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This work is concerned with stabilization control of a class of linear switching systems with time-delays in both the input and the
communication channels. It is observed that the time-delay in communication channel leads to the mismatch between the plant
and the controller. Such a phenomenon can be accounted for by reconstructing switching signal for the overall closed-loop system.
Therefore, we derive some sufficient stability conditions by using multiple Lyapunov functions approach and, moreover, present a
robust controller design methodology. A numerical example is presented to demonstrate the effectiveness of the proposed method.

1. Introduction

During the last decade, stability and stabilization problems
of switching systems have received considerable attentions.
Switching control provides flexibility and robustness. A
switching system is generated by a switching signal that
orchestrates several plants. Therefore, it can be used to
describe practical systems that are subject to abrupt changes.
For stability analysis, one of the fundamental problems is to
establish the constraint conditions on switching frequency
and specify certain classes of switching signal so as to
guarantee the stability of the overall system (see, e.g., [1–5]).
The associated stabilization problem then is to construct
feedback control tomake the closed-loop system stable under
certain classes of switching signal. Within this context, it is
an important assumption that the controller can access the
plant’s switching signal instantly. However, from practical
point of view, it needs certain amount of time to detect the
change of subsystems and to respond to it.This phenomenon
can be treated as the aftereffect (delay) in the communication
channel.

On the other hand, time-delay systems have received
renewed interest in recent years since they can be used to
modelmany practical physical systems that are affected by the
past information, for example, networked control systems,

the Bazykin model [6], and the drugs therapy for HIV infec-
tion [7]. Time-delay can significantly influence the dynamic
behaviors, especially, the stability behavior, of a practical
system. Thus time-delay systems have been studied by many
scholars in different aspects. For example, to compensate for
the large input delay in a control system and to overcome
the shortcoming of the traditional predictor feedback, a new
approach referred to as truncated predictor feedback was
initially established in [8] for a single input delay andwas then
extended to more general cases in [9–11]; a nested prediction
approach was established in [12] to compensate for arbitrary
large input delay for linear systems with both input and state
delays; a sampled-date approach was developed in [13] for
the stochastic synchronization of Markovian jump neural
networks with time-varying delays; a Lyapunov-Krasovskii
functional approach was built in [14] for the passivity analysis
of discrete-time stochastic Markovian jump neural networks
with mixed time-delays; robust stability criteria for uncertain
neutral systems with mixed delays were derived in [15]
by the Lyapunov-Krasovskii functional approach; and the
stability of time-delay neural networks subject to stochastic
perturbations was investigated in [16]. Formore related work,
see [17–29] and the references therein.

The time-delay in the communication channel leads to
the fact that the change of controllers fails to be instant
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and then to keep synchronous with the change of plants.
Therefore, in this paper, we are concerned with the feedback
stabilization problem of switching linear systems in the
presence of time-delays in both the communication and the
input channels. For our purpose, the starting point is to
investigate the joint effects of such aftereffects on the stability
of the overall system.

The time-delay in the communication channel gives rise
to a kind of uncertainty in the structure of the overall closed-
loop system. In order to characterize the uncertainty, we
classify each closed-loop subsystem according to whether the
controller and the plant are pairwise matched. Basically, the
mismatched subsystems play a negative role in the stability
of the overall system (see, e.g., [30, 31]). Thus, we treat the
mismatched subsystems as perturbed nominal closed-loop
system,which is purely composed of thematched subsystems.
Hence, in order to account for the involvement of the
mismatched subsystems,we employ the technique ofmerging
switching signals to reconstruct the switching signal for the
closed-loop system. Therefore, by using multiple Lyapunov
functions approach, it is observed that the effect of the time-
delay in the communication channel on the stability can be
captured by the ratio of its size to the average dwell-time
of the switching signal. Accordingly, we apply the Halanay
inequality to derive sufficient stability conditions. With the
analysis results in hand, we pose the design strategy in such a
way that we solve the controllers according to the matched
subsystems and, furthermore, check their robustness with
respect to the mismatched subsystems.

The remainder of the paper is organized as follows. In
Section 2, we describe the problem and present some pre-
liminary results. Section 3 is devoted to proving the sufficient
stability conditions for the closed-loop system. In Section 4,
the design methodology for the state-feedback robust
control is presented. In Section 5, a numerical example is
worked out to demonstrate the effectiveness of the method.
Finally, the paper is briefly summarized in Section 6.

2. Problem Formulation and Preliminaries

Consider a switching linear control system as follows:

�̇� (𝑡) = 𝐴

𝜎(𝑡)
𝑥 (𝑡) + 𝐵

𝜎(𝑡)
𝑢 (𝑡) , 𝑡 ≥ 0, (1)

where 𝑥(𝑡) ∈ 𝑅

𝑛 and 𝑢(𝑡) ∈ 𝑅

𝑚 are the state vector
and the control input, respectively. The system is generated
by the switching signal 𝜎(𝑡) that orchestrates the following
controlled subsystems:

�̇� (𝑡) = 𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡) , 𝑖 ∈ I := {1, . . . , 𝑁} . (2)

According to the evolution of switching signal over time, it
can be expanded into the following sequential form:

{ (𝑡

0
= 0, 𝜎 (𝑡

0
)) , (𝑡

1
, 𝜎 (𝑡

1
)) , . . . , (𝑡

𝑘
, 𝜎 (𝑡

𝑘
)) ,

. . . : lim
𝑘→∞

𝑡

𝑘
= ∞} ,

(3)

where the sequence {𝑡
𝑘
}

∞

𝑘=0
monotonically diverging to infin-

ity constitutes the switching points. It means that the 𝜎(𝑡
𝑘
)th
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Figure 1: An illustration for the construction of 𝜎
1
(𝑡) ⊕ 𝜎

2
(𝑡).

subsystem is activated during the interval (𝑡
𝑘
, 𝑡

𝑘+1
].Thus, one

way to characterize the evolution of switching signal over
time is to represent the density of the switching points dis-
tributed within the interval of unit length, which is referred
to as average dwell-time.

Definition 1. Given 𝜏 > 0, a switching signal 𝜎(𝑡) is said to
belong to S

𝜏
if it has no more than (𝑇

2
− 𝑇

1
)/𝜏 switching

points within any interval of time [𝑇
1
, 𝑇

2
]. Here, 𝜏 is said to

be the lower bound of the average dwell-time of the switching
signals in S

𝜏
.

