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We present a new method to construct unit norm tight frames by applying altered Hadamard matrices. Also we determine an
elementary construction which can be used to produce a unit norm frame with prescribed spectrum of frame operator.

1. Introduction and Preliminaries

Frames were first introduced in 1952 by Duffin and Schaeffer
[1] in the context of nonharmonic Fourier series.They are sys-
tem of functions in Hilbert spaces that provide numerically
stable methods for finding overcomplete decompositions of
vectors and such are useful tools in various signal processing
applications, data compression, wireless communications,
and so on [2–4]. Frames in finite dimensional Hilbert spaces
have become of interests for many of researches [5, 6].
One of the important subjects in this area is the way for
constructing such frames. Some methods of construction
finite tight frames are stated by researchers [7–9].

Let 𝑁 be a positive integer. A sequence of vectors {𝑓
𝑖
}
𝑖∈𝐼

in Hilbert spaceR𝑁 is said to be a frame (see also [10]) forR𝑁
if there exist constants𝐴 and 𝐵 such that 0 < 𝐴 ≤ 𝐵 < ∞ and

𝐴
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2
≤ ∑

𝑖∈𝐼

󵄨󵄨󵄨󵄨⟨𝑓, 𝑓𝑖⟩
󵄨󵄨󵄨󵄨

2
≤ 𝐵
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2
∀𝑓 ∈ R

𝑁
. (1)

The numbers 𝐴 and 𝐵 are called frame bounds and they are
not unique. The frame {𝑓

𝑖
}
𝑖∈𝐼

is said to be tight (or 𝐴-tight) if
𝐴 = 𝐵. In this case, 𝐴 is said to be the frame constant and it is
a Parsval frame, if 𝐴 = 𝐵 = 1. When the index set 𝐼 is a finite
set, the frame will be called finite. A normalized frame or unit
norm frame is the one in which elements have the norm one.

If only the right side of the inequalities (1) holds, then
{𝑓
𝑖
}
𝑖∈𝐼

is called a Bessel sequence and if {𝑓
𝑖
}
𝑖∈𝐼

is a normalized
Bessel sequence in R𝑁, then {𝑓

𝑖
}
𝑖∈𝐼

is finite sequence [5].
According to this, our framewill be the form {𝑓

𝑖
}
𝑀

𝑖=1
whenever

𝑀 is some positive integer. Also we will replace 𝑙2(𝐼) by R𝑀.
To each Bessel sequence {𝑓

𝑖
}
𝑀

𝑖=1
corresponds an operator

𝑇 : R
𝑁
󳨀→ R

𝑀
𝑇 (𝑓) = {⟨𝑓, 𝑓

𝑖
⟩}
𝑀

𝑖=1
(2)

called analysis operator which is well-defined and bounded
operator. Its adjoint is the operator

𝑇
∗
: R
𝑀
󳨀→ R

𝑁
𝑇
∗
({𝑐
𝑖
}
𝑀

𝑖=1
) =

𝑀

∑

𝑖=1

𝑐
𝑖
𝑓
𝑖
, (3)

called the synthesis operator. If {𝑓
𝑖
}
𝑀

𝑖=1
is a frame with frame

bounds 𝐴 and 𝐵, then the operator

𝑇
∗
𝑇 : R
𝑁
󳨀→ R

𝑁
, 𝑇

∗
𝑇 (𝑓) =

𝑀

∑

𝑖=1

⟨𝑓, 𝑓
𝑖
⟩ 𝑓
𝑖

(4)

is called the frame operator of the frame {𝑓
𝑖
}
𝑀

𝑖=1
. It is a positive,

self-adjoint, bounded, and hence invertible operator with the
inverse (𝑇∗𝑇)−1. Benedetto and Fickus in [5] have proved that
if {𝑓
𝑖
}
𝑀

𝑖=1
is a normalized 𝐴-tight frame for a 𝑁-dimensional

Hilbert space H, then 𝐴 = 𝑀/𝑁.
In this paper, we address the question of how to effi-

ciently construct unit norm tight frame. After reviewing
known results about the Spectral Tetris Construction and
introducing the Spectral Hadamard-Tetris Construction in
Section 2, our main result in Section 3 presents a way to
construct unit norm tight frames that we call Hadamard-
Tetris Construction. In Section 4, we introduce another
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version of Hadamard-Tetris which can be used to construct
unit norm frames with different eigenvalues for the frame
operator. We give necessary condition for this version of
Hadamard-Tetris to produce the desired frames.

2. Special Hadamard-Tetris Construction

In [11] by using the Schur-Horn Theorem, the authors have
shown how to construct every possible frame in which frame
operator has a given spectrum and in which vectors are of
given prescribed norms, but their method is complex. In
[12], the authors have presented another construction of unit
norm frames which is called “Spectral Tetris Construction”
(STC). Spectral Tetris is a flexible and elementary method
to construct unit norm frames with a given frame operator,
having all of its eigenvalues greater than or equal to two. But
that way is limited to the case of frames with𝑀 elements for
R𝑁 in which𝑀 ≥ 2𝑁. However, they extended the existing
construction to unit norm tight frame of redundancy less
than two [13], but those frames are in C𝑁 not in R𝑁.

