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In order to well maintain the diversity of obtained solutions, a newmultiobjective evolutionary algorithm based on decomposition
of the objective space formultiobjective optimization problems (MOPs) is designed. In order to achieve the goal, the objective space
of aMOP is decomposed into a set of subobjective spaces by a set of direction vectors. In the evolutionary process, each subobjective
space has a solution, even if it is not a Pareto optimal solution. In such a way, the diversity of obtained solutions can be maintained,
which is critical for solving some MOPs. In addition, if a solution is dominated by other solutions, the solution can generate more
new solutions than those solutions, which makes the solution of each subobjective space converge to the optimal solutions as far
as possible. Experimental studies have been conducted to compare this proposed algorithm with classic MOEA/D and NSGAII.
Simulation results on six multiobjective benchmark functions show that the proposed algorithm is able to obtain better diversity
and more evenly distributed Pareto front than the other two algorithms.

1. Introduction

Since there are many problems with several optimization
problems or criteria in real world [1], multiobjective opti-
mization has become a hot research topic. Unlike single-
objective optimization problem, multiobjective optimization
problem has a series of noninferior alternative solutions,
also known as Pareto optimal solutions (the set of Pareto
optimal solutions is called Pareto front [2]), which represent
the possible trade-off among various conflicting objectives.
Therefore, multiobjective optimization algorithms for MOP
should be able to (1) discover solutions as close to the optimal
solutions as possible; (2) find solutions as uniform as possible
in the obtained nondominated front; (3) determine solutions
to cover the true Pareto front (PF) as broad as possible.
However, achieving these three goals simultaneously is still
a challenge for multiobjective optimization algorithms.

Among various multiobjective optimization algorithms,
multiobjective evolutionary algorithms (MOEA), which
make use of the strategy of the population evolutionary to
optimize the problems, are an effective method for solving

MOPs. In recent years, manyMOEAs have been proposed for
solving the multiobjective optimization problems [3–18]. In
the MOEA literatures, Goldberg’s population categorization
strategy [19] based on nondominance is important. Many
algorithms use the strategy to assign a fitness value based
on the nondominance rank of members. For example, the
nondominated sorting genetic algorithm II [3] was proposed
by Deb et al. in 2002, which uses the crowding measure and
the elitism strategy; Zitzler et al. [20] proposed the strength
Pareto evolutionary algorithm II (SPEA2) which was also
based on the elitism strategy; Soylu and Köksalan proposed a
favorable weight-based evolutionary algorithm (FWEA) [21].
These algorithms mainly rely on Pareto dominance to guide
their search, particularly their selection operators. In con-
trast,MOEA/D (multiobjective evolutionary algorithmbased
on decomposition) [22] makes use of traditional aggregation
methods to transform the task of approximating the Pareto
front (PF) into a number of single-objective optimization
subproblems. MOEA/D works well on a wide range of mul-
tiobjective problems with many objectives, discrete decision
variables, and complicated Pareto sets [23, 24]. MOEA/D
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has also been used as a basic element in some hybrid
algorithms; for example,MOEA/Dwith differential evolution
and particle swarm optimization is proposed by Mashwani
[25], Li and Landa-Silva [26] combine MOEA/D and simu-
lated annealing to solve MOPs, and other hybrid algorithms
also use MOEA/D to solve MOPs (e.g., [27–29]). Moreover,
MOEA/D is used to solve various kinds of problems (e.g.,
[30, 31]). InMOEA/D,weight vectors and aggregate functions
play a very important role. In the literature [32], the uniform
design is used to generate the weight vectors; Qi et al. [33]
design an adaptive weight vector adjustment to adaptively
generate uniform distribution weight vectors. Ishibuchi et al.
[34] propose an idea of automatically choosing between the
weighted sum and the weighted Tchebycheff for each solution
in each generation.