By means of the average dwell-time, categorizing switch-
ing signals according to their varying strength and,moreover,
defining a merging operation between two switching signals
are allowed. To be precise, let the switching signals 𝜎

1
(𝑡) be in

the same index set and, at the same time, let

Π

1
= {𝑡

0
, 𝑡

1
, . . . , 𝑡

𝑘
, . . . : lim
𝑘→∞

𝑡

𝑘
= ∞} ,

Π

2
= {𝑡



0
, 𝑡



1
, . . . , 𝑡



𝑘
, . . . : lim
𝑘→∞

𝑡



𝑘
= ∞}

(4)

be the collections of their switching points, respectively.

Definition 2. Werefer to𝜎
1
(𝑡)⊕𝜎

2
(𝑡) as themerging switching

signal of 𝜎
1
(𝑡) and 𝜎

2
(𝑡) in the sense that the collection of its

switching points corresponds toΠ
1
∪ Π

2
and, at a switching

point, it inherits the corresponding value from 𝜎

1
(𝑡) and

𝜎

2
(𝑡).

As illustrated in Figure 1, according to the evolution over
time, the ordered switching points of𝜎

1
(𝑡) ⊕ 𝜎

2
(𝑡) correspond

to the increasing sequence

{𝑡



0
, 𝑡



1
, . . . , 𝑡



𝑘
, . . . : lim
𝑘→∞

𝑡



𝑘
= ∞} . (5)

Lemma 3 (see [32]). Given two switching signals 𝜎
1
(𝑡) ∈ S

𝜏
1

and 𝜎
2
(𝑡) ∈ S

𝜏
2

that are assumed in the same index set, one has
𝜎

1
(𝑡) ⊕ 𝜎

2
(𝑡) ∈ S

𝜏
with 𝜏 = (1/𝜏

1
+ 1/𝜏

2
)

−1

= (𝜏

1
+ 𝜏

2
)/𝜏

1
𝜏

2
.

With respect to certain classes of switching signal, the
stabilization problem of system (1) requires us to construct
the following state-feedback controller:

𝑢 (𝑡) = 𝐹

𝑖
𝑥 (𝑡) , 𝑖 ∈ I, (6)

in which 𝐹

𝑖
corresponds to the 𝑖th subsystem in (2), such

that the overall closed-loop system is asymptotically stable.
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Ideally, by supposing that the controller can access the plant’s
switching signal and can be activated instantly, the resulting
closed-loop system

�̇� (𝑡) = (𝐴

𝜎(𝑡)
+ 𝐵

𝜎(𝑡)
𝐹

𝜎(𝑡)
) 𝑥 (𝑡) (7)

will keep synchronous with the controlled system in (1).
Indeed, it implies that the controller and the plant must
be pairwise matched. In practice, however, it needs certain
amount of time to detect the change of plants and respond to
it by triggering the corresponding controllers into activation.
It is thus reasonable to take this aftereffect as well as the
aftereffect in the input channel into account. Hence the state-
feedback control for system (1) takes the form

𝑢 (𝑡) = 𝐹

𝜎(𝑡−ℎ
𝑠
(𝑡))
𝑥 (𝑡 − ℎ

𝑥
(𝑡)) , (8)

where 0 ≤ ℎ

𝑥
(𝑡) ≤ ℎ

𝑥
and 0 ≤ ℎ

𝑠
(𝑡) ≤ ℎ

𝑠
. With this, the

task is then to design the controllers as in (8) so that the
exponential stability of the closed-loop system is maintained
in the presence of time-delays in both the input and the
communication channels.

In what follows we will need the following facts.

Lemma 4 (see [20]). There exists a matrix𝑋 such that

[

[

𝑃 𝑄 𝑋

⋆ 𝑅 𝑉

⋆ ⋆ 𝑆

]

]

> 0, (9)

if and only if

[

𝑃 𝑄

⋆ 𝑅

] > 0,

[

𝑅 𝑉

⋆ 𝑆

] > 0

(10)

are satisfied.

Lemma 5 (Halanay inequality, see [21]). Let ℎ, 𝑎, 𝑏 be three
given scalars such that 0 ≤ ℎ and 0 ≤ 𝑏 < 𝑎. If the
positive-definite continuous function 𝑢(𝑡) satisfies the following
differential inequality:

�̇� (𝑡) ≤ −𝑎𝑢 (𝑡) + 𝑏 sup
−ℎ≤𝜃≤0

𝑢 (𝑡 + 𝜃) , ∀𝑡 ≥ 𝑡

0
, (11)

then one has

𝑢 (𝑡) ≤ [ sup
−ℎ≤𝜃≤0

𝑢 (𝑡

0
+ 𝜃)] 𝑒

−𝜆(𝑡−𝑡
0
)

, ∀𝑡 ≥ 𝑡

0
, (12)

where 𝜆 > 0 is the unique root of the equation 𝜆−𝑎+𝑏𝑒ℎ𝜆 = 0.

3. Stability Analysis

It is important to observe that the aftereffect in the commu-
nication channel gives rise to the mismatch between plants
and controllers. One way to account for the mechanism is to

multiply the index set by itself and, at the same time, present
the closed-loop subsystems as

�̇� (𝑡) = 𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝐹

𝑗
𝑥 (𝑡 − ℎ

𝑠
(𝑡))

= 𝐴

𝑖𝑗
𝑥 (𝑡) − 𝐷

𝑖𝑗
(𝑥 (𝑡) − 𝑥 (𝑡 − ℎ

𝑠
(𝑡))) ,

(𝑖, 𝑗) ∈ I ×I,

(13)

where 𝐴

𝑖𝑗
:= 𝐴

𝑖
+ 𝐵

𝑖
𝐹

𝑗
, 𝐷
𝑖𝑗

:= 𝐵

𝑖
𝐹

𝑗
, and I ×

I := {(1, 1), . . . , (1,𝑁), . . . , (𝑁, 1), . . . , (𝑁,𝑁)}. Obviously,
the closed-loop subsystem is matched if 𝑖 = 𝑗; otherwise it
is mismatched.