In this paper, we implement an algorithmwhich is named
Hadamard-Tetris for the construction of unit norm tight
frames. Hadamard-Tetris constructs synthesis matrix 𝑁 ×

𝑀 with unit norm columns in which rows are pairwise
orthogonal and square sum to 𝑀/𝑁. By this construction,
the frame operator is (𝑀/𝑁)𝐼. The main advantage here is
given an elementary and easily implementable algorithm for
constructing frames.

In our way, the assumption on the spectrum of the unit
norm tight frame (𝑀/𝑁 ≥ 2) in STC can be dropped and
construct unit norm tight frame for R𝑁 with 𝑀 elements,
where𝑀 and𝑁 are positive integers and satisfy the following
condition.

If we can decompose𝑀 as 𝐾 = 𝑀 − 𝑁 + 1 summation
𝑑
𝑖
(1 ≤ 𝑖 ≤ 𝐾), that is, 𝑀 = ∑

𝐾

𝑖=1
𝑑
𝑖
, which there exist

Hadamardmatrices of sizes 𝑑
𝑖
’s and they satisfy the condition

(𝑖 − 1)
𝑀

𝑀 −𝑁
≤

𝑖

∑

𝑗=1

𝑑
𝑗
< 𝑖

𝑀

𝑀 −𝑁
1 ≤ 𝑖 ≤ 𝐾 − 1, (5)

then there exists a unit norm tight frame forR𝑁 with sparsity
at most ∑𝐾

𝑗=1
𝑑
2

𝑗
.

A frame constructed via the Hadamard-Tetris construc-
tion is called Hadamard-Tetris frame.

Aside from the fact that Hadamard-Tetris frames are easy
to construct, their major advantage for applications is the
sparsity of their synthesis matrices.This sparsity is dependent
on the decomposition of𝑀.

In our construction for any positive integers 𝑀 and
𝑁 (𝑀 > 𝑁), we put 𝐾 = 𝑀 − 𝑁 + 1 and if we could
decompose 𝑀 as 𝐾 summation of power of two, then we
give a unit normalized tight frame for R𝑁 with𝑀 elements.
Hence 𝐾 has minimum value. If𝑁 = ∑

𝑡

{𝑖=0}
𝑎
𝑖
2
𝑖 is the binary

representation of𝑁, where 𝑎
𝑖
’s are 0 or 1, then ∑𝑡

{𝑖=0}
𝑎
𝑖
≤ 𝐾.

HTC(I): Hadamard-Tetris construction
Parameter:

(i) Dimension𝑁 ∈ N.
Algorithm:

(1) For 𝑗 = 1 to𝑁 − 1

(2) 𝑥
𝑗
= 1 −

𝑗

𝑁
.

(3) 𝑓
2𝑗−1

= √𝑥𝑗𝑒𝑗 + √1 − 𝑥𝑗𝑒𝑗+1.

(4) 𝑓
2𝑗
= √𝑥𝑗𝑒𝑗 − √1 − 𝑥𝑗𝑒𝑗+1.

(5) end.
Output:

(i) unit norm tight frame {𝑓
𝑗
}
2𝑁−2

𝑗=1
for R𝑁.

Algorithm 1: The HTC(I) algorithm for constructing a unit norm
tight frame with (2𝑁 − 2)-elements for R𝑁.

In special case, when 𝑀 = 2𝑁 − 2, we can construct
synthesismatrix𝑇∗ of size𝑁×𝑀which has𝑓

𝑖
’s as its columns

as in Algorithm 1.

Theorem 1. Let 𝑁 be a positive integer number. Then the
sparsest synthesis matrix of the (2𝑁 − 2)-element Hadamard-
Tetris unit norm tight frame for R𝑁 which consists of 𝑁 − 1

blocks of size 2 can be constructed by HTC(I) and its sparsity is
4(𝑁 − 1).

Proof. Let 𝑀 = 2𝑁 − 2. By the construction of HTC(I), in
lines (3) and (4), 𝑓

𝑖
’s are normalized. We should show that

the square norm of each row of synthesis matrix is𝑀/𝑁. It
is clear that the square norm of the first row of the matrix is
𝑀/𝑁 and, in the last row, since 𝑥

𝑁−1
= 1/𝑁, the square norm

of the last row is

2 (1 −
1

𝑁
) =

2𝑁 − 2

𝑁
=
𝑀

𝑁
. (6)

Also, for 2 ≤ 𝑗 ≤ 𝑁 − 1, the square norm of 𝑗th row is

2 (1 − 𝑥
𝑗−1
) + 2𝑥

𝑗
= 2 (

𝑗 − 1

𝑁
) + 2 (1 −

𝑗

𝑁
)

=
2𝑁 − 2

𝑁
=
𝑀

𝑁
.

(7)

In this construction, synthesis matrix of frame consists of
𝑁 − 1 blocks of size 2, so the sparsity of the matrix is 4(𝑁 −
1).