Any effective MOEAs must well maintain population
diversity since their goal is to approximate a set instead of
a single point. Pareto-dominance-based algorithms achieve
the goal by maintaining the diversity of obtained Pareto
optimal solutions. If these algorithms obtaining Pareto opti-
mal solutions cannot cover the entire PF, this goal cannot
be achieved. The current MOEA/D algorithms achieve their
population diversity via the diversity of their subproblems.
An elite diversity is used for their selection in these algo-
rithms. The aggregation function values of a new solution
and an old solution completely determined whether the new
solution replaces the old solution or not. In some cases, such
replacement can cause a severe loss of population diversity,
which is because the aggregation function value of a solution
only reflects the extent of the solution close to the ideal point
which is determined by the aggregation function and the
weight vector, but it does not reflect the space where the
objective vector of the solution locates. Thus, the objective
spacewhere the objective vector of the solution locates should
be considered to maintain the diversity of obtained Pareto
optimal solutions. In this paper, the objective space of a
MOP is decomposed into a set of subobjective spaces by
a set of direction vectors. Each subobjective space has a
solution: if a new solution will replace the solution, the new
solution must dominate the solution and its objective vector
locates in the subobjective space. In such a way, the diversity
of obtained solutions can be maintained. In addition, the
crowding distance [3] is used to calculate the fitness value
of a solution for the selection operators. In this cause, if a
solution is dominated by other solutions, the solution is more
likely to be selected than other solutions, so it can generate
more new solutions to quickly find the optimal solution of
the subobjective space, which makes the solution of each
subobjective space converge to the optimal solutions as far
as possible. Based on these approaches, a new multiobjective
evolutionary algorithm, EASS, is designed. We show that
EASS can significantly outperformMOEA/D andNSGAII on
a set of test instances used in our experimental studies.

This paper is organized as follows. Section 2 intro-
duces the main concepts of the multiobjective optimiza-
tion; Section 3 describes the evolutionary algorithm based
on decomposition of the objective space, while Section 4
shows the experiment results of proposed algorithm; finally,
Section 5 gives the conclusions and future works.

2. Multiobjective Optimization

A multiobjective optimization problem can be formulated as
follows [35]:

min 𝑦 = 𝐹 (𝑥) = (𝑓
1
(𝑥) , 𝑓

2
(𝑥) , . . . , 𝑓

𝑚
(𝑥))

s.t. 𝑔
𝑖
(𝑥) ≤ 0, 𝑖 = 1, 2, . . . , 𝑞

ℎ
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1
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𝑛
) ∈ 𝑋 ⊂ 𝑅𝑛 is called decision
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𝑗
(𝑥)(𝑗 =

1, 2, . . . , 𝑝) defines 𝑗th equality constraint. Furthermore, all
the constraints determine the set of feasible solutions which
is denoted by Ω. To be specific, we try to find a feasible
solution 𝑥 ∈ Ω minimizing each objective function𝑓

𝑖
(𝑥)(𝑖 =

1, . . . , 𝑚) in 𝐹. In the following, four important definitions
[36] for multiobjective problems are given.

Definition 1 (Pareto dominance). Pareto dominance between
solutions 𝑥, 𝑧 ∈ Ω is defined as follows. If
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𝑖
(𝑧)

(2)

are satisfied, 𝑥 dominates (Pareto dominate) 𝑧 (denoted as
𝑥 ≻ 𝑧).

Definition 2 (Pareto optimal). A solution vector 𝑥 is said to
be Pareto optimal with respect toΩ if ∄𝑧 ∈ Ω : 𝑧 ≻ 𝑥.

Definition 3 (Pareto optimal set (PS)). The set of Pareto
optimal solutions (PS) is defined as

PS = {𝑥 ∈ Ω | ∄𝑧 ∈ Ω : 𝑧 ≻ 𝑥} . (3)

Definition 4 (Pareto front). The Pareto optimal front (PF) is
defined as

PF = {𝐹 (𝑥) | 𝑥 ∈ PS} . (4)

3. A New Multiobjective Evolutionary
Algorithm Based on Decomposition of
the Objective Space

This new algorithm consists of three parts: solutions classifi-
cation, update strategy, and selection strategy which will be
introduced one by one in this section.

3.1. Solutions Classification. Theobjective space of anMOP is
decomposed into a set of subobjective spaces by a set of direc-
tion vectors, and then obtained solutions are classified by
these direction vectors to make each subobjective space have
a solution. For a given set of direction vectors (𝛾1, 𝛾2, . . . , 𝛾𝑁),
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and the set of current obtained solutions being POP, these
solutions will be classified by the following formula:

𝑃
𝑖
= {𝑥 | 𝑥 ∈ POP, Δ (𝐹 (𝑥) , 𝛾𝑖) = max
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)}} ,
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where 𝑍 = (𝑍
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𝑖
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between 𝛾𝑖 and 𝐹(𝑥) − 𝑍. These solutions are divided into
𝑁 classes by the formula (5) and the objective space Ω is
divided into𝑁 subobjective spacesΩ

1
, . . . , Ω

𝑁
, whereΩ

𝑘
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If a𝑃𝑖(1 ≤ 𝑖 ≤ 𝑁) is empty, a solution is randomly selected
from POP and put to 𝑃𝑖. We would like to make the following
comments on the classification (decomposition) method.