Correspondingly, the switching signals 𝜎(𝑡) and 𝜎
𝑐
(𝑡) :=

𝜎(𝑡 − ℎ

𝑠
(𝑡)) are supposed to take values fromI × I. In fact,

𝜎(𝑡) takes values of the form (𝑖, 𝑖) to represent the switching
among the matched subsystems, while 𝜎

𝑐
(𝑡) takes values of

the form (𝑖, 𝑗), 𝑖 ̸= 𝑗, to indicate the activation of the
mismatched subsystems. In this way, the overall closed-loop
system can be rewritten as

�̇� (𝑡) = 𝐴

𝜎(𝑡)
𝑥 (𝑡) − 𝐷

𝜎(𝑡)
(𝑥 (𝑡) − 𝑥 (𝑡 − ℎ

𝑥
(𝑡))) , (14)

where

𝜎 (𝑡) := 𝜎 (𝑡) ⊕ 𝜎

𝑐
(𝑡) . (15)

It is important to note that 𝜎
𝑐
(𝑡) belongs toS

𝜏
as long as 𝜎(𝑡)

belongs to S
𝜏
. Hence, thanks to Lemma 3, we have that 𝜎(𝑡)

belongs to S
𝜏/2

.
We first present a technical lemma whose proof is given

in the appendix.

Lemma 6. For the merging switching signal 𝜎(𝑡) = 𝜎(𝑡) ⊕

𝜎

𝑐
(𝑡), let the sequence {𝑡

𝑘
}

∞

𝑘=0
be the collection of its switching

points.Then, for any positive integers 𝑗 ≤ 𝑘−1 and 𝑠 ∈ (𝑡
𝑗
, 𝑡

𝑗+1
]

and 𝑡 ∈ (𝑡
𝑘
, 𝑡

𝑘+1
], one has

exp(
𝑘−1

∑

𝑖=𝑗

𝜆

𝜎(𝑡
𝑖
)
(𝑡

𝑖+1
− 𝑡

𝑖
) + 𝜆

𝜎(𝑡
𝑘
)
(𝑡 − 𝑡

𝑘
)

+ 𝜆

𝜎(𝑡
𝑗
)
(𝑡

𝑗
− 𝑠) + (𝑘 − 𝑗) ln𝜒)

≤ exp (−𝛾 (𝑡 − 𝑠)) ,

(16)

where

𝛾 := 𝛼 −

(𝛼 + 𝛽) ℎ

𝑠

𝜏

−

2 ln𝜒
𝜏

.

(17)

We are now in the position to establish some stability
conditions for the closed-loop system in (14).

Theorem 7. The closed-loop switching system (14) is exponen-
tially stable for the switching signals belonging to S

𝜏/2
if there
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exist some positive numbers 𝜂
1
, 𝜂
2
, 𝛼, 𝛽, 𝜇 and matrices 𝑃

𝑖𝑗
and

𝑋

𝑖𝑗
with (𝑖, 𝑗) ∈ I ×I satisfying the following inequalities:

𝜂

1
𝐼

𝑛
≤ 𝑃

𝑖𝑗
≤ 𝜂

2
𝐼

𝑛
, (18)

[

[

[

𝐴

𝑇

𝑖𝑗
𝑃

𝑖𝑗
+ 𝑃

𝑖𝑗
𝐴

𝑖𝑗
− 𝜆

𝑖𝑗
𝑃

𝑖𝑗
𝑃

𝑖𝑗
𝐷

𝑖𝑗

⋆ −

1

2ℎ

𝑥

𝑃

𝑖𝑗

]

]

]

< 0, (19)

[

[

[

𝑃

𝑖𝑗
𝑃

𝑖𝑗
𝐷

𝑖𝑗
𝑋

𝑖𝑗

⋆ 𝜇𝐼

𝑛
𝐴

𝑇

𝑖
𝑃

𝑖𝑗

⋆ ⋆ 𝑃

𝑖𝑗

]

]

]

> 0, (20)

𝛼 − (𝛼 + 𝛽)

ℎ

𝑠

𝜏

−

2𝜇ℎ

𝑥

𝜂

1

−

2 ln𝜒
𝜏

> 0, (21)

where

𝜆

𝑖𝑗
= {

−𝛼 𝑖 = 𝑗

𝛽 𝑖 ̸= 𝑗,

𝜒 =

𝜂

2

𝜂

1

, (22)

and “⋆” indicates the matrix block indicated by the symmetry.

Proof. From (19), we know

𝐴

𝑇

𝑖𝑖
𝑃

𝑖𝑖
+ 𝑃

𝑖𝑖
𝐴

𝑖𝑖
+ 2ℎ

𝑥
𝑃

𝑖𝑖
𝐷

𝑖𝑖
𝑃

−1

𝑖𝑖
𝐷

𝑇

𝑖𝑖
𝑃

𝑖𝑖
< −𝛼𝑃

𝑖𝑖
,

𝐴

𝑇

𝑖𝑗
𝑃

𝑖𝑗
+ 𝑃

𝑖𝑗
𝐴

𝑖𝑗
+ 2ℎ

𝑥
𝑃

𝑖𝑗
𝐷

𝑖𝑗
𝑃

−1

𝑖𝑗
𝐷

𝑇

𝑖𝑗
𝑃

𝑖𝑗
< 𝛽𝑃

𝑖𝑗
, 𝑖 ̸= 𝑗.

(23)

Moreover, applying Lemma 4 to (20) gives

[

𝑃

𝑖𝑗
𝑃

𝑖𝑗
𝐷

𝑖𝑗

⋆ 𝜇𝐼

𝑛

] > 0,

[

𝜇𝐼

𝑛
𝐴

𝑇

𝑖
𝑃

𝑖𝑗

⋆ 𝑃

𝑖𝑗

] > 0.

(24)

We rewrite the closed-loop system in (14) as follows:

�̇� (𝑡) = 𝐴

𝑖
𝑥 (𝑡) + 𝐷

𝑖𝑗
𝑥 (𝑡 − ℎ

𝑥
(𝑡))

= 𝐴

𝑖𝑗
𝑥 (𝑡) − 𝐷

𝑖𝑗
𝐴

𝑖
∫

𝑡

𝑡−ℎ
𝑥(𝑡)

𝑥 (𝑠) d𝑠

− 𝐷

2

𝑖𝑗
∫

𝑡−ℎ
𝑥
(𝑡)

𝑡−ℎ
𝑥(𝑡)−ℎ𝑥(𝑡−ℎ𝑥(𝑡))

𝑥 (𝑠) d𝑠.