In [14], Casazza et al. proved that the algorithm STC
can be performed to generate a unit norm tight frame of𝑀
vectors in R𝑁 if and only if 𝜆 := 𝑀/𝑁 or 𝜆 is of the form
𝜆 = (2𝐿 − 1)/𝐿, for some positive integer 𝐿. Whereas we
exhibit an algorithm that utilizes matrices of size 2 such as

[

[

√𝑥 √𝑥

√1 − 𝑥 −√1 − 𝑥

]

]

, (8)
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used in the construction of STC. For example, for𝑀 = 4 and
𝑁 = 3, the matrix

[
[
[
[
[
[
[
[
[
[

[

√
2

3
√
2

3
0 0

√
1

3
−√

1

3
√
1

3
√
1

3

0 0 √
2

3
−√

2

3

]
]
]
]
]
]
]
]
]
]

]

(9)

is synthesis matrix of R3.

Example 2. If𝑁 = 4 and𝑀 = 6, then

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

√
3

4
√
3

4
0 0 0 0

√
1

4
−√

1

4
√
1

2
√
1

2
0 0

0 0 √
1

2
−√

1

2
√
1

4
√
1

4

0 0 0 0 √
3

4
−√

3

4

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

(10)

is synthesis of 6-elements for R4.

3. Hadamard-Tetris Frame

In this section we provide a new method for constructing
finite normalized tight frames (FNTFs). In brief, we want to
construct𝑁 ×𝑀 synthesis matrix 𝑇∗ which has

(i) columns of unit norm;

(ii) orthogonal rows, meaning that the frame operator
𝑇
∗
𝑇 is diagonal;

(iii) rows of constant norm, meaning that 𝑇∗𝑇 is a con-
stant multiple of the identity matrix.

The Hadamard-Tetris Construction (HTC) is capable of
constructing unit norm tight frames, with the number of
elements that decompose as 𝑑

𝑖
(1 ≤ 𝑖 ≤ 𝑀 − 𝑁 +

1). It constructs the synthesis matrices of such frames by
successively filling of size 𝑑

𝑖
of 𝑀 − 𝑁 + 1 blocks. In this

construction, we use altered Hadamard matrices.
The importance of Hadamard matrices to our construc-

tion stems from the fact that they have orthogonal rows and
columns and that all entries have the same modulus. In the
course of the construction, we will have to alter the row
norms of the Hadamard matrices by multiplying rows with
appropriate constants. While this will destroy the pairwise
orthogonality of the columns, it will preserve the pairwise
orthogonality of the rows, which is the crucial feature for our
construction to work.

Definition 3. Given positive integers 𝑀 and 𝑁, we denote
a matrix by 𝐻

𝑑
or call it a 𝐻

𝑑
block, if it is derived from a

Hadamard matrix of size 𝑑 by multiplying the entries of the
𝑗th row of Hadamard matrix by√𝑀/𝑁𝑑 for 𝑗 = 2, . . . , 𝑑 − 1
and the entries of the first and the last row of Hadamard
matrix by 𝑟

1
and 𝑟
𝑑
and if it has normalized columns. We

call 𝑟
1
and 𝑟
𝑑
the first and the last correction factor of 𝐻

𝑑
,

respectively.

Note that the row norm of a 𝐻
𝑑
block equals √𝑀/𝑁,

except possibly for the first and the last rows. We want
to present an algorithm following the lines of Example 4;
that is, we want to compose the desired synthesis matrix
which consists of square blocks in which first and last rows
successively overlap. If we use 𝐾 square matrix as building
blocks of the 𝑁 × 𝑀 synthesis matrix, then, due to the
overlapping, we have𝑀 = 𝑁 + (𝐾 − 1).

It is perhapsmost instructive to first look at the example of
the construction thatwe are going to introduce in this section.

Example 4. We construct a 6-elements unit norm tight frame
in R5. We can start filling the desired 5 × 6 synthesis matrix
with an altered 4 × 4 Hadamard matrix in the upper left
corner. The alteration we make is to multiply the entries of
the first row by √3/10 in size to make the first row have the
desired norm √6/5. We multiply the second and the third
rows of 4 × 4 Hadamard matrix by √3/10 to make the norm
of those equal to√6/5.

To get normalized column, we multiply the forth row of
the 4 × 4 Hadamard matrix by √1/10. At this point, we have
constructed the first three rows and the first four columns of
the desired synthesis matrix:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

√
3

10
√
3

10
−√

3

10
√
3

10
0 0

−√
3

10
√
3

10
−√

3

10
−√

3

10
0 0

√
3

10
−√

3

10
−√

3

10
−√

3

10
0 0

√
1

10
√
1

10
√
1

10
−√

1

10
⋅ ⋅

0 0 0 0 ⋅ ⋅

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (11)

Note that, so far, we have constructed a matrix in which
first four rows are orthogonal, no matter how we keep filling
the first four rows. The fourth row at this point has norm
√2/5, while we need to make it have norm√6/5.

We can insert altered 2 × 2Hadamard matrix in the same
fashion as above. To do this, we wouldmultiply its first row by
the factor √2/5 in size to have the forth row of the synthesis
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matrix square sum to 6/5 and its second row by the factor
√3/5 to get

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

√
3

10
√
3

10
−√

3

10
√
3

10
0 0

−√
3

10
√
3

10
−√

3

10
−√

3

10
0 0

√
3

10
−√

3

10
−√

3

10
−√

3

10
0 0

√
1

10
√
1

10
√
1

10
−√

1

10
√
2

5
−√

2

5

0 0 0 0 √
3

5
√
3

5

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (12)

The latter matrix is the synthesis matrix of the desired frame,
since its columns are normalized and its rows are pairwise
orthogonal and square sum to 6/5.

