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Underground mine projects are often associated with diverse sources of uncertainties. Having the ability to plan for these
uncertainties plays a key role in the process of project evaluation and is increasingly recognized as critical tomining project success.
To make the best decision, based on the information available, it is necessary to develop an adequate model incorporating the
uncertainty of the input parameters. The model is developed on the basis of full discounted cash flow analysis of an underground
zinc mine project. The relationships between input variables and economic outcomes are complex and often nonlinear. Fuzzy-
interval grey system theory is used to forecast zinc metal prices while geometric Brownian motion is used to forecast operating
costs over the time frame of the project. To quantify the uncertainty in the parameters within a project, such as capital investment,
ore grade, mill recovery, metal content of concentrate, and discount rate, we have applied the concept of interval numbers.The final
decision related to project acceptance is based on the net present value of the cash flows generated by the simulation over the time
project horizon.

1. Introduction

If we take into consideration that underground mining
projects are planned and constructed in an uncertain physical
and economic environment, then evaluation of such projects
is truly interdisciplinary in nature.

Mine investments provide a good example of irre-
versible investment under uncertainty. Irreversible invest-
ment requires more careful analysis because, once the invest-
ment takes place, it cannot be recouped without a significant
loss of value. Engineering economics is a widely used eco-
nomic technique for the evaluation of engineering projects.
Within it, different methods can be used to make the best
decision, that is, whether to accept a project or not.

There is a considerable literature dedicated to the problem
of mining project evaluation. Samis et al. use Real Options
Monte Carlo Simulation to examine the valuation of a multi-
phase copper-gold project in the presence of a windfall profits
tax [1]. Dimitrakopoulos applies the Monte Carlo technique
(conditional simulation) to quantify geological uncertainty
such as ore grade and tonnage [2]. Topal uses different

techniques to estimate the value of the mining project. The
major challenge of project evaluation is how to deal with
the uncertainty involved in capital investment. Discounted
cash flow (DCF) methods, decision trees (DT), Monte Carlo
simulation (MCS), and real options (RO) are commonly used
for evaluating mining projects [3]. Dessureault et al. use real
options pricing as a method for the flexible valuation of a
mining project. This paper presents the methods that can be
used for the calculation of process and project volatility in
operations and provides practical applications from mining
operations inUSA andCanada [4]. Elkington et al. noted that
uncertainty is intrinsic to all mining projects and should be
planned for by providing operating and strategic flexibility
[5]. Trigeorgis presents a decision-tree model for a mining
project in which the present value of the remaining cash flows
is uncertain [6]. Samis and Poulin provide a related decision-
tree model where mineral price is the underlying source of
uncertainty [7, 8].

Prior to initialization, a mining project is often evaluated
by calculating its net present value (NPV). The NPV is
defined as the discounted difference between the expected

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 914643, 12 pages
http://dx.doi.org/10.1155/2014/914643

http://dx.doi.org/10.1155/2014/914643


2 Journal of Applied Mathematics

value of project revenues and costs over the life of the project.
The NPV is the preferred criterion of project profitability
since it reflects the net contribution to the owner’s equity
considering his cost of capital. We propose a simulation
approach to incorporate uncertainty in the NPV calculations.
Simulation of future zinc metal prices is performed by fuzzy-
interval grey system theory.The dynamic nature of operating
costs is described by the stochastic process called geometric
Brownian motion. In this way, we obtain the probability
distribution of operating costs for every year of the project
and after that we transform them into adequate interval
numbers. The remaining risk factors such as capital invest-
ment, ore grade, mill recovery, metal content of concentrate,
and discount rate are also quantified by interval numbers
using expert knowledge (estimation). When these interval
numbers are incorporated in the NPV calculation, we obtain
the interval-valued NPV, that is, the project value at risk.

The main purpose of this study is to provide an efficient
and easy way of strategic decision making, particularly in
small underground mining companies. We were motivated
by the fact that, in our country, as one of the many develop-
ing countries, there are mainly small underground mining
companies employing just two or three mining engineers
who are responsible for both the production maintenance
and strategic planning. In such an environment, mining
engineers do not have time to create adequate procedures
for decisionmaking, particularly for the decisions influenced
by highly volatile parameters such as metal price. There are
many stochasticmethods for treating the uncertainty ofmetal
prices (e.g., Mean Reversion Process), but if we want to apply
them, it is necessary to collect a lot of historical data and run
complex regression analysis in order to define the parameters
of the simulation process. Interval grey theory can handle
problems with unclear information very precisely. Its concept
is intuitive and simple to understand for mining engineers.
In order to build the forecasting model, only a few data are
needed.

The proposed model is tested on a hypothetical example,
which is similar tomany real case studies, and the experiment
results verify the rationality and effectiveness of the method.

2. Preliminaries of Interval-Valued
Differential Equations

2.1. Basic Concepts of Fuzzy Set Theory. Various theories
exist for describing uncertainty in the modelling of real
phenomena and the most popular one is fuzzy set theory [9].
In this paper we applied the concept of the interval-valued
possibilistic mean of fuzzy number [10–12].

In the classical set theory, an element either belongs or
does not belong to a given set. By contrast, in fuzzy set theory,
a fuzzy subset ̃

𝐴 defined on a universe of discourse 𝑋 is
characterized by a membership function 𝜇

̃

𝐴

(𝑥), which maps
each element in ̃

𝐴 with a real number in the unit interval.
Generally, this can be expressed as 𝜇

̃

𝐴

(𝑥) : 𝑋 → [0, 1],
where the value 𝜇

̃

𝐴

(𝑥) is called the degree of membership of
the element 𝑥 in the fuzzy set ̃𝐴. If the universal set𝑋 is fixed,

a membership function fully determines a fuzzy set. In fuzzy
set theory, classical sets are usually called crisp sets.

Definition 1. Let 𝑎
1

, 𝑎
2

, and 𝑎

3

be real numbers such that 𝑎
1

<

𝑎

2

< 𝑎

3

. A set ̃

𝐴 with membership function

𝜇
̃

𝐴

(𝑥) =

{

{

{

{

{

{

{

{

{

{

{

𝑥 − 𝑎

1

𝑎

2

− 𝑎

1

, 𝑎

1

≤ 𝑥 ≤ 𝑎

2

𝑥 − 𝑎

3

𝑎

3

− 𝑎

2

, 𝑎

2

≤ 𝑥 ≤ 𝑎

3

0, otherwise

(1)

is called a fuzzy triangular number and is denoted as ̃

𝐴 =

(𝑎

1

, 𝑎

2

, 𝑎

3

). In geometric interpretations, the graph of ̃

𝐴(𝑥) is
a triangle with its base on the interval [𝑎

1

, 𝑎

3

] and vertex at
𝑥 = 𝑎

2

.

Fuzzy sets can also be represented via their 𝛾-levels.

Definition 2. A 𝛾-level set of a fuzzy set ̃𝐴 is defined by [̃𝐴]

𝛾

=

{𝑥 ∈ 𝑋 | 𝜇
̃

𝐴

(𝑥) ≥ 𝛾} if 𝛾 > 0 and [

̃

𝐴]

𝛾

= cl{𝑥 ∈ 𝑋 | 𝜇
̃

𝐴

(𝑥) >

0} (the closure of the support of ̃

𝐴) if 𝛾 = 0.

