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New sufficient conditions for the oscillation of all solutions of difference equations with several deviating arguments and variable
coefficients are presented. Examples illustrating the results are also given.

1. Introduction

In this paper we study the oscillation of all solutions of
difference equation with several variable retarded arguments
of the form

Δ𝑥 (𝑛) +

𝑚

∑

𝑖=1

𝑝
𝑖
(𝑛) 𝑥 (𝜏

𝑖
(𝑛)) = 0, 𝑛 ∈ N

0
, (ER)

and the (dual) difference equation with several variable
advanced arguments of the form

∇𝑥 (𝑛) −

𝑚

∑

𝑖=1

𝑝
𝑖
(𝑛) 𝑥 (𝜎

𝑖
(𝑛)) = 0, 𝑛 ∈ N, (EA)

where 𝑚 ∈ N, (𝑝
𝑖
(𝑛)), 1 ≤ 𝑖 ≤ 𝑚, are sequences of positive

real numbers and (𝜏
𝑖
(𝑛)), 1 ≤ 𝑖 ≤ 𝑚, are sequences of integers

such that

𝜏
𝑖
(𝑛) ≤ 𝑛 − 1, ∀𝑛 ∈ N

0
,

lim
𝑛→∞

𝜏
𝑖
(𝑛) = ∞, 1 ≤ 𝑖 ≤ 𝑚

(1)

and (𝜎
𝑖
(𝑛)), 1 ≤ 𝑖 ≤ 𝑚, are sequences of integers such that

𝜎
𝑖
(𝑛) ≥ 𝑛 + 1, ∀𝑛 ∈ N, 1 ≤ 𝑖 ≤ 𝑚. (2)

Here, Δ denotes the forward difference operator Δ𝑥(𝑛) =
𝑥(𝑛+1)−𝑥(𝑛) and∇ denotes the backward difference operator
∇𝑥(𝑛) = 𝑥(𝑛) − 𝑥(𝑛 − 1).

Strong interest in (ER) is motivated by the fact that it
represents a discrete analogue of the differential equation (see
[1–3] and the references cited therein)

𝑥


(𝑡) +

𝑚

∑

𝑖=1

𝑝
𝑖
(𝑡) 𝑥 (𝜏

𝑖
(𝑡)) = 0, 𝑡 ≥ 0, (3)

where, for every 𝑖 ∈ {1, . . . , 𝑚}, 𝑝
𝑖
is a continuous real-valued

function in the interval [0,∞) and 𝜏
𝑖
is a continuous real-

valued function on [0,∞) such that
𝜏
𝑖
(𝑡) ≤ 𝑡, 𝑡 ≥ 0, lim

𝑡→∞

𝜏
𝑖
(𝑡) = ∞, (4)

while (EA) represents a discrete analogue of the advanced
differential equation (see [1, 2] and the references cited
therein)

𝑥


(𝑡) −

𝑚

∑

𝑖=1

𝑝
𝑖
(𝑡) 𝑥 (𝜎

𝑖
(𝑡)) = 0, 𝑡 ≥ 1, (5)

where, for every 𝑖 ∈ {1, . . . , 𝑚}, 𝑝
𝑖
is a continuous real-valued

function in the interval [1,∞) and 𝜎
𝑖
is a continuous real-

valued function on [1,∞) such that
𝜎
𝑖
(𝑡) ≥ 𝑡, 𝑡 ≥ 1. (6)
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By a solution of (ER), wemean a sequence of real numbers
(𝑥(𝑛))

𝑛≥−𝑤
which satisfies (ER) for all 𝑛 ≥ 0. Here

𝑤 = −min
𝑛≥0

1≤𝑖≤𝑚

𝜏
𝑖
(𝑛) . (7)

It is clear that, for each choice of real numbers 𝑐
−𝑤
,

𝑐
−𝑤+1

, . . ., 𝑐
−1
, 𝑐
0
, there exists a unique solution (𝑥(𝑛))

𝑛≥−𝑤

of (ER) which satisfies the initial conditions 𝑥(−𝑤) = 𝑐
−𝑤
,

𝑥(−𝑤 + 1) = 𝑐
−𝑤+1

, . . ., 𝑥(−1) = 𝑐
−1
, 𝑥(0) = 𝑐

0
.