(1) Thismethod is equivalent in a sense that the PFs of all
these subobjective spaces constitute the PF of (1).

(2) Even when the PS of (1) has a nonlinear geometric
shape, the PS of each subobjective space could be close
to linear because it is just a small part of the PS of (1).
Therefore, formulas (5) and (6) make (1) simpler than
before, at least in terms of PS shapes.

(3) This classification (decomposition) method does not
require any aggregation methods. A user only needs
to choose a set of direction vectors. To some extent, it
requires little human labor.

3.2. Update Strategy. The elitist strategy is used to update
solutions. When it meets one of the following conditions, a
new solution will replace the current solution of a subobjec-
tive space:

(1) if the objective vector of the current solution does not
locate in this subobjective space, the objective vector
of the new solution locates in this space or the current
solution is dominated by the new solution;

(2) if the objective vector of the current solution locates
in this subobjective space, the objective vector of the
new solution also locates in this space and the current
solution is dominated by the new solution.

The first update condition makes each subobjective
space have a solution whose objective vector locates in this
subobjective space, which can well maintain the diversity
of obtained solutions. The second update condition makes
nondominated solution be kept, which can make solutions
converge to the PF.

3.3. Selection Strategy. In this work, we hope that those
solutions which are kept after the above update strategy
and dominated by other solutions have a stronger ability to
survive than other solutions. In such a way, these solutions
are more likely to be selected to generate new solutions, and
then their subobjective spaces can quickly find their optimal
solutions. Therefore, the finally obtained solution of each
subobjective space is as close as possible to the PF. In order to
achieve the goal, the crowding distance [3] is used to calculate
the fitness value of a solution for the selection operators.
Because these solutions are dominated by other solutions and
the objective vectors of those solutions do not locate in these
subobjective spaces of these solutions, so in the term of the
objective vector, these solutions have fewer solutions in their
surround than other solutions. Thus, by using the crowding
distance to calculate the fitness value of a solution, the fitness
values of these solutions are better than those solutions and
these solutions are more likely to be selected to generate new
solutions.

3.4. Steps of the Proposed Algorithm. Based on the above
methods, a new multiobjective evolutionary algorithm
(EASS) is proposed and the steps of the algorithm EASS are
as follows.

Step 1 (initialization). Given 𝑁 direction vectors
(𝛾
1
, 𝛾2, . . . , 𝛾𝑁), randomly generate an initial population

POP(𝑘), and its size is𝑁; let 𝑘 = 0. Set 𝑍
𝑖
= min{𝑓

𝑖
(𝑥) | 𝑥 ∈

POP(𝑘)}, 1 ≤ 𝑖 ≤ 𝑚.

Step 2 (fitness). Solutions of POP(𝑘) are firstly divided into
𝑁 classes by the formula (5) and the fitness value of each
solution in POP(𝑘) is calculated by the crowding distance.
Then, some better solutions are selected from the population
POP(𝑘) and put into the population POP. In this work, binary
tournament selection is used.

Step 3 (new solutions). Apply genetic operators to the parent
population to generate offspring.The set of all these offspring
is denoted as 𝑂.

Step 4 (update). 𝑍 is firstly updated. For each 𝑗 = 1, . . . , 𝑚, if
𝑍
𝑗
> min{𝑓

𝑗
(𝑥) | 𝑥 ∈ 𝑂}, then set 𝑍

𝑗
= min{𝑓

𝑗
(𝑥) | 𝑥 ∈ 𝑂}.

The solutions of POP(𝑘) ∪𝑂 are firstly classed by the formula
(5); then𝑁 best solutions are selected by the update strategy
of Section 3.2 and put into POP(𝑘 + 1). Let 𝑘 = 𝑘 + 1.

Step 5 (termination). If stop condition is satisfied, stop;
otherwise, go to Step 2.

4. Experimental Study

In this section, EASS has been fully compared with a
promising multiobjective evolutionary algorithm based on
decomposition (MOEA/D) [22], whichwas ranked first in the
unconstrained MOEA competition [37], and nondominated
sorting genetic algorithm II (NSGAII) [3] on seven continu-
ous test problems.
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Table 1: Multiobjective benchmark functions.