In particular, a fuzzy set ̃

𝐴 is a fuzzy number if and
only if the 𝛾-levels are nested nonempty compact intervals
[𝐴

𝛾

∗

, 𝐴

∗𝛾

]. This property is the basis for the lower-upper
representation of values of the 𝛾-levels [13]. A fuzzy number
̃

𝐴 is completely defined by a pair of functions 𝐴

∗

, 𝐴

∗

:

[0, 1] → 𝑋, defining the end-points of 𝛾-levels (𝐴

𝛾

∗

=

𝐴

∗

(𝛾); 𝐴

∗𝛾

= 𝐴

∗

(𝛾)) and satisfying the following conditions:

(1) 𝐴

∗

is a bounded nondecreasing left-continuous func-
tion on [0, 1],

(2) 𝐴

∗ is a bounded nonincreasing left-continuous func-
tion on [0, 1],

(3) 𝐴

∗

(𝛾) ≤ 𝐴

∗

(𝛾) for all 0 ≤ 𝛾 ≤ 1.

According to Dubois and Prade [14], the interval-valued
probabilistic mean of a fuzzy number ̃

𝐴, with 𝛾 levels ̃

𝐴

𝛾

=

[𝑎

𝛾

, 𝑏

𝛾

], 𝛾 ∈ [0, 1] (see Figure 1) is the interval 𝐸(

̃

𝐴) =

[𝐸

∗

(

̃

𝐴), 𝐸

∗

(

̃

𝐴)], where

𝐸

∗

(

̃

𝐴) = ∫

1

0

𝑎

𝛾

𝑑𝛾,

𝐸

∗

(

̃

𝐴) = ∫

1

0

𝑏

𝛾

𝑑𝛾.

(2)

Carlsson and Fuller [11] introduced the interval-valued pos-
sibilistic mean of a fuzzy number ̃

𝐴 as the interval 𝑀(

̃

𝐴) =

[𝑀

∗

(

̃

𝐴),𝑀

∗

(

̃

𝐴)]. First, we note that from the equality

𝑀(

̃

𝐴) := ∫

1

0

𝛾 (𝑎

𝛾

+ 𝑏

𝛾

) 𝑑𝛾 =

∫

1

0

𝛾 ((𝑎

𝛾

+ 𝑏

𝛾

) /2) 𝑑𝛾

∫

1

0

𝛾𝑑𝛾

(3)

it follows that 𝑀(

̃

𝐴) is nothing else but the level-weighted
average of the arithmetic means of all 𝛾-sets; that is, the
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Figure 1: Fuzzy number and 𝛾-level cut.

weight of the arithmetic mean of 𝑎𝛾 and 𝑏

𝛾 is just 𝛾. Second,
we can rewrite𝑀(

̃

𝐴) as

𝑀(

̃

𝐴) := ∫

1

0
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+ 𝑏

𝛾
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𝛾
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1

0
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𝛾
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2

=

1

2

(
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1

0

𝛾𝑎

𝛾

𝑑𝛾

1/2

+

∫

1

0
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𝛾

𝑑𝛾

1/2

)

=

1

2

(

∫

1

0
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𝛾
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∫

1

0
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+

∫

1

0

𝛾𝑏

𝛾

𝑑𝛾

∫

1

0

𝛾𝑑𝛾

) .

(4)

Third, let us take a closer look at the right-hand side of the
equation for𝑀(

̃

𝐴).The first quantity, denoted by𝑀

∗

(

̃

𝐴), can
be reformulated as

𝑀

∗

(

̃

𝐴) = 2∫

1

0

𝛾𝑎

𝛾

𝑑𝛾 =

∫

1

0

𝛾𝑎

𝛾

𝑑𝛾

∫

1

0

𝛾𝑑𝛾

=

∫

1

0

Pos [𝐴 ≤ 𝑎

𝛾

] 𝑎

𝛾

𝑑𝛾

∫

1

0

Pos [𝐴 ≤ 𝑎

𝛾

] 𝑑𝛾

=

∫

1

0

Pos [𝐴 ≤ 𝑎

𝛾

] ×min [𝐴]

𝛾

𝑑𝛾

∫

1

0

Pos [𝐴 ≤ 𝑎

𝛾

] 𝑑𝛾

,

(5)

where Pos denotes possibility; that is,

Pos [̃𝐴 ≤ 𝑎

𝛾

] = ∏((−∞, 𝑎

𝛾

] ) = sup
⏟⏟⏟⏟⏟⏟⏟

𝑢≤𝑎

𝛾

̃

𝐴 (𝑢) = 𝛾. (6)

So 𝑀

∗

(

̃

𝐴) is nothing else but the lower possibility-weighted
average of the minima of the 𝛾-sets, and this is why we call it
the lower possibilistic mean value of ̃

𝐴.

In a similar manner, we introduce 𝑀

∗

(

̃

𝐴), the upper
possibilistic mean value of ̃

𝐴:

𝑀

∗

(

̃

𝐴) = 2∫

1

0

𝛾𝑏

𝛾

𝑑𝛾 =

∫

1

0

𝛾𝑏

𝛾

𝑑𝛾

∫

1

0

𝛾𝑑𝛾

=

∫

1

0

Pos [𝐴 ≥ 𝑏

𝛾

] 𝑏

𝛾

𝑑𝛾

∫

1

0

Pos [𝐴 ≥ 𝑏

𝛾

] 𝑑𝛾

=

∫

1

0

Pos [𝐴 ≥ 𝑏

𝛾

] ×max [𝐴]

𝛾

𝑑𝛾

∫

1

0

Pos [𝐴 ≥ 𝑏

𝛾

] 𝑑𝛾

,

(7)

where we have used equality

Pos [̃𝐴 ≥ 𝑏

𝛾

] = ∏([𝑏

𝛾

,∞)) = sup
⏟⏟⏟⏟⏟⏟⏟

𝑢≥𝑏

𝛾

̃

𝐴 (𝑢) = 𝛾. (8)

The lower possibilistic mean 𝑀

∗

(

̃

𝐴) is the weighted average
of the minima of the 𝛾-levels of ̃

𝐴. Similarly, the upper
possibilistic mean 𝑀

∗

(

̃

𝐴) is the weighted average of the
maxima of the 𝛾-levels of ̃𝐴. According to Carlsson, the fuzzy
number can now be expressed as follows:

𝑀

∗

(

̃

𝐴) = 2∫

1

0

𝛾𝑎

𝛾

𝑑𝛾,

𝑀

∗

(

̃

𝐴) = 2∫

1

0

𝛾𝑏

𝛾

𝑑𝛾.

(9)

Definition 3. Let ̃

𝐴 = (𝑎

2

, 𝛼, 𝛽) be a triangular fuzzy number
with centre 𝑎

2

, left-width 𝛼 > 0, and right-width 𝛽 > 0 (see
Figure 1); then 𝑎

𝛾 and 𝑏

𝛾 are computed as follows:

1 : 𝛾 = 𝛼 : (𝑎

𝛾

− (𝑎

2

− 𝛼)) → 𝑎

𝛾

= 𝑎

2

− (1 − 𝛾) 𝛼,

1 : 𝛾 = 𝛽 : ((𝑎

2

) − 𝑏

𝛾

) → 𝑏

𝛾

= 𝑎

2

+ (1 − 𝛾) 𝛽.