The next theorem is the main theorem of this section.

Theorem 5 (main theorem). Let 𝑀 and 𝑁 (𝑀 > 𝑁) be
positive integers and 𝐾 = 𝑀 − 𝑁 + 1. Furthermore, assume
that𝑀 can be decomposed as𝑀 = ∑

𝐾

𝑗=1
𝑑
𝑗
such that, for each

1 ≤ 𝑖 ≤ 𝐾 − 1,

(𝑖 − 1)
𝑀

𝑀 −𝑁
≤

𝑖

∑

𝑗=1

𝑑
𝑗
< 𝑖

𝑀

𝑀 −𝑁
, (13)

and there exist Hadamard matrices of sizes 𝑑
𝑖
’s. Then HTC(II)

gives a unit normalized tight frame for R𝑁 with𝑀 elements.

In special case, when𝑀 − 𝑁 = 1, then the condition on
𝑑
𝑖
’s is confirmed automatically. Indeed, if 𝑑

1
is selected such

that 0 < 𝑑
1
< 𝑀, then 0 < 𝑑

2
= 𝑀 − 𝑑

1
< 𝑀.

Corollary 6. If𝑀 = 𝑑
1
+ 𝑑
2
such that there exist Hadamard

matrices of sizes 𝑑
1
and 𝑑

2
, then the synthesis matrix of the𝑀

elements for R𝑀−1 can be constructed via HTC(II).

To proveTheorem 5, we need to collect some information
about the first and the last correction factors of𝐻

𝑑𝑖
’s.

In construction of synthesis matrix of size𝑁×𝑀, we use
𝐾 = 𝑀 − 𝑁 + 1 blocks of sizes 𝑑

𝑖
’s (1 ≤ 𝑖 ≤ 𝐾), where𝑀 =

∑
𝐾

𝑖=1
𝑑
𝑖
.

Aswasmentioned, each block is𝐻
𝑑𝑖
that derived from the

Hadamard matrix of size 𝑑
𝑖
. If the factor that multiplies the

entries of the 𝑗th row of Hadamard matrix of size 𝑑
𝑖
is shown

by 𝑟
𝑗,𝑖
, where 1 ≤ 𝑗 ≤ 𝑑

𝑖
, then, for each block of size 𝑑

𝑖
, the

correction factor is

𝑟
2

𝑗,𝑖
=
𝑀

𝑁𝑑
𝑖

(2 ≤ 𝑗 ≤ 𝑑
𝑖
− 1) . (14)

The last row of a block and the first row of the following
block appear in the same row of the synthesis matrix and
while the last correction factor is chosen to ensure normalized
columns, the following first correction factor is chosen to

guarantee that the rows of the synthesis matrix have square
norm𝑀/𝑁.

Hence, we have the following relationships for 𝑟
1,𝑖

and
𝑟
𝑑𝑖 ,𝑖
, where 1 ≤ 𝑖 ≤ 𝐾.

Lemma 7. If 𝑟
1,𝑖

and 𝑟
𝑑𝑖 ,𝑖

are the first and the last correction
factors, respectively, then

𝑟
2

𝑑𝑖 ,𝑖
= 1 − 𝑟

2

1,𝑖
−
𝑀

𝑁
+ 2

𝑀

𝑁𝑑
𝑖

,

𝑟
2

1,𝑖+1
=

1

𝑑
𝑖+1

(
𝑀

𝑁
− 𝑑
𝑖
𝑟
2

𝑑𝑖 ,𝑖
) .

(15)

Proof. The correction factors of second row to (𝑑
𝑖
− 1)th row

of𝐻
𝑑𝑖
are

𝑟
𝑗,𝑖
= √

𝑀

𝑁𝑑
𝑖

(2 ≤ 𝑗 ≤ 𝑑
𝑖
− 1) . (16)

Since norm of each column of𝐻
𝑑𝑖
must be one, we have

𝑟
2

1,𝑖
+ (𝑑
𝑖
− 2)

𝑀

𝑁𝑑
𝑖

+ 𝑟
2

𝑑𝑖 ,𝑖
= 1 (17)

and so on

𝑟
2

𝑑𝑖 ,𝑖
= 1 − 𝑟

2

1,𝑖
−
𝑀

𝑁
+ 2

𝑀

𝑁𝑑
𝑖

. (18)

Also the last correction factor of 𝐻
𝑑𝑖

and the first
correction factor of𝐻

𝑑𝑖+1
must be chosen such that the square

norm of that row is𝑀/𝑁. Hence

𝑑
𝑖
𝑟
2

𝑑𝑖 ,𝑖
+ 𝑑
𝑖+1
𝑟
2

1,𝑖+1
=
𝑀

𝑁
(19)

and so on

𝑟
2

1,𝑖+1
=

1

𝑑
𝑖+1

(
𝑀

𝑁
− 𝑑
𝑖
𝑟
2

𝑑𝑖 ,𝑖
) . (20)

By combining formulas (15) in Lemma 7, we get the
following recursive relations:

𝑟
2

1,𝑖+1
=
𝑑
𝑖

𝑑
𝑖+1

(
𝑀

𝑁
+ 𝑟
2

1,𝑖
− 1) −

𝑀

𝑁𝑑
𝑖+1

,

𝑟
2

𝑑𝑖+1 ,𝑖+1
=
𝑑
𝑖

𝑑
𝑖+1

𝑟
2

𝑑𝑖 ,𝑖
−
𝑀 −𝑁

𝑁
+

𝑀

𝑁𝑑
𝑖+1

(21)

for 1 ≤ 𝑖 ≤ 𝐾 − 1.