By a solution of (EA), wemean a sequence of real numbers
(𝑥(𝑛))

𝑛≥0
which satisfies (EA) for all 𝑛 ≥ 1.

A solution (𝑥(𝑛))
𝑛≥−𝑤

(or (𝑥(𝑛))
𝑛≥0

) of (ER) (or (EA)) is
called oscillatory, if the terms 𝑥(𝑛) of the sequence are neither
eventually positive nor eventually negative. Otherwise, the
solution is said to be nonoscillatory.

In the last few decades, the oscillatory behavior of the
solutions of difference and differential equations with several
deviating arguments and variable coefficients has been stud-
ied. See, for example, [1–14] and the references cited therein.

In 2006, Berezansky and Braverman [5] proved that if

lim sup
𝑛→∞

𝑚

∑

𝑖=1

𝑝
𝑖
(𝑛) > 0, lim inf

𝑛→∞

𝑚

∑

𝑖=1

𝑛−1

∑

𝑗=𝜏(𝑛)

𝑝
𝑖
(𝑗) >

1

𝑒
, (8)

where 𝜏(𝑛) = max
1≤𝑖≤𝑚

𝜏
𝑖
(𝑛), for all 𝑛 ≥ 0, then all solutions

of (ER) oscillate.
Recently, Chatzarakis et al. [7–9] established the follow-

ing theorems.

Theorem 1 (see [9]). Assume that the sequences (𝜏
𝑖
(𝑛))

[(𝜎
𝑖
(𝑛))], 1 ≤ 𝑖 ≤ 𝑚, are increasing, (1) [(2)] holds, and

lim sup
𝑛→∞

𝑚

∑

𝑖=1

𝑛

∑

𝑗=𝜏(𝑛)

𝑝
𝑖
(𝑗) [

[

lim sup
𝑛→∞

𝑚

∑

𝑖=1

𝜎(𝑛)

∑

𝑗=𝑛

𝑝
𝑖
(𝑗)]

]

> 1, (9)

where 𝜏(𝑛) = max
1≤𝑖≤𝑚

𝜏
𝑖
(𝑛), for all 𝑛 ≥ 0, [𝜎(𝑛) =

min
1≤𝑖≤𝑚

𝜎
𝑖
(𝑛), for all 𝑛 ≥ 1], or

lim sup
𝑛→∞

𝑚

∑

𝑖=1

𝑝
𝑖
(𝑛) > 0,

lim inf
𝑛→∞

𝑚

∑

𝑖=1

𝑛−1

∑

𝑗=𝜏𝑖(𝑛)

𝑝
𝑖
(𝑗) [

[

lim inf
𝑛→∞

𝑚

∑

𝑖=1

𝜎𝑖(𝑛)

∑

𝑗=𝑛+1

𝑝
𝑖
(𝑗)]

]

>
1

𝑒
,

(10)

then all solutions of (ER) [(EA)] oscillate.

Theorem 2 (see [7, 8]). Assume that the sequences
(𝜏
𝑖
(𝑛)) [(𝜎

𝑖
(𝑛))], 1 ≤ 𝑖 ≤ 𝑚, are increasing and (1) [(2)]

holds. Set

𝛼 = min {𝛼
𝑖
: 1 ≤ 𝑖 ≤ 𝑚} ,

𝛼
𝑖
= lim inf
𝑛→∞

𝑛−1

∑

𝑗=𝜏𝑖(𝑛)

𝑝
𝑖
(𝑗) [

[

lim inf
𝑛→∞

𝜎𝑖(𝑛)

∑

𝑗=𝑛+1

𝑝
𝑖
(𝑗)]

]

.