(10)

Now, the 𝛾-level of ̃

𝐴 is computed by

[

̃

𝐴]

𝛾

= [𝑎

2

− (1 − 𝛾) 𝛼, 𝑎

2

+ (1 − 𝛾) 𝛽] , ∀𝛾 ∈ [0, 1] . (11)

That is,

𝑀

∗

(

̃

𝐴) = 2∫

1

0

𝛾 [𝑎

2

− (1 − 𝛾)] 𝛼𝑑𝛾 = 𝑎

2

−

𝛼

3

,

𝑀

∗

(

̃

𝐴) = 2∫

1

0

𝛾 [𝑎

2

+ (1 − 𝛾)] 𝛽𝑑𝛾 = 𝑎

2

+

𝛽

3

,

(12)

and therefore

𝑀(

̃

𝐴) = [𝑀

∗

(

̃

𝐴) ,𝑀

∗

(

̃

𝐴)] = [𝑎

2

−

𝛼

3

, 𝑎

2

+

𝛽

3

] . (13)

Obviously, 𝑀(

̃

𝐴) is a closed interval bounded by the lower
and upper possibilistic mean values of ̃𝐴.The crisp possibilis-
tic mean value of ̃

𝐴 is defined as the arithmetic mean of its
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lower possibilistic and upper possibilistic mean values; that
is,

𝑀(

̃

𝐴) =

𝑀

∗

(

̃

𝐴) + 𝑀

∗

(

̃

𝐴)

2

.

(14)

According to the above way of transformation (see (13)), we
obtain an interval number having both a lower bound 𝑎

𝑙 and
upper bound 𝑎

𝑢, 𝐴 = [𝑎

𝑙

, 𝑎

𝑢

], where 𝑎

𝑙

= 𝑎

2

− 𝛼/3, and 𝑎

𝑢

=

𝑎

2

+ 𝛽/3.

From interval arithmetic, the following operations of
interval numbers are defined as follows.

Definition 4. For ∀𝑘 > 0 and a given interval number 𝐴 =

[𝑎

𝑙

, 𝑎

𝑢

], 𝑎

𝑙

, 𝑎

𝑢

∈ 𝑅,

𝑘 × [𝑎

𝑙

, 𝑎

𝑢

] = [𝑘 × 𝑎

𝑙

, 𝑘×𝑎

𝑢

] (15)

and for ∀𝑘 < 0,

−𝑘 × [𝑎

𝑙

, 𝑎

𝑢

] = [−𝑘 × 𝑎

𝑢

, −𝑘 × 𝑎

𝑙

] . (16)

Definition 5. For any two interval numbers [𝑎

𝑙

, 𝑎

𝑢

] and
[𝑏

𝑙

, 𝑏

𝑢

],

[𝑎

𝑙

, 𝑎

𝑢

] + [𝑏

𝑙

, 𝑏

𝑢

] = [𝑎

𝑙

+ 𝑏

𝑙

, 𝑎

𝑢

+ 𝑏

𝑢

] ,

[𝑎

𝑙

, 𝑎

𝑢

] − [𝑏

𝑙

, 𝑏

𝑢

] = [𝑎

𝑙

− 𝑏

𝑢

, 𝑎

𝑢

− 𝑏

𝑙

] .

(17)

Definition 6. For any two interval numbers [𝑎

𝑙

, 𝑎

𝑢

] and
[𝑏

𝑙

, 𝑏

𝑢

], the multiplication is defined as follows:

[𝑎

𝑙

, 𝑎

𝑢

] × [𝑏

𝑙

, 𝑏

𝑢

] = [min (𝑎

𝑙

𝑏

𝑙

, 𝑎

𝑙

𝑏

𝑢

, 𝑎

𝑢

𝑏

𝑙

, 𝑎

𝑢

𝑏

𝑢

) ,

max (𝑎

𝑙

𝑏

𝑙

, 𝑎

𝑙

𝑏

𝑢

, 𝑎

𝑢

𝑏

𝑙

, 𝑎

𝑢

𝑏

𝑢

)] .

(18)

Definition 7. For any two interval numbers [𝑎

𝑙

, 𝑎

𝑢

] and
[𝑏

𝑙

, 𝑏

𝑢

], the division is defined as follows:

[𝑎

𝑙

, 𝑎

𝑢

] ÷ [𝑏

𝑙

, 𝑏

𝑢

] = [min(

𝑎

𝑙

𝑏

𝑙

,

𝑎

𝑙

𝑏

𝑢

,

𝑎

𝑢

𝑏

𝑙

,

𝑎

𝑢

𝑏

𝑢

) ,

max(

𝑎

𝑙

𝑏

𝑙

,

𝑎

𝑙

𝑏

𝑢

,

𝑎

𝑢

𝑏

𝑙

,

𝑎

𝑢

𝑏

𝑢

)] ,

0 ∉ [𝑏

𝑙

, 𝑏

𝑢

] .

(19)

2.2. Interval-Valued Differential Equations. In this section
we consider an interval-valued differential equation of the
following form:

̇𝑦 = 𝑓 (𝑡, 𝑦 (𝑡)) , 𝑦 (𝑡

0

) = 𝑦

0

, (20)

where 𝑓 : [𝑎, 𝑏] × 𝐸 → 𝐸 with 𝑓(𝑡, 𝑦(𝑡)) = [𝑓

𝑙

(𝑡, 𝑦(𝑡)), 𝑓

𝑢

(𝑥,

𝑦(𝑡))] for 𝑦(𝑡) ∈ 𝐸, 𝑦(𝑡) = [𝑦

𝑙

(𝑡), 𝑦

𝑢

(𝑡)], 𝑦

0

= [𝑦

𝑙

0

, 𝑦

𝑢

0

]. Note
that we consider only Hukuhara differentiable solutions; that
is, there exists 𝛿 > 0 such that there are no switching points
in [𝑡

0

, 𝑡

0

+ 𝛿] [15, 16].

Definition 8. Let 𝑓 : [𝑎, 𝑏] → 𝐸 be Hukuhara differentiable
at 𝑡
0

∈ ]𝑎, 𝑏[. We say that 𝑓 is (i)-Hukuhara differentiable at
𝑡

0

if

̇

𝑓 (𝑡

0

) = [

̇

𝑓

𝑙

(𝑡

0

) ,

̇

𝑓

𝑢

(𝑡

0

)] (21)

and that 𝑓 is (ii)-Hukuhara differentiable at 𝑡
0

if

̇

𝑓 (𝑡

0

) = [

̇

𝑓

𝑢

(𝑡

0

) ,

̇

𝑓

𝑙

(𝑡

0

)] . (22)

The solution of the differential equation (20) depends on
the choice of the Hukuhara derivative ((i) or (ii)). To solve
the interval-valued differential equation it is necessary to
reduce the interval-valued differential equation to a system
of ordinary differential equations [17–20].

Let [𝑦(𝑡)] = [𝑦

𝑙

(𝑡), 𝑦

𝑢

(𝑡)]. If 𝑦(𝑡) is (i)-Hukuhara differ-
entiable, then𝐷

1

𝑦(𝑡) = [ ̇𝑦

𝑙

(𝑡), ̇𝑦

𝑢

(𝑡)] transforms (20) into the
following system of ordinary differential equations:

̇𝑦

𝑙

(𝑡) = 𝑓

𝑙

(𝑡, 𝑦 (𝑡)) , 𝑦

𝑙

(𝑡

0

) = 𝑦

𝑙

0

,

̇𝑦

𝑢

(𝑡) = 𝑓

𝑢

(𝑡, 𝑦 (𝑡)) , 𝑦

𝑢

(𝑡

0

) = 𝑦

𝑢

0

.

