓 (Θ) = min
Θ

∫
𝑆
2

[𝑢
1
(𝛼, 𝛿) − VF

𝑢
1 (Θ, 𝛼, 𝛿)]

2

𝑑𝜎 → Θ
1

𝐻
.

(3)

Step 2. Iteration continues until the coefficients stabilize.

3. Methods and Mathematical Models

The nonhomogeneity in the spatial distribution causes func-
tional orthogonality not to turn into algebraical orthogonality
in the discrete case if DLS is used. This problem is especially
serious when we estimate high order harmonics.

In previous papers ([8, 15]), we have highlighted these
potential problems using DLS and we have proposed an
alternative method, called mixed method (MM henceforth)
that overcomes these errors. In brief, the MM involves the
following steps:

(a) a selection of the estimation of 𝑓 at any point by
means of a kernel nonparametrical method (KNP)
(see Section 3.1). Other methods of estimation could
also be employed;

(b) the computation of 𝑓 values on an equispaced
selected grid;

(c) the application of 𝑎
𝑖

= ⟨𝑓, 𝑃
𝑖
⟩/⟨𝑃

𝑖
, 𝑃

𝑖
⟩ discretizing

the integrals to obtain the searched coefficients of a

parametrical model; this parametrical model is given
by a series development on a complete and orthogonal
basis in a certain Hilbert space; see Section 3.2.

In addition, ourMMhas the following advantages (for amore
complete exposition see [15]).

(i) We can calculate the estimation at equally spaced
points on the sphere. These computations are carried
out using the initial data (obtained from the catalogs
and unnecessary homogeneously distributed). The
grid of equal spaced points employed in the KNP is
used in the functional adjustment.

(ii) The (i) property allows an increase in the order of
harmonics without having to recalculate the coeffi-
cients of lower orders again because they are fixed.
This enables a sequential order increase.

(iii) Any additional assignation of weights is not required
because they are included in the method itself, via the
properties of the kernel.

(iv) The calculation of each coefficient requires the com-
putation of integrals on the sphere which can be
numerically carried out with sufficient accuracy and
low computational cost (because orthogonality is
preserved).

3.1. Kernel Regression Methods. In this subsection we expose
in detail the kernel regressionmethod in the one-dimensional
case. Then, we extend the formulas (already without provid-
ing demonstrations) for the spherical surface and the solid
sphere. This later case is used for the differences in Hip-
UCAC4 described in Section 3.2.

3.1.1. Unidimensional Kernel Regression. The DLS regression
on discrete data (𝑥

𝑖
, 𝑦

𝑖
), 1 ≤ 𝑖 ≤ 𝑛 is carried out as a finite

and linear up to order 𝑟 combination of orthogonal functions
𝜙

𝑗
in a certain domain with respect to an inner product ⟨,⟩. It

implies obtaining the 𝛼
𝑗
, 1 ≤ 𝑗 ≤ 𝑟 values minimizing

𝑛

∑

𝑖=1

[

[

𝑦
𝑖
−

𝑟

∑

𝑗=1

𝛼
𝑗
𝜙

𝑗
(𝑥

𝑖
)]

]

2

. (4)

Alternatively, we propose building upon the general defini-
tion of a one-dimensional regression curve from data (see
[16]) and then suppose that a generic, although unknown,
relationship is fulfilled:

𝑦
𝑖
= 𝑚 (𝑥

𝑖
) + 𝜀

𝑖
, (5)
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where the errors 𝜀
𝑖
are 𝑁(0, 𝜎). By definition, the regression

curve is given by

𝑚(𝑥) = 𝐸 [𝑌 | 𝑋 = 𝑥]

= ∫𝑦𝑓
𝑌|𝑋=𝑥

(𝑦 | 𝑋 = 𝑥) 𝑑𝑦 = ∫𝑦
𝑓
(𝑋,𝑌)

(𝑥, 𝑦)

𝑓
𝑋
(𝑥)

𝑑𝑦,

(6)

where 𝑓
𝑋
(𝑥), 𝑓(𝑥, 𝑦), and 𝑓(𝑦 | 𝑥) are the marginal density

of𝑋, the joint density of𝑋 and𝑌, and the conditional density
of 𝑌 given𝑋, respectively. A kernel estimate of 𝑓