(11)

If 0 < 𝛼 ≤ 1/𝑒, and

lim sup
𝑛→∞

𝑚

∑

𝑖=1

𝑛

∑

𝑗=𝜏(𝑛)

𝑝
𝑖
(𝑗) [

[

lim sup
𝑛→∞

𝑚

∑

𝑖=1

𝜎(𝑛)

∑

𝑗=𝑛

𝑝
𝑖
(𝑗)]

]

> 1 − (1 − √1 − 𝛼)
2

,

(12)

or

lim sup
𝑛→∞

𝑚

∑

𝑖=1

𝑛

∑

𝑗=𝜏(𝑛)

𝑝
𝑖
(𝑗) [

[

lim sup
𝑛→∞

𝑚

∑

𝑖=1

𝜎(𝑛)

∑

𝑗=𝑛

𝑝
𝑖
(𝑗)]

]

> 1 −
1 − 𝛼 − √1 − 2𝛼 − 𝛼2

2
,

(13)

then all solutions of (ER) [(EA)] oscillate.

The authors study further (ER) and (EA) and derive new
sufficient oscillation conditions. These conditions are the
improved and generalized discrete analogues of the oscilla-
tion conditions for the corresponding differential equations,
which were studied in 1982 by Ladas and Stavroulakis [2].
Examples illustrating the results are also given.

2. Oscillation Criteria

2.1. Retarded Difference Equations. We present new sufficient
conditions for the oscillation of all solutions of (ER).

Theorem 3. Assume that (𝜏
𝑖
(𝑛)), 1 ≤ 𝑖 ≤ 𝑚, are increasing

sequences of integers such that (1) holds and (𝑝
𝑖
(𝑛)), 1 ≤ 𝑖 ≤ 𝑚,

are sequences of positive real numbers and define 𝛼
𝑖
, 1 ≤ 𝑖 ≤ 𝑚,

by (11). If 𝛼
𝑖
> 0, 1 ≤ 𝑖 ≤ 𝑚, and

[

[

𝑚

∏

𝑖=1

(𝛼
𝑖
+

𝑚

∑

𝑗=1,𝑗 ̸=𝑖

lim inf
𝑛→∞

𝑛−1

∑

𝑘=𝜏𝑗(𝑛)

𝑝
𝑖
(𝑘))]

]

1/𝑚

>
1

𝑒
, (14)

then all solutions of (ER) oscillate.

Proof. Assume, for the sake of contradiction, that (𝑥(𝑛))
𝑛≥−𝑤

is a nonoscillatory solution of (ER).Then it is either eventually
positive or eventually negative. As (−𝑥(𝑛))

𝑛≥−𝑤
is also a

solution of (ER), we may restrict ourselves only to the case
where 𝑥(𝑛) > 0 for all large 𝑛. Let 𝑛

1
≥ −𝑤 be an integer such

that 𝑥(𝑛) > 0 for all 𝑛 ≥ 𝑛
1
. Then, there exists 𝑛

2
≥ 𝑛
1
such

that

𝑥 (𝜏
𝑖
(𝑛)) > 0, ∀𝑛 ≥ 𝑛

2
, 1 ≤ 𝑖 ≤ 𝑚. (15)

In view of this, (ER) becomes

Δ𝑥 (𝑛) = −

𝑚

∑

𝑖=1

𝑝
𝑖
(𝑛) 𝑥 (𝜏

𝑖
(𝑛)) ≤ 0, ∀𝑛 ≥ 𝑛

2
, (16)

which means that the sequence (𝑥(𝑛)) is eventually decrea-
sing.

Next choose a natural number 𝑛
3
> 𝑛
2
such that

𝑥 (𝑛) < 𝑥 (𝜏
𝑖
(𝑛)) , ∀𝑛 ≥ 𝑛

3
, 1 ≤ 𝑖 ≤ 𝑚. (17)
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Set

𝑧
𝑖
(𝑛) =

𝑥 (𝜏
𝑖
(𝑛))

𝑥 (𝑛)
, ∀𝑛 ≥ 𝑛

3
, 1 ≤ 𝑖 ≤ 𝑚,

𝜑
𝑖
= lim inf
𝑛→∞

𝑧
𝑖
(𝑛) , 1 ≤ 𝑖 ≤ 𝑚.