Lemma 8. If 𝑟
1,𝑖

and 𝑟
𝑑𝑖 ,𝑖

are the first and the last correction
factors of𝐻

𝑑𝑖
, respectively, then

𝑟
2

1,𝑖
=

1

𝑁𝑑
𝑖

((𝑀 −𝑁)

𝑖−1

∑

𝑗=1

𝑑
𝑗
− (𝑖 − 2)𝑀) (𝑖 ≥ 2) ,

𝑟
2

𝑑𝑖 ,𝑖
=

1

𝑁𝑑
𝑖

(𝑖𝑀 − (𝑀 −𝑁)

𝑖

∑

𝑗=1

𝑑
𝑗
) (𝑖 ≥ 1) .

(22)
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Proof. We prove these by induction on 𝑖. The first steps of the
induction are trivially true. Assume that the identities are true
for 𝑖. For the case 𝑖 + 1, the following identities hold by using
formulas (21) and the induction hypothesis:

𝑟
2

1,𝑖+1
=
𝑑
𝑖

𝑑
𝑖+1

(
𝑀

𝑁
+ 𝑟
2

1,𝑖
− 1) −

𝑀

𝑁𝑑
𝑖+1

=
𝑑
𝑖

𝑑
𝑖+1

(
𝑀

𝑁
+(

∑
𝑖−1

𝑗=1
𝑑
𝑗

𝑑
𝑖

)(
𝑀 −𝑁

𝑁
)

−(
𝑖 − 2

𝑑
𝑖

)(
𝑀

𝑁
) − 1) −

𝑀

𝑁𝑑
𝑖+1

=
1

𝑁𝑑
𝑖+1

(𝑑
𝑖
𝑀+ (𝑀 −𝑁)

𝑖−1

∑

𝑗=1

𝑑
𝑗

− (𝑖 − 2)𝑀 − 𝑁𝑑
𝑖
−𝑀)

=
1

𝑁𝑑
𝑖+1

((𝑀 −𝑁)

𝑖

∑

𝑗=1

𝑑
𝑗
− (𝑖 − 1)𝑀) ,

(23)

𝑟
2

𝑑𝑖+1,𝑖+1
=
𝑑
𝑖

𝑑
𝑖+1

𝑟
2

𝑑𝑖 ,𝑖
−
𝑀 −𝑁

𝑁
+

𝑀

𝑁𝑑
𝑖+1

=
𝑑
𝑖

𝑑
𝑖+1

((
𝑖

𝑑
𝑖

)(
𝑀

𝑁
) − (

∑
𝑖

𝑗=1
𝑑
𝑗

𝑑
𝑖

)(
𝑀 −𝑁

𝑁
))

−
𝑀 −𝑁

𝑁
+

𝑀

𝑁𝑑
𝑖+1

=
1

𝑁𝑑
𝑖+1

(𝑖𝑀 − (𝑀 −𝑁)

𝑖

∑

𝑗=1

𝑑
𝑗

− 𝑑
𝑖+1 (𝑀 − 𝑁) +𝑀)

=
1

𝑁𝑑
𝑖+1

((𝑖 + 1)𝑀 − (𝑀 −𝑁)

𝑖+1

∑

𝑗=1

𝑑
𝑗
) .

(24)

Now we are ready to prove the mainTheorem 5.

Proof. We check that synthesis matrix constructed by
HTC(II) has row norm equal √𝑀/𝑁 and columns are
normalized. First, we show that each row of synthesis matrix,
which is constructed via HTC(II), has square norm𝑀/𝑁. It
is enough to show that the last row of 𝐻

𝑑𝑖
together with the

first row of𝐻
𝑑𝑖+1

makes square norm𝑀/𝑁. In other words,

𝑑
𝑖
𝑟
2

𝑑𝑖 ,𝑖
+ 𝑑
𝑖+1
𝑟
2

1,𝑖+1
=
𝑀

𝑁
. (25)

By Lemma 8, we have

𝑑
𝑖
𝑟
2

𝑑𝑖 ,𝑖
+ 𝑑
𝑖+1
𝑟
2

1,𝑖+1
=
1

𝑁
(𝑖𝑀 − (𝑀 −𝑁)

𝑖

∑

𝑗=1

𝑑
𝑗

+ (𝑀 −𝑁)

𝑖

∑

𝑗=1

𝑑
𝑗
− (𝑖 − 1)𝑀)

=
𝑀

𝑁
.