(23)

Also, if 𝑦(𝑡) is (ii)-Hukuhara differentiable, then 𝐷

2

𝑦(𝑡) =

[ ̇𝑦

𝑢

(𝑡), ̇𝑦

𝑙

(𝑡)] transforms (20) into the following system of
ordinary differential equations:

̇𝑦

𝑙

(𝑡) = 𝑓

𝑢

(𝑡, 𝑦 (𝑡)) , 𝑦

𝑙

(𝑡

0

) = 𝑦

𝑙

0

,

̇𝑦

𝑢

(𝑡) = 𝑓

𝑙

(𝑡, 𝑦 (𝑡)) , 𝑦

𝑢

(𝑡

0

) = 𝑦

𝑢

0

,

(24)

where 𝑓(𝑡, 𝑦(𝑡)) = [𝑓

𝑙

(𝑡, 𝑦(𝑡)), 𝑓

𝑢

(𝑡, 𝑦(𝑡))].

3. Model of the Evaluation

3.1. The Concept of Evaluation. Economic evaluation of a
mine project requires estimation of the revenues and costs
throughout the defined lifetime of the mine. Such evaluation
can be treated as strategic decision making under multiple
sources of uncertainties.Therefore, tomake the best decision,
based on the information available, it is necessary to develop
an adequatemodel incorporating the uncertainty of the input
parameters. The model should be able to involve a common
time horizon, taking the characteristics of the input variables
that directly affect the value of the proposed project.

The model is developed on the basis of full discounted
cash flow analysis of an underground zinc mine project. The
operating discounted cash flows are usually estimated on an
annual basis. Net present value of investment is used as a
key criterion in the process of mine project estimation. The
expected net present value of the project is a function of the
variables as

𝐸 (NPV | 𝑄, 𝑃, 𝐺,𝑀,𝐶, 𝐼, 𝑟, 𝑡) ≥ 0, (25)

where 𝑄 denotes the production rate (capacity); 𝑃 denotes
the zinc metal price; 𝐺 is the grade; 𝑀 is mill recovery; 𝐶 is
operating costs; 𝐼 is capital investment; 𝑟 is discount rate, and
𝑡 is the lifetime of the project; that is, the period in which the
cash flow is generated.
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In this paper, we treat in detail only the variability ofmetal
prices and operating costs, without intending to decrease the
significance of the remaining parameters. These parameters
are taken into account on the basis of expert knowledge
(estimation).

3.2. Forecasting the Revenue of the Mine. Most mining com-
panies realize their revenues by sellingmetal concentrates as a
final product. Estimatingmineral project revenue is, indeed, a
difficult and risky activity. Annual mine revenue is calculated
bymultiplying the number of units produced and sold during
the year by the sales price per unit.

The value of the metal concentrate can be expressed as
follows:

𝑉con = 𝑃 ⋅ (𝑚con − 𝑚mr) , (26)

where 𝑃 is metal price ($/𝑡), 𝑚con is metal content of
concentrate (%),𝑚mr is metal recovery ratio (%), and

𝑚con − 𝑚mr =

{

{

{

{

{

{

{

{

{

(𝑚con% − 8) ⋅ 100

𝑚con%
≤ 85%; 𝑚con% − 8

(𝑚con% − 8) ⋅ 100

𝑚con%
> 85%; 85%.

(27)

Annual mine revenue is calculated according to the following
equation:

𝑅year = 𝑄year ⋅ 𝑉con ⋅

𝐺 ⋅ 𝑀

𝑚con
, (28)

where 𝑄year is annual ore production (𝑡/year), 𝐺 is grade of
the ore mined (%),𝑀 is mill recovery (%).

Annual ore production is derived from themining project
schedule and is defined as crisp value. The concept of grade
(𝐺) is defined as the ratio of useful mass of metal to
the total mass of ore and its critical value fluctuates over
deposit space and can be estimated by experts and defined as
interval number 𝐺 = [𝐺

𝑙

, 𝐺

𝑢

]. Mill recovery (𝑀) is related
to the flotation as the most widely used method for the
concentration of fine grained minerals. It can also be defined
as interval number 𝑀 = [𝑀

𝑙

,𝑀

𝑢

]. Metal content represents
the quality of concentrate and we also apply the concept of an
interval number to define it: 𝑚con = [𝑚

𝑙

con, 𝑚
𝑢

con].
The major external source of risk affecting mine revenue

is related to the uncertainty about market behaviour of metal
prices. Forecasting the precise future state of themetal price is
a very difficult task formine planners. To predict futuremetal
prices, we apply the concept based on the transformation of
historical metal prices into adequate fuzzy-interval numbers
and grey system theory.

The forecasting model of metal prices is composed of the
following steps.

Step 1. Create the set PDF = {pdf
𝑗

}, 𝑗 = 1, 2, . . . , 𝑁, where
pdf
𝑗

is the probability density function of metal prices for
every historical year. The minimum number of elements of
the set is four: 𝑗min = 1, 2, 3, 4.

Step 2. Transform the set PDF into the set TFN = {(𝑎

𝑗

, 𝑏

𝑗

, 𝑐

𝑗

)},
where (𝑎

𝑗

, 𝑏

𝑗

, 𝑐

𝑗

) is an adequate fuzzy triangular number.

Step 3. Transform the set TFN into the set INT = {[𝑎

𝑙

𝑗

, 𝑎

𝑢

𝑗

]},
where [𝑎

𝑙

𝑗

, 𝑎

𝑢

𝑗

] is an adequate interval number.

Step 4. Using grey system prediction theory, create a grey
differential equation of type 𝐺𝑀(1, 1), that is, the first-order
variable grey derivative.

Step 5. Testing of 𝐺𝑀(1, 1) by residual error testing and the
posterior error detection method.

3.2.1. Analysis of Historical Metal Prices. For every historical
year it is necessary to define a probability density function
with the following characteristics: shape by histogram, mean
value (𝜇

𝑗

), and standard deviation (𝜎

𝑗

). In this way, we obtain
the sequence of probability density functions of 𝑃; 𝑃

𝑗

∼

(pdf
𝑗

, 𝜇

𝑗

, 𝜎

𝑗

), 𝑗 = 1, 2, . . . , 𝑁, where 𝑁 is the total number
of historical years.

3.2.2. Fuzzification of Metal Prices. The sequence of obtained
pdf
𝑗

of 𝑃
𝑗

can be transformed into a sequence of triangular
fuzzy numbers of 𝑃

𝑗

; 𝑃
𝑗

∼ TFN
𝑗

, 𝑗 = 1, 2, . . . , 𝑁; that is,
𝑃

1

∼ pdf
1

→ 𝑃

1

∼ TFN
1

; 𝑃
2

∼ pdf
2

→ 𝑃

2

∼ TFN
2

; . . .;
𝑃

𝑁

∼ pdf
𝑁

→ 𝑃

𝑁

∼ TFN
𝑁

. The method of transformation
is based on the following facts: the support of themembership
function and the pdf are the same, and the point with the
highest probability (likelihood) has the highest possibility.
For more details, see Swishchuk et al. [21]. The uncertainty
in the 𝑃 parameter is modelled by a triangular fuzzy number
with the membership function which has the support of 𝜇

𝑗

−

2𝜎

𝑗

< 𝑃

𝑗

< 𝜇

𝑗

+ 2𝜎

𝑗

, 𝑗 = 1, 2, . . . , 𝑁, set up for around 95%
confidence interval of distribution function. If we take into
consideration that the triangular fuzzy number is defined as
a triplet (𝑎

1𝑗

, 𝑎

2𝑗

, 𝑎

3𝑗

), then 𝑎

1𝑗

and 𝑎

3𝑗

are the lower bound
and upper bound obtained from the lower and upper bound
of 5% of the distribution, and the most promising value 𝑎

2𝑗

is
equal to the mean value of the distribution. For more details,
see Do et al. [22].