Instance Objective function
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4.1. Test Problem. The following modified ZDT [36] and
DTLZ [38] instances are used in this paper.𝑔(𝑥) functions are
modified to increase the difficulty of these instances. These
strategies for constructing these test problems are used in
[39]. These functions with complicated Pareto set shapes can
cause difficulties for MOEAs. Their search space is [0, 1]𝑛
and 𝑛 = 10. All these instances are for minimization and
described in Table 1.

4.2. Parameter Settings. Algorithms are implemented on a
personal computer (Intel Xeon CPU 2.53GHz, 3.98G RAM).
The individuals are all coded as the real vectors. Polynomial

mutation [40] operators are applied directly to real parameter
values in three algorithms, that is, NSGAII, MOEA/D, and
EASS. For crossover operators, simulated binary crossover
(SBX [40]) is used in NSGAII and EASS; differential evolu-
tion (DE) [41] is used in MOEA/D.The parameter settings in
this paper are as follows.

(1) Control parameters in reproduction operators:

(a) distribution index is 20 and crossover probabil-
ity is 1 in the SBX operator;

(b) crossover rate is 1.0 and scaling factor is 0.5 in
the DE operator;

(c) distribution index is 20 and mutation probabil-
ity is 0.1 in mutation operator.

(2) For two-objective and three-objective instances, the
population size is 105 in the three algorithms. Weight
vectors are generated by using the method which is
used in [22]. The direction vectors of EASS are the
weight vectors. The number of weight vectors is the
same as the population size.The number of theweight
vectors in the neighborhood in MOEA/D is 20 for all
test problems. The Tchebycheff approach [22] is used
for MOEA/D as an aggregate function. Other control
parameters in MOEA/D are the same as in [22].

(3) Each algorithm is run 20 times independently for
each test instance. All the three algorithms stop after
1000 generations.

4.3. Experimental Measures. In order to compare the perfor-
mance of the different algorithms quantitatively, performance
metrics are needed. In this paper, the following performance
metrics are used to compare the performance of the different
algorithms quantitatively: generational distance (GD) [42],
inverted generational distance (IGD) [42], and hypervolume
indicator (HV) [43]. GD measures how far the known Pareto
front is away from the true Pareto front. If GD is equal to 0,
all points of the known PF belong to the true PF. GD allows
us to observe whether the algorithm can converge to some
region in the true PF. IGD measures how far the true PF is
away from the known PF. If IGD is equal to 0, the known
PF contains every point of the true PF. IGD shows whether
points of the known PF are evenly distributed throughout
the true PF. Here, GD and IGD indicators are used simul-
taneously to observe whether the solutions are distributed
over the entire PF and define a suboptimal solution as a good
solution. In experiments, we select 500 evenly distributed
points on the PF for four two-objective test instances and 1000
points for three-objective test instances. The hypervolume
indicator has been usedwidely in evolutionarymultiobjective
optimization to evaluate the performance of search algo-
rithms. It computes the volume of the dominated portion of
the objective space relative to a reference point. Higher values
of this performance indicator implymore desirable solutions.
Thehypervolume indicatormeasures both the convergence to
the true Pareto front and diversity of the obtained solutions.
In our experiments, the reference point is set to (1, . . . , 1).
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Figure 1: Solutions obtained by EASS, MOEA/D, and NSGAII on F1–F3.

4.4. Comparisons of EASSwithMOEA/D andNSGAII. In this
section, some simulation results and comparisons that prove
the potential of EASS are presented and the comparisons
mainly focus on three aspects: (1) the convergence of the
obtained solutions to the true PF; (2) the coverage of the
obtained solutions to the true PF; and (3) the diversity
of the obtained solutions. Although such comparisons are
not sufficient, they provide a good basis to estimate the
performance of EASS.

To visually compare the performance of the three algo-
rithms, the solutions obtained by them on these test problems
are shown in Figures 1 and 2. Obviously, both MOEA/D and

NSGAII cannot locate the global PF on any instance. In con-
trast, EASS can approximate the PFs of these instances quite
well. These Figures indicate that the diversity of solutions
obtained by the algorithm EASS is better than those obtained
by MOEA/D and NSGAII on these test problems.