(26)

Now, we show each column of synthesis matrix that is
constructed with HTC(II) has norm 1; that is,

𝑟
2

1,𝑖
+ (𝑑
𝑖
− 2)

𝑀

𝑁𝑑
𝑖

+ 𝑟
2

𝑑𝑖 ,𝑖
= 1 (27)

By Lemma 8, we have

𝑟
2

1,𝑖
+ 𝑟
2

𝑑𝑖 ,𝑖
=

1

𝑁𝑑
𝑖

((𝑀 −𝑁)(

𝑖−1

∑

𝑗=1

𝑑
𝑗
−

𝑖

∑

𝑗=1

𝑑
𝑗
)

+ 𝑀(−𝑖 + 2 + 𝑖))

= −(
𝑀 −𝑁

𝑁
) + 2

𝑀

𝑁𝑑
𝑖

= 1 − (𝑑
𝑖
− 2)

𝑀

𝑁𝑑
𝑖

.

(28)

We have to ensure that the last correction factor of the
final block inserted into the synthesismatrix equals√𝑀/𝑁𝑑

𝐾

(in other words, the next first correction factor would be
zero, but we have arrived at this point where the algorithm
terminates).

In Algorithm 2, line (9), when 𝑖 := 𝐾 and 𝑡 := 𝑑
𝐾
, we have

𝑟
𝑑𝐾,𝐾

= √
1

𝑁𝑑
𝐾

(𝐾𝑀 − (𝑀 −𝑁)

𝐾

∑

𝑗=1

𝑑
𝑗
) = √

𝑀

𝑁𝑑
𝐾

(29)

and in line (4), for 𝑖 := 𝐾 + 1, we have 𝑟
1,𝑑𝐾+1

= 0.

Note that if we do a HTC(II) as in Example 4 with
𝐾 altered Hadamard matrices of sizes 𝑑

1
, . . . , 𝑑

𝐾
, then the

sparsity of the synthesis matrix is ∑𝐾
𝑖=1
𝑑
2

𝑖
.

The next lemma states that if we construct synthesis
matrix with blocks of sizes 𝑑

1
, 𝑑
2
, . . . , 𝑑

𝐾
, each condition on

𝑑
𝑖
must be established for 𝑑

𝐾−𝑖+1
and vice versa.

Lemma 9. Let 𝑀 and 𝑁 be positive integers with 𝑀 > 𝑁,
𝐾 = 𝑀 − 𝑁 + 1, and𝑀 = ∑

𝐾

𝑗=1
𝑑
𝑗
such that 𝑑

𝑗
’s are satisfied

in inequalities:

(𝑖 − 1)
𝑀

𝑀 −𝑁
<

𝑖

∑

𝑗=1

𝑑
𝑗
< 𝑖

𝑀

𝑀 −𝑁

(0 ≤ 𝑖 ≤ 𝐾 − 1) .

(30)
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HTC(II): Hadamard-Tetris Construction
Parameters:

(i) Dimension𝑁 ∈ N.
(ii) Number of frame elements𝑀 ∈ N such that decompose as𝑀 = ∑

𝐾

𝑖=1
𝑑
𝑖
, where 𝐾 = 𝑀 −𝑁 + 1.

(iii) Hadamard matrices,𝐻
𝑑𝑖
= [𝑎
(𝑑𝑖)

𝑘𝑗
]
1≤𝑘,𝑗≤𝑑𝑖

of size 𝑑
𝑖
for 𝑖 = 1, . . . , 𝐾.

Algorithm:
(1) 𝑠 = 0,𝑚 = 0.
(2) For 𝑖 = 1 to 𝐾 do
(3) For 𝑡 = 1 to 𝑑

𝑖
do

(4) 𝑟
1,𝑖
= √

1

𝑁𝑑
𝑖

((𝑀 −𝑁)

𝑖−1

∑

𝑗=1

𝑑
𝑗
− (𝑖 − 2)𝑀).

(5) 𝑟
1,1
= √

𝑀

𝑁𝑑
1

.

(6) For 𝑗 = 2 to 𝑑
𝑖
− 1 do

(7) 𝑟
𝑗,𝑖
= √

𝑀

𝑁𝑑
𝑖

.

(8) end.

(9) 𝑟
𝑑𝑖 ,𝑖
= √

1

𝑁𝑑
𝑖

(𝑖𝑀 − (𝑀 −𝑁)

𝑖

∑

𝑗=1

𝑑
𝑗
).

(10) 𝑓
𝑡+𝑚

=

𝑑𝑖

∑

𝑗=1

𝑎
(𝑑𝑖)

𝑡𝑗
𝑟
𝑗,𝑖
𝑒
𝑠+𝑗

.

(11) end.
(12) 𝑚 = 𝑚 + 𝑑

𝑖
.

(13) 𝑠 = 𝑠 + 𝑑
𝑖
− 1.

(14) end.
Output:

(i) unit norm tight frame {𝑓
𝑗
}
𝑀

𝑗=1
for R𝑁.

Algorithm 2: The HTC(II) algorithm for constructing a unit norm tight frame with𝑀 elements for R𝑁.