3.2.3. Metal Prices as Interval Numbers. The sequence of
obtainedTFN

𝑗

of𝑃
𝑗

is transformed into a sequence of interval
numbers of 𝑃

𝑗

; 𝑃

𝑗

∼ INT
𝑗

, 𝑗 = 1, 2, . . . , 𝑁; that is, 𝑃
1

∼

TFN
1

→ 𝑃

1

∼ INT
1

; 𝑃

2

∼ TFN
2

→ 𝑃

2

∼ INT
2

; . . .;
𝑃

𝑁

∼ TFN
𝑁

→ 𝑃

𝑁

∼ INT
𝑁

. The method of transformation
is described in Section 2.1 (basic concepts of fuzzy set theory).
According to this method of transformation, we obtain set

𝑃

𝑗

∼ INT
𝑗

;

𝑃

𝑗

= {[𝑃

𝑙

𝑗

, 𝑃

𝑢

𝑗

]} = {[𝑎

2𝑗

−

𝛼

𝑗

3

, 𝑎

2𝑗

+

𝛽

𝑗

3

]} ,

𝑗 = 1, 2, . . . , 𝑁.

(29)

3.2.4. Forecasting Model of Metal Prices. The grey model is a
powerful tool for forecasting the behaviour of the system in
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the future. It has been successfully applied to various fields
since it was proposed by Deng [23–31]. In this paper we use a
one-variable first-order differential grey equation, 𝐺𝑀(1, 1).
The essence of 𝐺𝑀(1, 1) is to accumulate the original data
(historical metal prices) in order to obtain regular data. By
setting up the grey differential equation, we obtain the fitted
curve in order to predict the future states of the system.

Definition 9. Assume that

𝑃

(0)

(𝑡

𝑗

) = {[𝑃

(0)𝑙

(𝑡

𝑗

) , 𝑃

(0)𝑢

(𝑡

𝑗

)]}

= {[𝑃

(0)𝑙

(𝑡

1

) , 𝑃

(0)𝑢

(𝑡

1

)] ,

[𝑃

(0)𝑙

(𝑡

2

) , 𝑃

(0)𝑢

(𝑡

2

)] , . . . ,

[𝑃

(0)𝑙

(𝑡

𝑁

) , 𝑃

(0)𝑢

(𝑡

𝑁

)]}

(30)

is the original series of interval metal prices obtained by
transformation. Sampling interval is Δ𝑡

𝑗

= 𝑡

𝑗

− 𝑡

𝑗−1

= 1 year.

Definition 10. Let 𝑃(1)(𝑡
𝑗

) = {[𝑃

(1)𝑙

(𝑡

𝑗

), 𝑃

(1)𝑢

(𝑡

𝑗

)]} be a new
sequence generated by the accumulated generating operation
(AGO), where

𝑃

(1)𝑙

(𝑡

𝑗

) =

𝑁

∑

𝑗=1

𝑃

(0)𝑙

(𝑡

𝑗

) ,

𝑃

(1)𝑢

(𝑡

𝑗

) =

𝑁

∑

𝑗=1

𝑃

(0)𝑢

(𝑡

𝑗

) .

(31)

In the process of forecasting metal prices, 𝑃

(1)𝑙

(𝑡

𝑗

) and
𝑃

(1)𝑢

(𝑡

𝑗

) are the solutions of the following grey differential
equation:

𝑑 [𝑃

(1)𝑙

(𝑡) , 𝑃

(1)𝑢

(𝑡)]

𝑑𝑡

+ [𝑞

𝑙

, 𝑞

𝑢

] ⋅ [𝑃

(1)𝑙

(𝑡) , 𝑃

(1)𝑢

(𝑡)]

= [𝑤

𝑙

, 𝑤

𝑢

] .

(32)

Obviously, (32) is an interval-valued differential equation (see
(20)).

To get the values of parameters 𝑞 = [𝑞

𝑙

, 𝑞

𝑢

] and 𝑤 =

[𝑤

𝑙

, 𝑤

𝑢

], the least square method is used as follows:

⊗[

𝑞

𝑤

] = ⊗ ([𝐵

𝑇

𝐵]

−1

𝐵

𝑇

𝑌

(0)

) , (33)

where

⊗𝐵 =

[

[

[

[

[

[

[

[

[

[

−

1

2

(𝑃

(0)

(1) + 𝑃

(0)

(2)) 1

−

1

2

(𝑃

(0)

(2) + 𝑃

(0)

(3))

...

1

...

−

1

2

(𝑃

(0)

(𝑁 − 1) + 𝑃

(0)

(𝑁)) 1

]

]

]

]

]

]

]

]

]

]

⊗𝑌

(0)

= [𝑃

(0)

(2) 𝑃

(0)

(3) ⋅ ⋅ ⋅ 𝑃

(0)

(𝑁)
]

𝑇

.

(34)

Note that the sign ⊗ indicates the interval number.

If ̇

𝑃

(1)

(𝑡) is considered as (i)-Hukuhara differentiable,
then the following system of ordinary differential equations
is as follows:

̇

𝑃

(1)𝑙

(𝑡) = 𝑤

𝑙

− 𝑞

𝑢

⋅ 𝑃

(1)𝑢

(𝑡) , 𝑃

𝑙

(𝑡

0

) = 𝑃

(0)𝑙

(1) ,

̇

𝑃

(1)𝑢

(𝑡) = 𝑤

𝑢

− 𝑞

𝑙

⋅ 𝑃

(1)𝑙

(𝑡) , 𝑃

𝑢

(𝑡

0

) = 𝑃

(0)𝑢

(1) .