𝑋
(𝑥) is

𝑓
𝑋
(𝑥) =

1

𝑛ℎ
𝑥

𝑛

∑

𝑖=1

𝐾
𝑥
(
𝑥 − 𝑥

𝑖

ℎ
𝑥

) , (7)

and a kernel estimate of 𝑓(𝑥, 𝑦) is

𝑓 (𝑥, 𝑦) =
1

𝑛ℎ
𝑥
ℎ
𝑦

𝑛

∑

𝑖=1

𝐾
𝑥
(
𝑥 − 𝑥

𝑖

ℎ
𝑥

)𝐾
𝑦
(
𝑦 − 𝑦

𝑖

ℎ
𝑦

) , (8)

where𝐾(𝑥) is called a kernel function if𝐾 ≥ 0,∫𝐾(𝑢)𝑑𝑢 = 1,
∫ 𝑢𝐾(𝑢)𝑑𝑢 = 0, and ∫ 𝑢

2
𝐾(𝑢)𝑑𝑢 < ∞. Applying these kernel

properties together with formulas (7) and (8), we obtain
a linear function of 𝑦 called the Nadaraya-Watson kernel
estimator:

�̂�
𝑁𝑊

(𝑥) =

𝑛

∑

𝑖=1

𝐾
𝑥
((𝑥 − 𝑥

𝑖
) /ℎ

𝑥
) 𝑦

𝑖

∑
𝑛

𝑗=1
𝐾

𝑥
((𝑥 − 𝑥

𝑗
) /ℎ

𝑥
)

≡

𝑛

∑

𝑖=1

𝜛
𝑖
𝑦
𝑖
, (9)

where 𝑤
𝑖
are the weights given by

𝜛
𝑖
=

1

𝑛ℎ
𝑥

𝐾
𝑥
((𝑥 − 𝑥

𝑖
) /ℎ

𝑥
)

𝑓
𝑋
(𝑥)

. (10)

This expression has been obtained by direct application of the
properties of a general kernel 𝐾 and the general properties
of the continuous density functions. Further, this kind of
method is called kernel nonparametric (KNP henceforth)
method.

At this point, we have an estimator �̂�(𝑥) of the unknown
function that may be computed on any point of the domain.
On this basis, it is possible to obtain an estimate for each
coefficient 𝛼

𝑗
provided that, on the one hand, the function

to adjust is approximated by means of the �̂�(𝑥) continuous
estimation and, on the other hand, this function can be
developed in series of the orthogonal functions {𝜙

𝑗
}
1≤𝑗≤𝑟

:

�̂�
𝑗
=

⟨�̂�, 𝜙
𝑗
⟩

⟨𝜙
𝑗
, 𝜙

𝑗
⟩

. (11)

The integrals, included in the previous formula as inner prod-
uct, are computed bymeans of a numerical method, using the
grid of equally spaced points. On these same points of the grid
the values of the function to adjust are calculated using the
regression �̂�(𝑥). If the real data correspond accidentally to
equispaced abscises, the results obtained from (11) usingMM
are similar to the results obtained applying DLS from (4).

To implement the method on a certain set of discrete
points, all we need to do is to choose a kernel, for instance,
the Epanechnikov kernel, defined by

𝐾 (𝑥) =

{

{

{

3

4
(1 − 𝑥

2
) |𝑥| ≤ 1

0 |𝑥| > 1.

(12)

The selection of this kernel is justified on the basis that this
is the most efficient among a large range of kernels (see [16]
again). Finally, the selection of the ℎ value, called bandwidth,
is done using expressions that minimize the asymptotic
mean integrate square error (AMISE) over the whole domain
(see [16–18] or [19], for a more detailed exposition of the
regression nonparametrical methods).

3.1.2. KNP on the Sphere and Solid KNP. Next we describe
the two-dimensional KNP method on the sphere. Along this
paragraph, we use (Δ𝛼 cos 𝛿)

𝑖
and Δ𝛿

𝑖
for the numerical

differences in positions for the common object 𝑖 of each
couple of catalogs, 𝛼 being the right ascension and 𝛿 the dec-
lination.The use of Δ𝛼 cos 𝛿 and Δ𝛿 for the calculation of the
coefficients of the model is commonly carried out employing
the 𝑛 individual residuals to estimate the parameters of the
selected adjustment models𝑚

𝛼
,𝑚

𝛿
:

𝑛

∑

𝑖=1

{[(Δ𝛼 cos 𝛿)
𝑖
− 𝑚

𝛼
(𝛼

𝑖
, 𝛿

𝑖
)]

2

+ [(Δ𝛿)
𝑖
− 𝑚

𝛿
(𝛼

𝑖
, 𝛿

𝑖
)]

2

} .

(13)

If necessary, it is also possible to introduceweights depending
on the statistical characteristics of the data.