(25)

For each subsystem, we construct a Lyapunov function as

𝑉

𝑖𝑗
(𝑥) = 𝑥

𝑇

𝑃

𝑖𝑗
𝑥, (𝑖, 𝑗) ∈ I ×I. (26)

By (23) and (24), we can deduce that

̇

𝑉

𝑖𝑗
(𝑥) = 2 [𝐴

𝑖𝑗
𝑥 (𝑡) − 𝐷

𝑖𝑗
𝐴

𝑖
∫

𝑡

𝑡−ℎ
𝑥
(𝑡)

𝑥 (𝑠) d𝑠

−𝐷

2

𝑖𝑗
∫

𝑡−ℎ
𝑥
(𝑡)

𝑡−ℎ
𝑥
(𝑡)−ℎ
𝑥
(𝑡−ℎ
𝑥
(𝑡))

𝑥(𝑠)d𝑠]
𝑇

𝑃

𝑖𝑗
𝑥 (𝑡)

= 2𝑥

𝑇

(𝑡) 𝑃

𝑖𝑗
𝐴

𝑖𝑗
𝑥 (𝑡) − 2𝑥

𝑇

(𝑡) 𝑃

𝑖𝑗
𝐷

𝑖𝑗
𝐴

𝑖
∫

𝑡

𝑡−ℎ
𝑥
(𝑡)

𝑥 (𝑠) d𝑠

− 2𝑥

𝑇

(𝑡) 𝑃

𝑖𝑗
𝐷

2

𝑖𝑗
∫

𝑡

𝑡−ℎ
𝑥
(𝑡)

𝑥 (𝑠) d𝑠

≤ 2𝑥

𝑇

(𝑡) 𝑃

𝑖𝑗
𝐴

𝑖𝑗
𝑥 (𝑡) + ∫

𝑡

𝑡−ℎ
𝑥
(𝑡)

𝑥

𝑇

(𝑠) 𝐴

𝑇

𝑖
𝑃

𝑖𝑗
𝐴

𝑖
𝑥 (𝑠) d𝑠

+ ℎ

𝑥
𝑥

𝑇

(𝑡) 𝑃

𝑖𝑗
𝐷

𝑖𝑗
𝑃

−1

𝑖𝑗
𝐷

𝑇

𝑖𝑗
𝑃

𝑖𝑗
𝑥 (𝑡)

+ ∫

𝑡−ℎ
𝑥
(𝑡)

𝑡−2ℎ
𝑥
(𝑡)

𝑥

𝑇

(𝑠)𝐷

𝑇

𝑖𝑗
𝑃

𝑖𝑗
𝐷

𝑖𝑗
𝑥 (𝑠) d𝑠

+ ℎ

𝑥
𝑥

𝑇

(𝑡) 𝑃

𝑖𝑗
𝐷

𝑖𝑗
𝑃

−1

𝑖𝑗
𝐷

𝑇

𝑖𝑗
𝑃

𝑖𝑗
𝑥 (𝑡)

= 𝑥

𝑇

(𝑡) (𝐴

𝑇

𝑖𝑗
𝑃

𝑖𝑗
+ 𝑃

𝑖𝑗
𝐴

𝑖𝑗
+ 2ℎ

𝑥
𝑃

𝑖𝑗
𝐷

𝑖𝑗
𝑃

−1

𝑖𝑗
𝐷

𝑇

𝑖𝑗
𝑃

𝑖𝑗
) 𝑥 (𝑡)

+ ∫

𝑡

𝑡−ℎ
𝑥(𝑡)

𝑥

𝑇

(𝑠) 𝐴

𝑇

𝑖
𝑃

𝑖𝑗
𝐴

𝑖
𝑥 (𝑠) d𝑠

+ ∫

𝑡−ℎ
𝑥
(𝑡)

𝑡−2ℎ
𝑥
(𝑡)

𝑥

𝑇

(𝑠)𝐷

𝑇

𝑖𝑗
𝑃

𝑖𝑗
𝐷

𝑖𝑗
𝑥 (𝑠) d𝑠

≤ 𝜆

𝑖𝑗
𝑉

𝑖𝑗
(𝑥 (𝑡)) + 2𝜇ℎ

𝑥
Γ (𝑡) ,

(27)

where

Γ (𝑡) := sup
−2ℎ
𝑥
≤𝑠≤0

|𝑥 (𝑡 + 𝑠)|

2

. (28)

Let the sequence {𝑡

𝑘
}

+∞

𝑘=0
be the switching points of 𝜎(𝑡).

Therefore, for any 𝑡 ∈ (𝑡
𝑘
, 𝑡

𝑘+1
], we have

𝑉

𝜎(𝑡
𝑘
)
(𝑡) ≤ exp (𝜆

𝜎(𝑡
𝑘
)
(𝑡 − 𝑡

𝑘
))𝑉

𝜎(𝑡
𝑘
)
(𝑡

𝑘
)

+ 2𝜇ℎ

𝑥
∫

𝑡

𝑡
𝑘

exp (𝜆
𝜎(𝑡
𝑘
)
(𝑡 − 𝑠)) Γ (𝑠) d𝑠

≤ 𝜒 exp (𝜆
𝜎(𝑡
𝑘
)
(𝑡 − 𝑡

𝑘
))𝑉

𝜎(𝑡
𝑘−1
)
(𝑡

𝑘
)

+ 2𝜇ℎ

𝑥
∫

𝑡

𝑡
𝑘

exp (𝜆
𝜎(𝑡
𝑘
)
(𝑡 − 𝑠)) Γ (𝑠) d𝑠
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≤ 𝜒 exp (𝜆
𝜎(𝑡
𝑘
)
(𝑡 − 𝑡

𝑘
))

× [ exp (𝜆
𝜎(𝑡
𝑘−1
)
(𝑡

𝑘
− 𝑡

𝑘−1
))𝑉

𝜎(𝑡
𝑘−1
)
(𝑡

𝑘−1
)

+ 2𝜇ℎ

𝑥
∫

𝑡
𝑘

𝑡
𝑘−1

exp (𝜆
𝜎(𝑡
𝑘−1
)
(𝑡

𝑘
− 𝑠)) Γ (𝑠) d𝑠]

+ 2𝜇ℎ

𝑥
∫

𝑡

𝑡
𝑘

exp (𝜆
𝜎(𝑡
𝑘
)
(𝑡 − 𝑠)) Γ (𝑠) d𝑠.