(35)

The solution of this system (forecasted equation) is as follows:

̂

𝑃

(1)𝑙

(𝑡

𝑗

+ 1)

=

1

2

⋅ 𝑒

√
𝑞

𝑙
⋅𝑞

𝑢
⋅𝑡

⋅ 𝑍

1

+

1

2

⋅ 𝑒

−
√
𝑞

𝑙
⋅𝑞

𝑢
⋅𝑡

⋅ 𝑍

2

+

𝑤

𝑢

𝑞

𝑙

,

𝑗 = 1, 2, . . . , 𝑁,

̂

𝑃

(1)𝑢

(𝑡

𝑗

+ 1)

=

1

2

⋅ 𝑒

√
𝑞

𝑙
⋅𝑞

𝑢
⋅𝑡

⋅ 𝑍

3

+

1

2

⋅ 𝑒

−
√
𝑞

𝑙
⋅𝑞

𝑢
⋅𝑡

⋅ 𝑍

4

+

𝑤

𝑙

𝑞

𝑢

,

𝑗 = 1, 2, . . . , 𝑁,

(36)

where

𝑍

1

= 𝑃

(0)𝑙

(1) −

𝑞

𝑢

⋅𝑃

(0)𝑢

(1)

√
𝑞

𝑙

⋅ 𝑞

𝑢

+

𝑤

𝑙

√
𝑞

𝑙

⋅ 𝑞

𝑢

−

𝑤

𝑢

𝑞

𝑙

,

𝑍

2

= 𝑃

(0)𝑙

(1) +

𝑞

𝑢

⋅𝑃

(0)𝑢

(1)

√
𝑞

𝑙

⋅ 𝑞

𝑢

−

𝑤

𝑙

√
𝑞

𝑙

⋅ 𝑞

𝑢

−

𝑤

𝑢

𝑞

𝑙

,

𝑍

3

= 𝑃

(0)𝑢

(1) −

𝑃

(0)𝑙

(1) ⋅
√
𝑞

𝑙

⋅ 𝑞

𝑢

𝑞

𝑢

+

𝑤

𝑢

√
𝑞

𝑙

⋅ 𝑞

𝑢

−

𝑤

𝑙

𝑞

𝑢

,

𝑍

4

= 𝑃

(0)𝑢

(1) +

𝑃

(0)𝑙

(1) ⋅
√
𝑞

𝑙

⋅ 𝑞

𝑢

𝑞

𝑢

−

𝑤

𝑢

√
𝑞

𝑙

⋅ 𝑞

𝑢

−

𝑤

𝑙

𝑞

𝑢

.

(37)

To obtain the forecasted value of the primitive (original)
metal price data at time (𝑡

𝑗

+ 1), the inverse accumulated
generating operation (IAGO) is used as follows:

⊗

̂

𝑃

(0)

(𝑡

1

) = ⊗𝑃

(0)

(𝑡

1

) ⊗

̂

𝑃

(0)

(𝑡

𝑗

+ 1)

= ⊗

̂

𝑃

(1)

(𝑡

𝑗

+ 1)

− ⊗

̂

𝑃

(1)

(𝑡

𝑗

) , 𝑗 = 1, 2, . . . , 𝑁.

(38)

3.2.5. The Model Accuracy

Definition 11. For a given interval grey number ⊗([𝑎𝑙, 𝑎𝑢]), it
is common to take a whitening value ̃

⊗([𝑎

𝑙

, 𝑎

𝑢

]) = 𝜔 ⋅𝑎

𝑙

+(1−

𝜔) ⋅ 𝑎

𝑢 for ∀𝜔 ∈ [0, 1]. Furthermore, if 𝜔 = 0.5, it is called
equal weight average whitenization [23].
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Residual error testing is composed of the calculation
of relative error and absolute error between ̃

⊗𝑃

(0)

(𝑡

𝑗

) and
̃
⊗

̂

𝑃

(0)

(𝑡

𝑗

) based on the following formulas:

Δ𝜀 (𝑡

𝑗

) =
̃
⊗𝑃

(0)

(𝑡

𝑗

) −
̃
⊗

̂

𝑃

(0)

(𝑡

𝑗

) ,











Δ𝜀 (𝑡

𝑗

)











=











̃
⊗𝑃

(0)

(𝑡

𝑗

) −
̃
⊗

̂

𝑃

(0)

(𝑡

𝑗

)











.

(39)

The posterior error detection method means calculation of
the standard deviation of original metal price series (𝑆

1

) and
standard deviation of absolute error (𝑆

2

):

𝑆

1

=

√

∑

𝑁

𝑗=1

(
̃
⊗𝑃

(0)

(𝑡

𝑗

) −
̃
⊗𝑃

(0)

(𝑡

𝑗

))

2

𝑁 − 1

,

𝑆

2

=

√

∑

𝑁

𝑗=1

(Δ𝜀 (𝑡

𝑗

) − Δ𝜀 (𝑡

𝑗

))

2

𝑁 − 1

.

(40)

The variance ratio is equal to

𝐶vr =
𝑆

2

𝑆

1

. (41)

The standard of judgment is represented as follows [24]:

𝐶vr =

{

{

{

{

{

{

{

{

{

<0.35; Excellence
<0.60; Pass
<0.65; Reluctant pass
≥0.65; No pass.

(42)

3.3. Volatility of Costs. Capital development in an under-
ground mine consists of shafts, ramps, raises, and lateral
transport drifts required to access ore deposits with expected
utility greater than one year.This is the development required
to start up the ore production and to haul the ore to the
surface. Experience with investments in capital development
might show that such expenditures can run considerably
higher than the estimates, but it is quite unlikely that actual
costs will be lower than estimated.Thus, the interval number
might represent capital investment for the project: 𝐼 = [𝐼

𝑙

, 𝐼

𝑢

].
Operating costs are incurred directly in the production

process. These costs include the ore and waste development
of individual stopes, the actual stoping activities, the mine
services providing logistical support to the miners, and the
milling and processing of the ore at the plant. These costs
are generally more difficult to estimate than capital costs
for most mining ventures. If we take into consideration that
production will be carried out for many years, then it is
very important to predict the future states of operating costs.
Although there is some intention to create a correlation
between metal price and operating cost, it is very hard to
define it, since price and cost vary continuously and are differ-
ent over time. At the project level, there will not be a perfect
correlation between price and cost because of adjustments to
variables such as labour, energy, explosives, and fuel, as well
as other material expenditures that are supplied by industries

that are not directly linked to metal price fluctuations. In
order to protect themselves, suppliers are offering short-term
contracts to mines that are the opposite of traditional long-
term contracts. Some components of the operating cost such
as inputs used for mineral processing are usually purchased
atmarket prices that fluctuatemonthly, annually, or even over
shorter periods.

The uncertainties related to the future states of operating
costs are modelled with a special stochastic process, geo-
metric Brownian motion. Certain stochastic processes are
functions of a Brownianmotion process and these havemany
applications in finance, engineering, and the sciences. Some
special processes are solutions of Itô-Doob type stochastic
differential equations (Ladde and Sambandham [32]).

In this model, we apply a continuous time process using
the Itô-Doob type stochastic differential equation to describe
the movement of operating costs. A general stochastic differ-
ential equation takes the following form:

𝑑𝐶

𝑡

= 𝜇 (𝐶

𝑡

, 𝑡) 𝑑𝑡 + 𝜎 (𝐶

𝑡

, 𝑡) 𝑑𝑊

𝑡

, 𝐶

𝑡0
= 𝐶

0

. (43)

Here, 𝑡 ≥ 𝑡

0

, 𝑊
𝑡

is a Brownian motion, and 𝐶

𝑡

> 0; this is
the cost process. 𝐶

𝑡

is called the geometric Brownian motion
(GBM), which is the solution of the following linear Itô-Doob
type stochastic differential equation:

𝑑𝐶

𝑡

= 𝜇𝐶

𝑡

𝑑𝑡 + 𝜎𝐶

𝑡

𝑑𝑊

𝑡

, (44)

where 𝜇 and 𝜎 are some constants (𝜇 is called the drift and
𝜎 is called the volatility) and 𝑊

𝑡

is a normalized Brownian
motion.Using the Itô-Doob formula applied to𝑓(𝐶

𝑡

) = ln𝐶

𝑡

,
we can solve (44). The solution of (44) is given by the exact
discrete-time equation for 𝐶

𝑡

:

𝐶

𝑡

= 𝐶

𝑡−1

⋅ 𝑒

{(𝜇−𝜎

2
/2)Δ𝑡+𝑁(0,1)𝜎

√
Δ𝑡}

,
(45)

where 𝑁(0, 1) is the normally distributed random variable
and Δ𝑡 = 1 (year). Equation (45) describes an operating
cost scenario with spot costs 𝐶

𝑡

. By simulating 𝐶

𝑡

, we obtain
operating costs for every year. Simulated values of the costs
are obtained by performing the following calculations:

𝐶 = 𝐶

𝑠

𝑡

=

[

[

[

[

[

[

[

𝐶

1

1

𝐶

1

2

. . . 𝐶

1

𝑇

𝐶

2

1

𝐶

2

2

. . . 𝐶

2

𝑇

...
...