Depending on the characteristics of the searched function
itmay be required tomeet certainmathematical hypothesis of
regularity. In this case, the vector field should have integrable
square on the sphere 𝐿2

(𝑆
2
). Thus, we want to find

min∫ {[Δ𝛼 cos 𝛿 (𝛼, 𝛿) − 𝑚
𝛼
(𝛼, 𝛿)]

2

+[Δ𝛿 (𝛼, 𝛿) − 𝑚
𝛿
(𝛼, 𝛿)]

2

} 𝑑𝑆.

(14)

As in the one-dimensional case, we deal with random
variables and their correspondingmathematical expectations
(replacing means) and variances, calculated as integrals. To
this aim, the use of the probability density function of each
random variable is required. As these densities are unknown,
the employment of a kernel estimator is especially useful.

In this sense in formula (14) Δ𝛼 cos 𝛿, Δ𝛿 are the non-
parametrical kernel adjustment computations of the random
variables given by their names.

Let us remember that nonparametric kernel adjustments
compute the conditional expectation of a certain random
variable that depends on others. For example, if 𝑋 is the
random variable (Δ𝛼 cos 𝛿, Δ𝛿) the KNP method consists of
finding

𝐸 [𝑋 | (𝛼, 𝛿)] = ∫
𝐷

𝑥𝑓 (𝑥 | (𝛼, 𝛿)) 𝑑𝑥 = ∫
𝐷

𝑥
𝑓 (𝑥, 𝛼, 𝛿)

𝑓
(𝛼,𝛿)

(𝛼, 𝛿)
𝑑𝑥,

(15)
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where 𝐷 is the domain of 𝑋, 𝑓(𝑥, 𝛼, 𝛿) is the joint density
function of the three random variables, and 𝑓

(𝛼,𝛿)
(𝛼, 𝛿) is the

marginal density. All these elementsmay be unknown so they
may be approximated using

𝑓 (𝑥, 𝛼, 𝛿)

=
1

𝑛ℎ
𝑥
ℎ
𝛼
ℎsin 𝛿

𝑛

∑

𝑖=1

𝐾
𝑥
(
𝑥 − 𝑥

𝑖

ℎ
𝑥

)

× 𝐾
𝛼
(
𝛼 − 𝛼

𝑖

ℎ
𝛼

)𝐾
𝛿
(
sin 𝛿 − sin 𝛿

𝑖

ℎsin 𝛿

) ,

(16)

and the condition
1

4𝜋𝜇 (𝐷)
∫
𝐷

∫
𝑆
2

𝑓 (𝑥, 𝛼, 𝛿) cos 𝛿𝑑𝑥 𝑑𝛼 𝑑𝛿 = 1 (17)

must be fulfilled. We proceed analogously for the marginal
density. Taking the same kernel for all the random variables
and considering their properties we reach a similar expres-
sion to the one-dimensional Nadaraya-Watson one, but on
the sphere:

𝑚
𝑋
(𝛼, 𝛿) =

𝑛

∑

𝑖=1

𝑤
𝑖
𝑥

𝑖
,

𝑤
𝑖
=

𝐾
𝛼
((𝛼 − 𝛼

𝑖
) /ℎ

𝛼
)𝐾

𝛿
((sin 𝛿 − sin 𝛿

𝑖
) /ℎsin 𝛿

)

∑
𝑛

𝑗=1
𝐾

𝛼
((𝛼 − 𝛼

𝑗
) /ℎ

𝛼
)𝐾

𝛿
((sin 𝛿 − sin 𝛿

𝑗
) /ℎsin 𝛿

)

,

(18)

where𝐾 is given in (12). It can be demonstrated that the lesser
ℎ is the more steeply the adjustment is. A large ℎ provides
smoother results. The theoretical optimum values have been
studied in [16].

Analogously, if we introduce a radial component, we
obtain an estimation of the residuals on the solid sphere that
generalizes formula (18).

3.2. Vector Spherical Developments. Vector spherical har-
monics have been widely used in several astronomical lines
of work. See in particular [5] within the context of the
Hipparcos-FK5 comparison. This issue was also studied by
us in [8], where we truncate the VSH development up to
first order, which is enough to determine the rotational and
deformation parameters. VSH was also studied by us in the
context of the Hipparcos spin in [3].

Let us consider the vector field over the celestial sphere
(in the case of a surface vector field, we take a constant radius
𝑟 = 1 and the last summand disappears):

ΔX ≡ V (𝑟, 𝛼, 𝛿)

= V𝛼
(𝑟, 𝛼, 𝛿) e

𝛼
+ V𝛿

(𝑟, 𝛼, 𝛿) e
𝛿
+ V𝑟

(𝑟, 𝛼, 𝛿) e
𝑟

= Δ𝛼 cos 𝛿e
𝑎
+ Δ𝛿e

𝑑
+ Δ𝑟e

𝑟
,

(19)

V𝛼, V𝛿, and V𝑟 being the scalar fields of the vector field and
e
𝛼
, e

𝛿
the unitary vectors in the tangent plane and in the

directions of the right ascension and declination, respectively,
and e

𝑟
is the unitary vector position.