(29)

At the same time, from (18) it is seen that

𝑉

𝜎(𝑡
𝑙
)
(𝑡

𝑙
) ≤ 𝜒𝑉

𝜎(𝑡
𝑙−1
)
(𝑡

𝑙
)

≤ 𝜒 exp (𝜆
𝜎(𝑡
𝑙−1
)
(𝑡

𝑙
− 𝑡

𝑙−1
))𝑉

𝜎(𝑡
𝑙−1
)
(𝑡

𝑙−1
)

+ 𝜒(2𝜇ℎ

𝑥
∫

𝑡
𝑙

𝑡
𝑙−1

exp (𝜆
𝜎(𝑡
𝑙−1
)
(𝑡

𝑙
− 𝑠)) Γ (𝑠) d𝑠) ,

𝑙 ≥ 1.

(30)

Repetitively using the relation in (30) gives

𝑉

𝜎(𝑡
𝑘
)
(𝑡) ≤ 𝜒

𝑘 exp(
𝑘−1

∑

𝑖=0

𝜆

𝜎(𝑡
𝑖
)
(𝑡

𝑖+1
− 𝑡

𝑖
)

+ 𝜆

𝜎(𝑡
𝑘
)
(𝑡 − 𝑡

𝑘
))𝑉

𝜎(𝑡
0
)
(𝑡

0
)

+ 2𝜇ℎ

𝑥
𝜒

𝑘 exp(
𝑘−1

∑

𝑖=1

𝜆

𝜎(𝑡
𝑖
)
(𝑡

𝑖+1
− 𝑡

𝑖
)

+ 𝜆

𝜎(𝑡
𝑘
)
(𝑡 − 𝑡

𝑘
))

× ∫

𝑡
1

𝑡
0

exp (𝜆
𝜎(𝑡
0
)
(𝑡

1
− 𝑠)) Γ (𝑠) d𝑠

+ 2𝜇ℎ

𝑥
𝜒

𝑘−1 exp(
𝑘−1

∑

𝑖=2

𝜆

𝜎(𝑡
𝑖
)
(𝑡

𝑖+1
− 𝑡

𝑖
)

+ 𝜆

𝜎(𝑡
𝑘
)
(𝑡 − 𝑡

𝑘
))

× ∫

𝑡
2

𝑡
1

exp (𝜆
𝜎(𝑡
1
)
(𝑡

2
− 𝑠)) Γ (𝑠) d𝑠

.

.

.

+ 2𝜇ℎ

𝑥
𝜒 exp (𝜆

𝜎(𝑡
𝑘
)
(𝑡 − 𝑡

𝑘
))

× ∫

𝑡
𝑘

𝑡
𝑘−1

exp (𝜆
𝜎(𝑡
𝑘−1
)
(𝑡

𝑘
− 𝑠)) Γ (𝑠) d𝑠

+ 2𝜇ℎ

𝑥
∫

𝑡

𝑡
𝑘

exp (𝜆
𝜎(𝑡
𝑘
)
(𝑡 − 𝑠)) Γ (𝑠) d𝑠

= 𝜒

𝑘 exp(
𝑘−1

∑

𝑖=0

𝜆

𝜎(𝑡
𝑖
)
(𝑡

𝑖+1
− 𝑡

𝑖
)

+ 𝜆

𝜎(𝑡
𝑘
)
(𝑡 − 𝑡

𝑘
))𝑉

𝜎(𝑡
0
)
(𝑡

0
)

+ 2𝜇ℎ

𝑥

𝑘−1

∑

𝑗=0

𝜒

𝑘−𝑗 exp(
𝑘−1

∑

𝑖=𝑗+1

𝜆

𝜎(𝑡
𝑖
)
(𝑡

𝑖+1
− 𝑡

𝑖
)

+ 𝜆

𝜎(𝑡
𝑘
)
(𝑡 − 𝑡

𝑘
))

× ∫

𝑡
𝑗+1

𝑡
𝑗

exp (𝜆
𝜎(𝑡
𝑗
)
(𝑡

𝑗+1
− 𝑠)) Γ (𝑠) d𝑠

+ 2𝜇ℎ

𝑥
∫

𝑡

𝑡
𝑘

exp (𝜆
𝜎(𝑡
𝑘
)
(𝑡 − 𝑠)) Γ (𝑠) d𝑠

= 𝜒

𝑘 exp(
𝑘−1

∑

𝑖=0

𝜆

𝜎(𝑡
𝑖
)
(𝑡

𝑖+1
− 𝑡

𝑖
)

+ 𝜆

𝜎(𝑡
𝑘
)
(𝑡 − 𝑡

𝑘
))𝑉

𝜎(𝑡
0
)
(𝑡

0
)

+ 2𝜇ℎ

𝑥

𝑘−1

∑

𝑗=0

𝜒

𝑘−𝑗 exp(
𝑘−1

∑

𝑖=𝑗

𝜆

𝜎(𝑡
𝑖
)
(𝑡

𝑖+1
− 𝑡

𝑖
)

+ 𝜆

𝜎(𝑡
𝑘
)
(𝑡 − 𝑡

𝑘
))

× ∫

𝑡
𝑗+1

𝑡
𝑗

exp (𝜆
𝜎(𝑡
𝑗
)
(𝑡

𝑗
− 𝑠)) Γ (𝑠) d𝑠

+ 2𝜇ℎ

𝑥
exp (𝜆

𝜎(𝑡
𝑘
)
(𝑡 − 𝑡

𝑘
))

× ∫

𝑡

𝑡
𝑘

exp (𝜆
𝜎(𝑡
𝑘
)
(𝑡

𝑘
− 𝑠)) Γ (𝑠) d𝑠.

(31)

Since 𝑡 is free to vary within the interval (𝑡
𝑘
, 𝑡

𝑘+1
], without

loss of generality, we replace 𝑡
𝑘+1

with 𝑡 and then put the last
inequality in (31) into the following condensed form:

𝑉

𝜎(𝑡
𝑘
)
(𝑡

𝑘+1
) ≤ 𝜒

𝑘 exp(
𝑘−1

∑

𝑖=0

𝜆

𝜎(𝑡
𝑖
)
(𝑡

𝑖+1
− 𝑡

𝑖
)

+𝜆

𝜎(𝑡
𝑘
)
(𝑡

𝑘+1
− 𝑡

𝑘
))𝑉

𝜎(𝑡
0
)
(𝑡

0
)

+ 2𝜇ℎ

𝑥

𝑘

∑

𝑗=0

𝜒

𝑘−𝑗 exp(
𝑘−1

∑

𝑖=𝑗

𝜆

𝜎(𝑡
𝑖
)
(𝑡

𝑖+1
− 𝑡

𝑖
)
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+𝜆

𝜎(𝑡
𝑘
)
(𝑡

𝑘+1
− 𝑡

𝑘
))

× ∫

𝑡
𝑗+1

𝑡
𝑗

exp (𝜆
𝜎(𝑡
𝑗
)
(𝑡

𝑗
− 𝑠)) Γ (𝑠) d𝑠.