Then

(𝑖 − 1)
𝑀

𝑀 −𝑁
<

𝑖

∑

𝑗=1

𝑑
𝐾−𝑗+1

< 𝑖
𝑀

𝑀 −𝑁

(0 ≤ 𝑖 ≤ 𝐾 − 1) .

(31)

Proof. Since ∑𝐾
𝑗=1
𝑑
𝑗
= 𝑀, so

𝑖

∑

𝑗=1

𝑑
𝐾−𝑗+1

=

𝐾

∑

𝑗=1

𝑑
𝑗
−

𝐾−𝑖

∑

𝑗=1

𝑑
𝑗
= 𝑀 −

𝐾−𝑖

∑

𝑗=1

𝑑
𝑗 (32)

In the other hand, by replacing 𝑖 with 𝐾 − 𝑖 in the inequality
(30), we have

𝑀

𝑀−𝑁
(𝐾 − 𝑖 − 1) <

𝐾−𝑖

∑

𝑗=1

𝑑
𝑗
< (𝐾 − 𝑖)

𝑀

𝑀 −𝑁
(33)

and so on

𝑀− (𝐾 − 𝑖)
𝑀

𝑀 −𝑁
< 𝑀 −

𝐾−𝑖

∑

𝑗=1

𝑑
𝑗
< 𝑀 −

𝑀

𝑀−𝑁

× (𝐾 − 𝑖 − 1) .

(34)

Hence, we have

𝑀

𝑀−𝑁
(𝑀 −𝑁 + 𝑖 − 𝐾) <

𝑖

∑

𝑗=1

𝑑
𝐾−𝑗+1

<
𝑀

𝑀 −𝑁

× (𝑀 −𝑁 − 𝐾 + 𝑖 + 1) ,

(35)

which give inequalities (31).

Following Lemma 9, if 𝑇∗ = [𝑎
𝑖𝑗
] is a synthesis matrix of

size𝑁×𝑀, then 𝐹∗ = [𝑏
𝑖𝑗
], where 𝑏

𝑖𝑗
= 𝑎
(𝑁−𝑖+1)(𝑀−𝑗+1)

, is also
having the same situation.

Since Hadamard matrices of the size power of 2 exist, so
we use altered Hadamard matrices of size 2𝑠𝑖 , where

2
𝑠𝑖 = max

{

{

{

2
𝑠
| (𝑖 − 1)

𝑀

𝑀 −𝑁
≤

𝑖−1

∑

𝑗=1

2
𝑠𝑗 + 2
𝑠
< 𝑖

𝑀

𝑀 −𝑁

}

}

}

,

(36)

for 1 ≤ 𝑖 ≤ 𝐾 − 1. However, it is provided that there exists a
Hadamard matrix of size 𝑑

𝐾
× 𝑑
𝐾
, with 𝑑

𝐾
= 𝑀 − ∑

𝐾−1

𝑗=1
2
𝑠𝑗 .

In this case, the algorithmHTC builds the synthesis matrix of
the tight frame as in Example 4 by inserting𝐻

𝑑𝑖
, where 𝑑

𝑖
=

2
𝑠𝑖 (1 ≤ 𝑖 ≤ 𝐾 − 1) and 𝑑

𝐾
= 𝑀 − ∑

𝐾−1

𝑗=1
2
𝑠𝑗 .
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SHTC: Spectral Hadamard-Tetris construction
Parameters:

(i) Dimension𝑁 ∈ N.
(ii) Number of frame elements𝑀 ∈ N such that decompose as𝑀 = ∑

𝐾

𝑖=1
𝑑
𝑖
where 𝐾 = 𝑀 −𝑁 + 1.

(iii) eigenvalues {𝜆
𝑛
}
𝑁

𝑛=1
which ∑𝑁

𝑛=1
𝜆
𝑛
= 𝑀 and ∑𝑡𝑖−𝑖

𝑗=1
𝜆
𝑗
≤ 𝑡
𝑖
≤ ∑
𝑡𝑖−𝑖+1

𝑗=1
𝜆
𝑗
where 𝑡

𝑖
= ∑
𝑖

𝑗=1
𝑑
𝑗
and 1 ≤ 𝑖 ≤ 𝐾.

(iv) Hadamard matrices,𝐻
𝑑𝑖
= [𝑎
(𝑑𝑖)

𝑘𝑗
]
1≤𝑘,𝑗≤𝑑𝑖

of size 𝑑
𝑖
for 𝑖 = 1, . . . , 𝐾.

Algorithm:
(1) 𝑠 = 0,𝑚 = 0, 𝑡

0
= 0

(2) For 𝑖 = 1 to 𝐾 do

(3) 𝑡
𝑖
=

𝑖

∑

𝑗=1

𝑑
𝑗
.

(4) For 𝑡 = 1 to 𝑑
𝑖
do

(5) 𝑟
1,𝑖
= √

1

𝑑
𝑖

(

𝑡𝑖−1−(𝑖−2)

∑

𝑗=1

𝜆
𝑗
− 𝑡
𝑖−1
).

(6) For 𝑗 = 2 to 𝑑
𝑖
− 1 do

(7) 𝑟
𝑗,𝑖
= √

1

𝑑
𝑖

𝜆
𝑡𝑖−1−(𝑖−1)+𝑗

.