...
...

𝐶

𝑆

1

𝐶

𝑆

2

. . . 𝐶

𝑆

𝑇

]

]

]

]

]

]

]

,

𝑠 = 1, 2, . . . , 𝑆; 𝑡 = 1, 2, . . . , 𝑇,

(46)

where 𝑆 denotes the number of simulations and𝑇 the number
of project years. In the space 𝐶

𝑠

𝑡

each row represents one
simulated path of costs over the project time, while each
column represents simulated values of costs for every year.
The main objective of using simulation is to determine the
distribution of the 𝐶 for every year of the project. In this way
we obtain the sequence of probability density functions of 𝐶;
𝐶

𝑡

∼ (pdf
𝑡

, 𝜇

𝑡

, 𝜎

𝑡

), 𝑡 = 1, 2, . . . , 𝑇.
Applying the same concept of metal prices transfor-

mation, we obtain the future sequence of operating costs
expressed by interval numbers; 𝐶(𝑡

𝑖

) = [𝐶

𝑙

(𝑡

𝑖

), 𝐶

𝑢

(𝑡

𝑖

)], 𝑖 =

1, 2, . . . , 𝑇, where 𝑇 is the total project time.
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3.4. Criterion of the Evaluation. The net present value (NPV)
of the mine project is an integral evaluation criterion that
recognizes the time effect of money over the life-of-mine. It is
calculated as a difference between the sum of discounted val-
ues of estimated future cash flows and the initial investment
and can be defined as follows:

⊗NPV

=

𝑇

∑

𝑡=1

((𝑄 ⋅ {⊗𝑃

(𝑡𝑝+𝑡𝑖)
⋅ (𝑚con − 𝑚mr) ⋅ (𝐺 ⋅ 𝑀/𝑚con)

−⊗𝐶

(𝑡𝑝+𝑡𝑖)
}) × ((1 + ⊗𝑟)

𝑡𝑖
)

−1

) − ⊗𝐼,

(47)

where 𝑄 is annual ore production (𝑡/year), 𝑟 is discount rate,
𝑇 is the number of periods for the life of the investment, 𝐼 is
initial (capital) investment, and 𝑡

𝑝

is preproduction time, time
needed to prepare deposit to be mined (construction time)

Finally, the last parameter that can be expressed by an
interval number is the discount rate. Discounted cash flow
methods are widely used in capital budgeting; however,
determining the discount rate as a crisp value can lead
to erroneous results in most mine project applications. A
discount rate range can be established in a way which is either
just acceptable (maximum value) or reasonable (minimum
value); 𝑟 = [𝑟

𝑙

, 𝑟

𝑢

].
A positive NPV will lead to the acceptance of the project

and a negative NPV rejects it; that is, ̃⊗NPV ≥ 0. Consider

̃
⊗ ([NPV𝑙,NPV𝑢]) = 𝜔 ⋅NPV𝑙 + (1 − 𝜔) ⋅NPV𝑢,

𝜔 ∈ [0, 1] .

(48)

Weight whitenization of interval NPV is obtained by 𝜔NPV =

0.5.

4. Numerical Example

Themanagement of a smallmining company is evaluating the
opening of a new zinc deposit. The recommendations from
the prefeasibility study suggest the following:

(i) the undergroundmine development system connect-
ing the ore body to the surface is based on the
combination of ramp and horizontal drives. This
system is used for the purpose of ore haulage by dump
trucks and conduct intake fresh air. Contaminated air
is conducted to the surface by horizontal drives and
declines,

(ii) they suggest purchasing new mining equipment.

The completion of this project will cost the company about
3500 000USDover three years. At the beginning of the fourth
year, when construction is completed, the new mine will
produce 100,000 𝑡/year during 5 years of production.

The input parameters required for the project evaluation
are given in Table 1. Note that the situation is hypothetical and
the numbers used are to permit calculation.
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Figure 2: Historical zinc metal prices expressed as triangular fuzzy
numbers.

The interval values of historical metal prices are calcu-
lated by Steps 1, 2, and 3 of themetal prices forecastingmodel.
The values obtained are as represented inTable 2 and Figure 2.

Based on data in Table 2 and (36), the fuzzy-interval
AGOGM(1, 1)model of zinc metal prices is set up as follows:

̂

𝑃

(1)𝑙

(𝑡

𝑗

+ 1) = −14908.63 ⋅ 𝑒

0.0454⋅𝑡

− 59327.37 ⋅ 𝑒

−0.0454⋅𝑡

+ 75620.82,

̂

𝑃

(1)𝑢

(𝑡

𝑗

+ 1) = 11055.73 ⋅ 𝑒

0.0454𝑡

− 43995.13 ⋅ 𝑒

−0.0454⋅𝑡

+ 34871.36.

(49)

To test the precision of the model, relative error and absolute
error of the model are calculated and the results are repre-
sented in Table 3.

The standard deviation of the original metal price series
(𝑆
1

) and standard deviation of absolute error (𝑆
2

) are 216.77
and 37.93, respectively. The variance ratio of the model is
𝐶vr = 0.175. These show that the obtained model has good
forecasting precision to predict the zinc metal prices.

According to (28), annual mine revenues are represented
in Table 4.

Uncertainty related to the unit operating costs is quanti-
fied according to (45), that is, by geometric Brownianmotion.
Figure 3 represents seven possible paths (scenarios) of the
unit operating costs over the project time.

The results of the simulations and transformations are
represented in Table 5.

Annual operating costs are represented in Table 6.
The discounted cash flow of the project is represented in

Table 7.
According to (47) and data in Table 7, the net present

value of the project is as follows:

⊗NPV = [−8.775, 17.784] − [3.000, 4.000]

= [−11.775, 13.784] mill’s USD.
(50)



Journal of Applied Mathematics 9

Table 1: Input parameters.