(32)

Therefore, we arrive at

𝑉

𝜎(𝑡
𝑘
)
(𝑡

𝑘+1
)

≤ exp(
𝑘−1

∑

𝑖=0

𝜆

𝜎(𝑡
𝑖
)
(𝑡

𝑖+1
− 𝑡

𝑖
) + 𝜆

𝜎(𝑡
𝑘
)
(𝑡

𝑘+1
− 𝑡

𝑘
)

+ (𝑘 − 𝑗) ln𝜒)𝑉

𝜎(𝑡
0
)
(𝑡

0
)

+ 2𝜇ℎ

𝑥

𝑘

∑

𝑗=0

∫

𝑡
𝑗+1

𝑡
𝑗

exp(
𝑘−1

∑

𝑖=𝑗

𝜆

𝜎(𝑡
𝑖
)
(𝑡

𝑖+1
− 𝑡

𝑖
) + 𝜆

𝜎(𝑡
𝑘
)
(𝑡

𝑘+1
− 𝑡

𝑘
)

+ 𝜆

𝜎(𝑡
𝑗
)
(𝑡

𝑗
− 𝑠)

+ (𝑘 − 𝑗) ln𝜒)Γ (𝑠) d𝑠.

(33)

Now, in view of Lemma 6, from (33) it follows that

𝑉

𝜎(𝑡
𝑘
)
(𝑡

𝑘+1
)

≤ exp (−𝛾 (𝑡 − 𝑡
0
)) 𝑉

𝜎(𝑡
0
)
(𝑡

0
)

+ 2𝜇ℎ

𝑥

𝑘

∑

𝑗=0

∫

𝑡
𝑗+1

𝑡
𝑗

exp (−𝛾 (𝑡
𝑘+1

− 𝑠)) Γ (𝑠) d𝑠

≤ 𝜂𝑥𝑝 (−𝛾 (𝑡 − 𝑡

0
)) 𝑉

𝜎(𝑡
0
)
(𝑡

0
)

+ 2𝜇ℎ

𝑥
∫

𝑡
𝑘+1

𝑡
0

exp (−𝛾 (𝑡
𝑘+1

− 𝑠)) Γ (𝑠) d𝑠.

(34)

Furthermore, by the arbitrariness of 𝑡
𝑘+1

, we conclude that

𝜂

1
|𝑥 (𝑡)|

2

≤ 𝜂

2
exp (−𝛾 (𝑡 − 𝑡

0
))









𝑥 (𝑡

0
)









2

+ 2𝜇ℎ

𝑥
∫

𝑡

𝑡
0

exp (−𝛾 (𝑡 − 𝑠)) Γ (𝑠) d𝑠

= 𝑒

−𝛾(𝑡−𝑡
0
)

[𝜂

2









𝑥 (𝑡

0
)









2

+ 2𝜇ℎ

𝑥
𝑒

−𝛾𝑡
0
∫

𝑡

𝑡
0

𝑒

𝛾𝑠

Γ (𝑠) d𝑠] ,

𝑡 ≥ 𝑡

0
.

(35)

Now, define the following continuous function:

𝑢 (𝑡) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝜂

2
|𝑥 (𝑡)|

2

𝑡

0
− 2ℎ

𝑥
≤ 𝑡 ≤ 𝑡

0

𝑒

−𝛾(𝑡−𝑡
0
)

[𝜂

2









𝑥 (𝑡

0
)









2

+2𝜇ℎ

𝑥
𝑒

−𝛾𝑡
0
∫

𝑡

𝑡
0

𝑒

𝛾𝑠

Γ (𝑠) d𝑠]

𝑡 ≥ 𝑡

0
.

(36)

As a result, it is easy to see that

𝑢 (𝑡

0
+ 𝑠) = 𝜂

2









𝑥 (𝑡

0
+ 𝑠)









2

, 𝑡

0
− 2ℎ

𝑥
≤ 𝑠 ≤ 𝑡

0
,

𝑢 (𝑡) ≥ 𝜂

1
|𝑥 (𝑡)|

2

, 𝑡 ≥ 𝑡

0
− 2ℎ

𝑥
.

(37)

Recalling (28) and computing the time-derivative of𝑢(𝑡) yield

�̇� (𝑡) = −𝛾𝑒

−𝛾(𝑡−𝑡
0
)

[𝜂

2









𝑥 (𝑡

0
)









2

+ 2𝜇ℎ

𝑥
𝑒

−𝛾𝑡
0
∫

𝑡

𝑡
0

𝑒

𝛾𝑠

Γ (𝑠) d𝑠]

+ 2𝜇ℎ

𝑥
sup
−2ℎ
𝑥
≤𝑠≤0

|𝑥 (𝑡 + 𝑠)|

2

≤ −𝛾𝑢 (𝑡)

+

2𝜇ℎ

𝑥

𝜂

1

sup
−2ℎ
𝑥
≤𝑠≤0

𝑢 (𝑡 + 𝑠) , 𝑡 ≥ 𝑡

0
.

(38)

Thus, by applying Lemma 5 to (38) and noting (37), we assert
that

|𝑥 (𝑡)|

2

≤

1

𝜂

1

𝑒

−𝜆(𝑡−𝑡
0
) sup
−2ℎ
𝑥
≤𝑠≤0

𝑢 (𝑡

0
+ 𝑠)

= 𝜒𝑒

−𝜆(𝑡−𝑡
0
) sup
−2ℎ
𝑥
≤𝑠≤0









𝑥 (𝑡

0
+ 𝑠)









2

,

𝑡 ≥ 𝑡

0
,

(39)

where 𝜆 > 0 is the unique root of the following equation:

𝜆 − 𝛾 +

2𝜇ℎ

𝑥

𝜂

1

𝑒

2𝜆ℎ
𝑥
= 0. (40)

Comparing (17) and (40) with the hypothesis of Lemma 5, we
know that it requires

2𝜇ℎ

𝑥

𝜂

1

< 𝛼 − (𝛼 + 𝛽)

ℎ

𝑠

𝜏

−

2 ln𝜒
𝜏

, (41)

to guarantee the exponential stability of system (38). It turns
out to be the inequality in (21). The proof is thus completed.