Table 2 presents themean and standard deviation of IGD,
GD, and HV obtained by EASS, MOEA/D, and NSGAII.
Best solutions obtained are highlighted bold in this table.
From the table, we can obtain that the mean values of IGD
obtained by EASS are much smaller than those obtained
by the other two algorithms for these six test problems,
which indicates that for these test problems, the coverage
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Figure 2: Solutions obtained by EASS, MOEA/D, and NSGAII on F4–F6.

of solutions obtained by EASS to the true PF is better
than those obtained by MOEA/D and NSGAII. In addition,
standard deviations of IGD obtained by EASS are very small
for these test problems, which show that the performance
of EASS is well stable on these problems. We can also see
that the mean values of GD obtained by EASS are smaller
than those obtained by the other two algorithms for test
problems F1 and F3, which indicate that the convergence
of solutions obtained by EASS to the true PF is better than
those obtained by MOEA/D and NSGAII. For problems
F2 and F4, the mean values of GD obtained by EASS are
slightly larger than those obtained by NSGAII but smaller
than those obtained by MOEA/D. For problems F5 and F6,
the mean values of GD obtained by EASS are larger than

those obtained by MOEA/D and NSGAII. For these four test
problems, the convergence of solutions obtained by EASS to
the true PF is worse than that obtained by NSGAII, which
is because the solutions obtained by NSGAII and MOEA/D
are concentrated in certain regions of the PF, but solutions
obtained by EASS are distributed throughout the PF and
converge to the PF. From the mean values of GD obtained
by EASS, we can obtain that solutions obtained by EASS can
well converge to the true PF for these six test problems. In
terms of the mean value of HV, the values of HV obtained
by EASS are much bigger than those obtained by other two
algorithms, which illustrate that the diversities of solutions
obtained by EASS are better than those obtained byMOEA/D
and NSGAII.
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Table 2: IGD, GD, and HV obtained by EASS, MOEA/D, and NSGAII on F1–F6.

IGD GD HV
Mean SD Mean SD Mean SD

F1
EASS 0.0042 0.0000 0.0012 0.0001 0.6605 0.0001
MOEA/D 0.1271 0.0415 0.0053 0.0012 0.4308 0.0847
NSGAII 0.2697 0.0040 0.0037 0.0017 0.2890 0.0077

F2
EASS 0.0051 0.0002 0.0014 0.0001 0.3260 0.0002
MOEA/D 0.1141 0.0106 0.0025 0.0008 0.2506 0.0088
NSGAII 0.3437 0.0427 0.0005 0.0001 0.0116 0.0465

F3
EASS 0.0055 0.0002 0.0019 0.0001 0.2065 0.0003
MOEA/D 0.1758 0.1098 0.0019 0.0011 0.0978 0.0549
NSGAII 0.3753 0.0364 0.0030 0.0002 0.0027 0.0108

F4
EASS 0.0046 0.0001 0.0014 0.0001 0.5139 0.0003
MOEA/D 0.2313 0.0263 0.0728 0.0187 0.1977 0.0729
NSGAII 0.2650 0.0010 0.0011 0.0018 0.2119 0.0009

F5
EASS 0.0423 0.0008 0.0209 0.0005 0.7719 0.0025
MOEA/D 0.2999 0.0000 0.0066 0.0000 0.4810 0.0000
NSGAII 0.2898 0.0341 0.0171 0.0005 0.5062 0.0443

F6
EASS 0.0556 0.0016 0.0259 0.0006 0.4039 0.0015
MOEA/D 0.3698 0.0000 0.0075 0.0000 0.1992 0.0000
NSGAII 0.2611 0.0326 0.0209 0.0011 0.3110 0.0306

5. Conclusion

In this paper, a new evolutionary algorithm based on decom-
position of the objective space is designed to well maintain
the diversity of obtained solutions. In order to achieve the
goal, the objective space of an MOP is decomposed into a
number of subobjective spaces, and the obtained solutions
are classed to make each subobjective space have a solution.
For each subobjective space, if a new solution will replace
its current solution whose objective vector locates in this
sub-region, the new solution must dominate the current
solution and its objective vector locates in the sub-region; if
the objective vector of the current solution does not locate
in this sub-region, the new solution dominate the current
solution or its objective vector locates in the sub-region.
In such a way, good population diversity can be achieved,
which is essential for solving some MOPs. In addition, in
order to improve the convergence of all obtained solutions,
the crowding distance is used to calculate the fitness value
of a solution for the selection operators, which can make
dominated solutions be more likely to be selected to generate
new solutions. Experimental studies on six test instances
have implied that this proposed algorithm can significantly
outperformMOEA/D and NSGAII on these test problems.

The future work includes combination of this algorithm
and other evolutionary search techniques and investigation

of its performance on other hardmultiobjective optimization
problems.
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