Mine ore production (t/year) 100 000
Zinc grade (%)

[4.2, 5.0] = [0.042, 0.050]
Metal content of concentrate (%)

𝑚con − 𝑚mr =

{

{

{

{

{

{

{

(𝑚con% − 8) ⋅ 100

𝑚con%
≤ 85%; 𝑚con% − 8

(𝑚con% − 8 ⋅ 100)

𝑚con%
> 85%; 85%

[47, 52] = [0.47, 0.52]

[39, 42] = [0.39, 0.42]

Mill recovery (%)
[75, 80] = [0.75, 0.80]

Metal price ($/t)

2009 2010 2011 2012 2013

January 1203 2415 2376 1989 2031

February 1118 2159 2473 2058 2129

March 1223 2277 2341 2036 1929

April 1388 2368 2371 2003 1856

May 1492 1970 2160 1928 1831

June 1555 1747 2234 1856 1839

July 1583 1847 2398 1848 1838

August 1818 2047 2199 1816 1896

September 1879 2151 2075 2010 1847

October 2071 2374 1871 1904 1885

November 2197 2283 1935 1912 1866

December 2374 2287 1911 2040 1975
Initial (capital) investment ($)

[3000000, 4000000]
Operating costs, geometric Brownian motion,
yearly time resolution ($/t), equation (39)
Number of simulations

Spot value 32; drift 0.020;
cost volatility rate 0.10;
𝑆 = 500

Construction period (year) 3 2014; 2015; 2016

Mine life (year) 5 2017; 2018; . . . ; 2021

Discount rate (%)
[7, 10] = [0.07, 0.10]

Table 2: Transformation pdf
𝑗

→ TFN
𝑗

→ INT
𝑗

.

2009 2010 2011 2012 2013
pdf
𝑗

𝜇

𝑗

1658 2160 2195 1950 1910
𝜎

𝑗

410 216 207 83 92
TFN
𝑗

𝑎

1𝑗

= 𝜇

𝑗

− 2𝜎

𝑗

838 1728 1781 1784 1726
𝑎

2𝑗

= 𝜇

𝑗

1658 2160 2195 1950 1910
𝑎

3𝑗

= 𝜇

𝑗

+ 2𝜎

𝑗

2478 2592 2609 2116 2094
𝛼

𝑗

= 𝛽

𝑗

820 432 414 166 184
INT
𝑗

𝑃

𝑙

𝑗

1385 2016 2057 1895 1849
𝑃

𝑢

𝑗

1931 2304 2333 2005 1971
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Table 3: Relative and absolute error of the model.

Year Original values
($/t)

Simulated
values ($/t)

Whitenization 𝜔 = 0.5 Relative error Absolute error Relative error (%)
Original Simulated

2009
[1385, 1931] [1385, 1931] 1658 1658 0 0 0

2010
[2016, 2304] [1941, 2466] 2160 2204 −44 44 −2.03

2011
[2057, 2333] [1792, 2404] 2195 2098 97 97 +4.42

2012
[1895, 2005] [1647, 2346] 1950 1997 −47 47 −2.41

2013
[1849, 1971] [1505, 2293] 1910 1899 11 11 +0.57

Table 4: Mine revenues over production period 2017–2021.

2017 2018 2019 2020 2021
𝑅year (mill’s USD) [2.279, 7.466] [1.974, 7.360] [1.672, 7.269] [1.374, 7.192] [1.079, 7.131]

Table 5: Simulation of the unit operating costs.

2013 2014 2015 2016 2017 2018 2019 2020 2021
Simulation 1 32 35.24 36.47 40.67 46.07 55.00 54.14 55.69 48.59
...

...
...

...
...

...
...

...
...

...
Simulation 500 32 31.17 35.17 37.91 37.66 36.27 37.15 34.34 36.08
pdf
𝑖

𝜇

𝑖

32 32.41 33.12 33.51 34.05 34.56 35.16 35.80 36.35
𝜎

𝑖

0.0 3.16 4.55 5.70 6.60 7.49 8.45 9.42 10.00
TFN
𝑖

𝑎

1𝑖

= 𝜇

𝑖

− 2𝜎

𝑖

32 26.09 24.02 22.11 20.85 19.58 18.26 16.96 16.35
𝑎

2𝑖

= 𝜇

𝑖

32 32.41 33.12 33.51 34.05 34.56 35.16 35.80 36.35
𝑎

3𝑖

= 𝜇

𝑖

+ 2𝜎

𝑖

32 38.73 42.22 44.91 47.25 49.54 52.06 54.64 56.35
𝛼

𝑖

= 𝛽

𝑖

0.0 6.32 9.10 11.40 13.20 14.98 16.90 18.84 20.00
INT
𝑖

𝐶

𝑙

𝑖

($/t) 32 30.30 30.08 29.71 29.65 29.56 29.52 29.52 29.68
𝐶

𝑢

𝑖

($/t) 32 34.52 36.16 37.32 38.45 39.56 42.09 42.08 43.01

Table 6: Operating costs over production period 2017–2021.

2017 2018 2019 2020 2021
𝐶year (mill’s USD) [2.965, 3.845] [2.956, 3.956] [2.956, 4.029] [2.952, 4.208] [2.968, 4.301]

Table 7: Discounted cash flow over production period 2017–2021.

2017 2018 2019 2020 2021
𝑅year (mill’s USD) [2.279, 7.466] [1.974, 7.360] [1.672, 7.269] [1.374, 7.192] [1.079, 7.131]
𝐶year (mill’s USD) [2.965, 3.845] [2.956, 3.956] [2.956, 4.029] [2.952, 4.208] [2.968, 4.301]
𝑅year − 𝐶year [−1.566, 4.501] [−1.982, 4.404] [−2.357, 4.313] [−2.834, 4.240] [−3.222, 4.163]
Discount factor [1.07, 1.10] [1.14, 1.21] [1.23, 1.33] [1.31, 1.46] [1.40, 1.61]
Present value [−1.423, 4.206] [−1.638, 3.863] [−1.772, 3.506] [−1.941, 3.236] [−2.001, 2.973]
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Figure 3: Seven simulated operating cost paths on a yearly time
resolution.

Weight whitenization of interval NPV is obtained by 𝜔NPV =

0.5 and the white value is NPV = 1.004 million USD. This
means the project is accepted.

5. Conclusion

The combined effect of market volatility and uncertainty
about future commodity prices is posing higher risks to
mining businesses across the globe. In such times, knowing
how to unlock value by maximizing the value of resources
and reserves through strategic mine planning is essential. In
our country, small mining companies are faced with many
problems but the primary problem is related to the shortage of
capital for investment. In such an environment every mining
venture must be treated as a strategic decision supported
by adequate analysis. The developed economic model is a
mathematical representation of project evaluation reality and
allows management to see the impact of key parameters on
the project value. The interaction between production, costs,
and capital is highly complex and changes over time, but
needs to be accurately modelled so as to provide insights
around capital configurations of that business.

The evaluation of a mining venture is made very dif-
ficult by uncertainty on the input variables in the project.
Metal prices, costs, grades, discount rates, and countless
other variables create a high risk environment to operate
in. The incorporation of risk into modelling will provide
management with better means to deal with uncertainty and
the identification andquantification of those factors thatmost
contribute to risk, which will then allow mitigation strategies
to be tested. The model brings forth an issue that has the
dynamic nature of the assessment of investment profitability.
With the fuzzy-interval model, the future forecast can be
done from the beginning of the process until the end.

From the results obtained by numerical example, it
is shown that fuzzy-interval grey system theory can be
incorporated intomine project evaluation.The variance ratio
𝐶vr = 0.175 shows that the metal prices forecasting model is
credible to predict the future values of the most important
external parameter. The operating costs prediction model,
based on geometric Brownian motion, gives the same result
that we get if we use scenarios; however, it does not require
us to simplify the future to the limited number of alternative
scenarios.

With interval numbers, the end result will be interval
NPV, which is the payoff interval for the project. Using the
weight whitenization of the interval NPV, we obtain the
payoff crisp value for the project. This value is the value at
risk, helping the management of the company to make the
right decision.
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