Remark 8. It is seen from (21) that the effect of the time-delay
in the communication channel on stability can be captured by
the ratio of its size to the average dwell-time of the switching
signal, namely, ℎ

𝑠
/𝜏. If ℎ

𝑠
/𝜏 ≥ 1, then the inequality in

(21) must fail. It means that it is necessary to require the
time-delay in the communication channel to be less than the
average dwell-time of the switching signal. Physically, this
necessity makes sense because once it is violated there would
be no matched subsystem involved.
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Remark 9. It is worthy of noting that when we neglect
the aftereffects in both the input and the communication
channels, namely, ℎ

𝑥
= ℎ

𝑠
= 0, the constraint relation in (21)

reduces to

ln𝜒
𝛼

<

𝜏

2

.
(42)

Formally, it coincides with the existing results such as that
in [3], where one would have ln𝜒/𝛼 < 𝜏. Indeed, merging
switching signals doubles the switching frequency of the
closed-loop system and the influence remains even when ℎ

𝑠

tends to 0. In nature, the existence of ℎ
𝑠
permanently changes

the structure of the overall system no matter how small it is.

4. Stabilizing Controllers Design

For the robust design problem, we first solve the feedback
controllers via the constraint conditions on the matched sub-
systems but leave the constraint conditions on mismatched
subsystems to be checked. We now summarize it in the
following procedure.

Step 1. Specify a set of parameters 𝛼, 𝛽, 𝜇, 𝜂
1
, 𝜂
2
subjected to

the inequality in (21).

Step 2. Test the existence of the controllers by verifying the
conditions inTheorem 7 for the matched subsystems.

Step 3. Examine the robustness of the controllers by checking
if the mismatched systems can satisfy the conditions in
Theorem 7; if not then go back to Step 1.

To realize the above algorithm, we first need to specify a
family of positive scalars 𝛼, 𝛽, 𝜂

1
, 𝜂
2
, and 𝜇 that satisfy (21).

In the sequel, to design the controllers, it requires that there
exist matrices𝑊

𝑖
and 𝑄

𝑖𝑖
, 𝑋
𝑖𝑖
such that the following matrix

inequalities

1

𝜂

2

𝐼

𝑛
≤ 𝑄

𝑖𝑖
≤

1

𝜂

1

𝐼

𝑛
, (43)

[

[

𝑄

𝑖𝑖
𝐴

𝑇

𝑖
+ 𝐴

𝑖
𝑄

𝑖𝑖
+ 𝐵

𝑖
𝑊

𝑖
+𝑊

𝑇

𝑖
𝐵

𝑇

𝑖
+ 𝛼𝑄

𝑖𝑖
𝐵

𝑖
𝑊

𝑖

⋆ −

1

2ℎ

𝑥

𝑄

𝑖𝑖

]

]

< 0,

(44)

[

[

[

𝑄

𝑖𝑖
𝐵

𝑖
𝑊

𝑖
𝑋

𝑖𝑖

⋆

𝜇

𝜂

2

𝑄

𝑖𝑖
𝑄

𝑖𝑖
𝐴

𝑇

𝑖

⋆ ⋆ 𝑄

𝑖𝑖

]

]

]

> 0 (45)

hold true for each 𝑖 ∈ I. Then, by letting

𝐹

𝑖
= 𝑊

𝑖
𝑄

−1

𝑖𝑖
, (46)

one can recover the inequalities in (18), (19), and (20) for the
matched subsystems. Further, to check the robustness of the
controllers given in (46), it requires that there exist matrices

𝑋

𝑖𝑗
, 𝑃
𝑖𝑗
, 𝑖 ̸= 𝑗 (i.e., for the mismatched subsystems) such that

the following inequalities can be satisfied:

𝜂

1
𝐼

𝑛
≤ 𝑃

𝑖𝑗
≤ 𝜂

2
𝐼

𝑛
, (47)

[

[

[

𝐴

𝑇

𝑖𝑗
𝑃

𝑖𝑗
+ 𝑃

𝑖𝑗
𝐴

𝑖𝑗
− 𝛽𝑃

𝑖𝑗
𝑃

𝑖𝑗
𝐷

𝑖𝑗

⋆ −

1

2ℎ

𝑥

𝑃

𝑖𝑗

]

]

]

< 0, (48)

[

[

[

𝑃

𝑖𝑗
𝑃

𝑖𝑗
𝐷

𝑖𝑗
𝑋

𝑖𝑗

⋆ 𝜇𝐼

𝑛
𝐴

𝑇

𝑖
𝑃

𝑖𝑗

⋆ ⋆ 𝑃

𝑖𝑗

]

]

]

> 0. (49)

Indeed, we have to repeatedly adjust the positive scalars
involved in (21) and solve the inequalities in (43)–(49) until
they are feasible.

5. An Illustrative Example

Consider the switched system composed of two linear control
subsystems with the following parameters:

𝐴

1
= [

−1 0.5

0 0.5

] , 𝐵

1
= [

0.5

−1

] ,

𝐴

2
= [

0.5 −1

2 −1

] , 𝐵

2
= [

−0.5

0

] .

(50)

These subsystems are governed by the switching signal that
belongs to S

𝜏
with 𝜏 = 2.0 s. The open-loop system is unsta-

ble. Besides, the feedback control is subject to the time-delays
in both the input and the communication channels with
ℎ

𝑥
= 0.02 s and ℎ

𝑠
= 0.2 s.