(8) end.

(9) 𝑟
𝑖,𝑖
= √

1

𝑑
𝑖

(𝑡
𝑖
−

𝑡𝑖−𝑖

∑

𝑗=1

𝜆
𝑗
).

(10) 𝑓
𝑡+𝑚

=

𝑑𝑖

∑

𝑗=1

𝑎
(𝑑𝑖)

𝑡𝑗
𝑟
𝑗,𝑖
𝑒
𝑠+𝑗

.

(11) end.
(12) 𝑚 = 𝑚 + 𝑑

𝑖
.

(13) 𝑠 = 𝑠 + 𝑑
𝑖
− 1.

(14) end.
Output:

(i) unit norm frame {𝑓
𝑗
}
𝑀

𝑗=1
for R𝑁 with eigenvalues {𝜆

𝑛
}
𝑁

𝑛=1
.

Algorithm 3: The SHTC algorithm for constructing a unit norm tight frame with𝑀 elements for R𝑁.

4. Spectral Hadamard Tetris Construction

Another case of HTC is the case of unit norm but not
necessarily tight frames. Such frames are known to exist,
provided that the eigenvalues of the frame operator sum
up to the number of frame vectors [15]. In this section, we
give a version of Hadamard-Tetris Construction which uses
altered Hadamard matrices to construct unit norm frames
with a given spectrum of frame operator. Ourmethod cannot
construct all such frames.We give necessary condition under
which this constructionworks. To construct unit norm frame
with prescribed spectrum, we are looking for a matrix with
columns square summing up to 1 and rows square sum-
ming up to {𝜆

𝑛
}
𝑁

𝑛=1
. In Algorithm 3, we present a modified

Hadamard-Tetris algorithm HTC, allowing the construction
of such frames.

Given a fixed dimension 𝑁 and frame cardinality 𝑀, a
necessary condition on the prescribed eigenvalues {𝜆

𝑛
}
𝑁

𝑛=1
of

the frame operator for SHTC towork is given in the following
theorem.

Theorem 10. Let ∑𝑁
𝑛=1
𝜆
𝑛
= 𝑀 = ∑

𝐾

𝑖=1
𝑑
𝑖
, where 𝐾 = 𝑀 −

𝑁 + 1, and there exist Hadamard matrices of sizes 𝑑
𝑖
’s. Then

SHTC can be used to produce unit norm frame for R𝑁 with

eigenvalues {𝜆
𝑛
}
𝑁

𝑛=1
if there are some permutations of {𝜆

𝑛
}
𝑁

𝑛=1

and {𝑑
𝑖
}
𝐾

𝑖=1
such that, for each 𝑖 = 1, . . . , 𝐾, we have

𝑡𝑖−𝑖

∑

𝑗=1

𝜆
𝑗
≤ 𝑡
𝑖
≤

𝑡𝑖−𝑖+1

∑

𝑗=1

𝜆
𝑗
, (37)

where 𝑡
𝑖
= ∑
𝑖

𝑗=1
𝑑
𝑗
.

Here, we present an example in which STC does not work
whereas SHTC works.

Example 11. There are choices of prescribed eigenvalues
which satisfy the conditions of Theorem 10 that unit norm
frame with given eigenvalues exists, but STC cannot be used
to construct such a frame because no rearrangement of
eigenvalues satisfies in their conditions. An example of this
kind is {𝜆

𝑛
}
4

𝑛=1
= {0.4, 2.4, 1.1, 1.1} as eigenvalues of frame

with 5 elements forR4.

Sometimes, one rearrangement of eigenvalues and
dimensions of Hadamard matrices is satisfied in desired
condition while another is not. For example, the SHTC
cannot be performed for the sequence of 𝜆

𝑖
’s is the given
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rearrangement 0.4, 1.1, 1.1, 2.4 and 𝑑
1
= 4, 𝑑

2
= 1.

However, rearranging the eigenvalues to the rearrangement
0.4, 2.4, 1.1, 1.1 allows SHTC to construct the desired frame.
In this case, its synthesis matrix will be

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

√
1

10
√
1

10
−√

1

10
√
1

10
0

−√
6

10
√
6

10
−√

6

10
−√

6

10
0

√
11

40
−√

11

40
−√

11

40
−√

11

40
0

√
1

40
√
1

40
√
1

40
−√

1

40
1

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (38)

So, there is no reason that SHTC works when the
eigenvalues are in the monotonic rearrangement.

Note that since we make no assumption about the order-
ing of the sequences {𝜆

𝑛
}
𝑁

𝑛=1
and {𝑑

𝑖
}
𝐾

𝑖=1
, we may permute the

elements of the sequences in order to make them ready to
satisfy in the inequality (37).

Given sequences of eigenvalues and {𝑑
𝑖
}
𝐾

𝑖=1
, where 𝐾 =

𝑀 − 𝑁 + 1 and there exist Hadamard matrices of sizes
𝑑
𝑖
’s, it may be time-consuming to find permutation of these

sequences which satisfy in Theorem 10. Until now, we could
not find simple conditions on these sequences that SHTC can
be performed. It has been a mystery as to when Hadamard
Tetris works and when fails.
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