On the other hand, provided that we are on the surface
of the unitary sphere, the only vector spherical harmonics
involved are the S

𝑙,𝑚
spheroidal spherical harmonics and

the T
𝑙,𝑘

toroidal spherical harmonics. Anyway, in general,
there is an additional radial component denoted by R

𝑙,𝑘
.

Thus, we suppose that the vector field V has a mathematical
development:

V (𝑟, 𝛼, 𝛿) = ∑

𝑘≥1

𝑘

∑

𝑙=−𝑘

[𝑟
𝑙,𝑚
R

𝑙,𝑚
+ 𝑡

𝑙,𝑚
T

𝑙,𝑚
+ 𝑠

𝑙,𝑚
S
𝑙,𝑚

] . (20)

The definitions of the vectors of the orthogonal and complete
basis for the 𝐿

2(𝑆2) Hilbert space of the vector fields on the
sphere are

𝑅
𝑛,𝑚

=
r
𝑟
𝑌

𝑛,𝑚
; 𝑆

𝑛,𝑚
= 𝑟∇𝑌

𝑛,𝑚
; 𝑇

𝑛,𝑚
= −𝑟 × ∇𝑌

𝑛,𝑚
,

(21)

where 𝑌
𝑛,𝑚

(𝑛 ≥ 0, −𝑛 ≤ 𝑚 ≤ 𝑛) are the usual surface
spherical harmonics. As we have previously stated, if we are
interested only in the spheroidal and toroidal components,
then, the estimationsmay be computed, due to the functional
orthogonality, as

�̂�
𝑙,𝑚

=

∫
𝑆
2
V ⋅ T

𝑘,𝑙
𝑑𝜎

T𝑘,𝑙



2
; 𝑠

𝑙,𝑚
=

∫
𝑆
2
V ⋅ S

𝑘,𝑙
𝑑𝜎

S𝑘,𝑙



2
. (22)

The denominators are exactly calculated, whereas for the
numerators an estimation is obtained using the proposed
MM: for the calculation of the components of the vector
field V at regularly spaced points on the sphere we can
use the kernel regression method, which is computationally
efficient and, in addition, it is rather accurate for the problem
that we are discussing. It is important to emphasize that,
once the adjustment has been established for V on the set
of points of the sphere, this same set can be used for the
numerical integration of the numerators up to any order of
the development.Thus, we can easily calculate independently
the estimations for higher orders of harmonics.

Truncation of (20) up to the first order, together with
formula (19), requires (see, e.g., [8]) fulfilling the following
conditions (23) in order to verify the compatibility of the
system:

Δ𝛼 cos 𝛿 = [𝑡
1,0

cos 𝛿 − 𝑡
1,1

sin𝛼 sin 𝛿 − 𝑡
1,−1

cos𝛼 sin 𝛿]

+ [𝑠
1,1

cos𝛼 − 𝑠
1,−1

sin𝛼] ,

Δ𝛿 = [−𝑡
1,1

cos𝛼 + 𝑡
1,−1

sin𝛼]

+ [−𝑠
1,1

sin𝛼 sin 𝛿 − 𝑠
1,−1

cos𝛼 sin 𝛿 + 𝑠
1,0

cos 𝛿] ,
(23)

where it is evident that 𝑡
1,−1

= 𝜀
𝑥
, 𝑡

1,1
= 𝜀

𝑦
, and 𝑡

1,0
= 𝜀

𝑧
,

𝜀
𝑥
, 𝜀

𝑦
, and 𝜀

𝑧
being the infinitesimal rotations around the

corresponding axis.
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3.3. Average for the Solid Hipparcos-UCAC4 Residuals. In
order to use Hipparcos and UCAC4, we need the data for the
common stars that we denote by (𝑟

𝑖
, 𝛼

𝑖
, 𝛿

𝑖
), 1 ≤ 𝑖 ≤ 𝑁. Notice

that we also use themodule of the radius vector because good
parallax data are available. To reduce this solid case to the
surface case, we proceed in the following way: we classify
these differences in concentric zones with radii:

𝑅
∘
< 𝑅

1
< 𝑅

2
< ⋅ ⋅ ⋅ < 𝑅

𝑘
. (24)

In this way, we have for each 𝐼
(𝑗)

= [𝑅
(𝑗)