We first choose 𝜂
1
= 0.45, 𝜂

2
= 1.2, 𝛼 = 2.0, 𝛽 = 2.85,

and 𝜇 = 6.0 to meet the inequality in (21). Then, solving the
inequalities in (43)–(45) gives the following state-feedback
gains:

𝐹

1
= [0.9996 2.2637] , 𝐹

2
= [3.8134 0.3945] . (51)

Hence, the mismatched closed-loop subsystems turn out to
be

�̇� (𝑡) = [

−2.9067 0.3027

0 0.50

] 𝑥 (𝑡)

+ [

−1.9067 −0.1973

0 0

] 𝑥 (𝑡 − ℎ

𝑥
(𝑡)) ,

�̇� (𝑡) = [

0.9998 0.1319

1.0004 −3.2637

] 𝑥 (𝑡)

+ [

0.4998 1.1319

−0.9996 −2.2637

] 𝑥 (𝑡 − ℎ

𝑥
(𝑡)) .

(52)

Both of these two mismatched subsystems are unstable.
However, the inequalities in (47)–(49) are feasible. It means
that the obtained controllers canmake the closed-loop system
exponentially stable in the presence of time-delays in both the
input and the communication channels. The state-response
of the overall closed-loop system generated by the periodic
switching signal with 𝜏 = 2.0 s is depicted in Figure 2.
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Figure 2: State-response of the overall closed-loop system.

6. Conclusion

In this paper we have presented a robust stabilizing controller
design methodology for linear switching systems in the pres-
ence of time-delays in both the input and the communication
channels. We have used the technique of merging switching
signals to account for the aftereffect in the communication
channel and then reconstructed the switching signal for the
overall closed-loop system.Therefore, we established the suf-
ficient stability conditions by using multiple Lyapunov func-
tions approach along with the Halanay inequality. Finally we
proposed a strategy to solve the desired robust controllers and
worked out an example in detail to illustrate the theoretical
results. A possible future research topic along this paper is the
robustness issue by considering uncertainties in the system
parameters.

Appendix

Proof of Lemma 6

For the sake of generality, let the switching signals 𝜎(𝑡) and
𝜎

𝑐
(𝑡) belong to S

𝜏
1

and S
𝜏
2

, respectively. For the merging
switching signal 𝜎(𝑡) = 𝜎(𝑡) ⊕ 𝜎

𝑐
(𝑡) and 𝑡

0
≤ 𝑠 < 𝑡, we know

that

𝑁

𝜎
(𝑠, 𝑡)

𝑁

𝜎
(𝑠, 𝑡)

=

(𝑡 − 𝑠) /𝜏

1

(𝑡 − 𝑠) / (𝜏

1
𝜏

2
/ (𝜏

1
+ 𝜏

2
))

=

𝜏

2

𝜏

1
+ 𝜏

2

,

𝑁

𝜎
𝑐
(𝑠, 𝑡)

𝑁

𝜎
(𝑠, 𝑡)

=

(𝑡 − 𝑠) /𝜏

2

(𝑡 − 𝑠) / (𝜏

1
𝜏

2
/ (𝜏

1
+ 𝜏

2
))

=

𝜏

1

𝜏

1
+ 𝜏

2

,

(A.1)

where𝑁
𝜎
(𝑠, 𝑡) denotes the number of the switching points of

𝜎(𝑡) distributed within the interval [𝑠, 𝑡].

Let the increasing sequence {𝑡
𝑘
}

∞

𝑘=0
denote the switching

points of 𝜎(𝑡). For positive integers 𝑗 ≤ 𝑘 − 1 and 𝑠 ∈ (𝑡
𝑗
, 𝑡

𝑗+1
]

and 𝑡 ∈ (𝑡
𝑘
, 𝑡

𝑘+1
] we have

𝑁

𝜎
(𝑠, 𝑡) = 𝑘 − 𝑗 ≤

𝜏

1
+ 𝜏

2

𝜏

1
𝜏

2

(𝑡 − 𝑠) . (A.2)

Consequently, we obtain

exp(
𝑘−1

∑

𝑖=𝑗

𝜆

𝜎(𝑡
𝑖
)
(𝑡

𝑖+1
− 𝑡

𝑖
) + 𝜆

𝜎(𝑡
𝑘
)
(𝑡 − 𝑡

𝑘
)

+𝜆

𝜎(𝑡
𝑗
)
(𝑡

𝑗
− 𝑠) + (𝑘 − 𝑗) ln𝜒)

≤ exp(𝜏1 + 𝜏2
𝜏

1
𝜏

2

(𝑡 − 𝑠) ln𝜒)

× exp (−𝛼 (𝑡 − 𝑠 − 𝑁
𝜎
𝑐
(𝑠, 𝑡) ℎ

𝑠
) + 𝛽𝑁

𝜎
𝑐
(𝑠, 𝑡) ℎ

𝑠
)

≤ exp(𝜏1 + 𝜏2
𝜏

1
𝜏

2

(𝑡 − 𝑠) ln𝜒)

× exp(−𝛼(𝑡 − 𝑠 −
𝜏

1
𝑁

𝜎
(𝑠, 𝑡) ℎ

𝑠

𝜏

1
+ 𝜏

2

)

+𝛽

𝜏

1
𝑁

𝜎
(𝑠, 𝑡) ℎ

𝑠

𝜏

1
+ 𝜏

2

)

= exp(𝜏1 + 𝜏2
𝜏

1
𝜏

2

(𝑡 − 𝑠) ln𝜒)

× exp (−𝛼 (𝑡 − 𝑠)) exp((𝛼 + 𝛽) ℎ
𝑠

𝜏

1

𝜏

1
+ 𝜏

2

𝑁

𝜎
(𝑠, 𝑡))

≤ exp(𝜏1 + 𝜏2
𝜏

1
𝜏

2

(𝑡 − 𝑠) ln𝜒)

× exp (−𝛼 (𝑡 − 𝑠)) exp( (𝛼 + 𝛽) ℎ
𝑠

×

𝜏

1

𝜏

1
+ 𝜏

2

𝜏

1
+ 𝜏

2

𝜏

1
𝜏

2

(𝑡 − 𝑠))

≤ exp(𝜏1 + 𝜏2
𝜏

1
𝜏

2

(𝑡 − 𝑠) ln𝜒)

× exp (−𝛼 (𝑡 − 𝑠)) exp((𝛼 + 𝛽)
ℎ

𝑠

𝜏

2

(𝑡 − 𝑠))

= exp(−(𝛼 − (𝛼 + 𝛽)
ℎ

𝑠

𝜏

2

−

𝜏

1
+ 𝜏

2

𝜏

1
𝜏

2

ln𝜒) (𝑡 − 𝑠)) .

(A.3)

Therefore, by noting 𝜏
1
= 𝜏

2
= 𝜏, we complete the proof.
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