, 𝑅
(𝑗+1)

) interval the
(Δ𝛼

𝑟
cos 𝛿

𝑟
, Δ𝛿

𝑟
)
(𝑗) differences, where superindex (𝑗) denotes

the slice where the differences are. For each 𝐼
(𝑗) we have a

vector field of differences projected on the 𝑅
𝑗,𝑗+1

point which
is the arithmetical mean between 𝑅

(𝑗) and 𝑅
(𝑗+1):

V(𝑗)
(𝑅

𝑗,𝑗+1
, 𝛼, 𝛿)

= 𝑉
(𝑗)

𝛼
(𝑅

𝑗,𝑗+1
, 𝛼, 𝛿) e

𝛼
+ 𝑉

(𝑗)

𝛿
(𝑅

𝑗,𝑗+1
, 𝛼, 𝛿) e

𝛿
,

(25)

e
𝛼
, e

𝛿
being the unitary vectors in the directions of RA and

DEC, respectively, that determine the plane tangent to the
sphere on each point. Let us call averaged vector field to the
field obtained by numerically integrating

V (𝛼, 𝛿) = ∫

𝑅
𝑘−1,𝑘

𝑅
0,1

[V(𝑗)
(𝑅

𝑗,𝑗+1
, 𝛼, 𝛿)] 𝑑𝑟. (26)

Once this field is obtained, we proceed as in Section 3.2.

4. Numerical Results

Thefixed pointmethod, together with the use of VSH and the
mixed method, needs only four steps to converge.The results
are listed in Table 2.

The ideal Hipparcos-ICRF2 differences are given by the
−Δ𝑅 values from Table 2. On the contrary, we could say that
currently the relations obtained with the available data are
given by Δ𝐻 + Δ𝑍 − Δ𝐼 (see Table 3). The ideal relations
have been obtained from a set of radio sources common to
HCRF and ICRF2. In this case, the number of radio sources
employed in the adjustment is low, but the positions are very
accurate. On the contrary, the current relations have been
obtained using the part of the cyclical process where the
most massive catalogs are used. It is interesting to note that
the massive catalogs provide more positions but with lower
accuracy. These current relations should be obtained again
when more accurate and massive catalogs are available.

The qualitative conclusion that we reach from these
results is that new reductions of the Hipparcos positions
must be carried out on the basis of modern observations
such as the Sloan Digital Sky Survey (SDSS) Project (see
http://www.sdss.org/) or the use of techniques similar to the
employed in [19] to compile Zach14.

Table 2: Results after four steps (in mas.).

𝜀
𝑥

𝜀
𝑦

𝜀
𝑧

𝑠
1,0

𝑠
1,1

𝑠
1,−1

Δ𝑅 0.25 −0.26 −0.27 0.03 0.22 0.19
Δ𝐻 1.32 −3.52 −28.72 −0.61 15.69 35.38
Δ𝑍 −1.37 −12.92 −25.60 −9.83 14.03 6.28
Δ𝐼 −0.26 −0.80 −1.18 −1.29 0.14 0.44

Table 3: Current relations obtained for the Hipparcos-ICRF2 (in
mas.).

𝜀
𝑥

𝜀
𝑦

𝜀
𝑧

𝑠
1,0

𝑠
1,1

𝑠
1,−1

Hip-ICRF2 0.21 −15.64 −53.14 −9.15 29.58 41.22

5. Conclusions

The aim of this paper is the study of the current situation
of the link between HCRF and ICRF2, using the four cou-
ples of catalogs (Rio-ICRF2)-(Rio-Hipparcos)-(Hipparcos-
UCAC4)-(ICRF2-Zach14) in a closed fixed point processwith
departure point in the couple Rio-ICRF2.

In each of the steps, the relations are given by infinitesimal
rotations and deformations between the references that each
set of data defines. We have also pointed out the problems
that appear in each step and in the proposed method. All of
the problems come from the fact that, although we search
the parameters of a certain functional development, we work
with vector fields whose components belong to the 𝐿

2
(𝑆

2
)

Hilbert space, but in practice for each couple of references
we have only a discrete set of unnecessary homogeneously
distributed points on the sphere.That has led us to employ the
MM instead of the current DLS and a kernel nonparametrical
regression.

The fixed pointmethod, together with the use of VSH and
the MM, has a very quick convergence and it has provided
us with the ideal Hipparcos-ICRF2 differences, but with the
data available nowadays the relations obtained are very much
different. We conclude from this that new reductions of the
Hipparcos positions must be carried out on the basis of
modern observations or the employ of techniques similar to
the employed in [12] to compile Zach14.
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