(18)

It is obvious that

𝑧
𝑖
(𝑛) > 1, 𝜑

𝑖
≥ 1 for 𝑖 = 1, 2, . . . , 𝑚. (19)

Now we will show that 𝜑
𝑖
< ∞ for 𝑖 = 1, 2, . . . , 𝑚. Indeed,

assume that 𝜑
𝑖
= ∞ for some 𝑖, 𝑖 = 1, 2, . . . , 𝑚. For this 𝑖, by

(ER), we have

Δ𝑥 (𝑛) + 𝑝
𝑖
(𝑛) 𝑥 (𝜏

𝑖
(𝑛)) ≤ 0, ∀𝑛 ≥ 𝑛

3
. (20)

At this point, we will establish the following claim.

Claim 1 (cf. [8]). For each 𝑛 ≥ 𝑛
3
, there exists an integer 𝑛∗

𝑖
≥ 𝑛

for each 𝑖 = 1, 2, . . . , 𝑚 such that 𝜏
𝑖
(𝑛
∗

𝑖
) ≤ 𝑛 − 1, and

𝑛
∗

𝑖

∑

𝑗=𝑛

𝑝
𝑖
(𝑗) ≥

𝛼
𝑖
− 𝜀

2
, (21)

𝑛−1

∑

𝑗=𝜏𝑖(𝑛
∗

𝑖 )

𝑝
𝑖
(𝑗) >

𝛼
𝑖
− 𝜀

2
, (22)

where 𝜀 is an arbitrary real number with 0 < 𝜀 < 𝛼
𝑖
.

To prove this claim, let us consider an arbitrary real
number 𝜀 with 0 < 𝜀 < 𝛼

𝑖
. Then by (11) we can choose an

integer 𝑛
3
≥ 𝑛
2
such that

𝑛−1

∑

𝑗=𝜏𝑖(𝑛)

𝑝
𝑖
(𝑗) ≥ 𝛼

𝑖
− 𝜀, ∀𝑛 ≥ 𝑛

3
, 1 ≤ 𝑖 ≤ 𝑚. (23)

Assume, first, that 𝑝
𝑖
(𝑛) ≥ (𝛼

𝑖
−𝜀)/2 and choose 𝑛∗

𝑖
= 𝑛. Then

𝜏
𝑖
(𝑛
∗

𝑖
) = 𝜏
𝑖
(𝑛) ≤ 𝑛 − 1. Moreover, we have

𝑛
∗

𝑖

∑

𝑗=𝑛

𝑝
𝑖
(𝑗) =

𝑛

∑

𝑗=𝑛

𝑝
𝑖
(𝑗) = 𝑝

𝑖
(𝑛) ≥

𝛼
𝑖
− 𝜀

2
(24)

and, by (23),

𝑛−1

∑

𝑗=𝜏𝑖(𝑛
∗

𝑖
)

𝑝
𝑖
(𝑗) =

𝑛−1

∑

𝑗=𝜏𝑖(𝑛)

𝑝
𝑖
(𝑗) >

𝛼
𝑖
− 𝜀

2
. (25)

So, (21) and (22) are fulfilled. Next, we suppose that 𝑝
𝑖
(𝑛) <

(𝛼
𝑖
− 𝜀)/2. It is not difficult to see that (23) guarantees that

∑
∞

𝑗=0
𝑝
𝑖
(𝑗) = ∞. In particular, it holds

∞

∑

𝑗=𝑛

𝑝
𝑖
(𝑗) = ∞. (26)

Thus, as 𝑝
𝑖
(𝑛) < (𝛼

𝑖
−𝜀)/2, there always exists an integer 𝑛∗

𝑖
>

𝑛 so that
𝑛
∗

𝑖
−1

∑

𝑗=𝑛

𝑝
𝑖
(𝑗) <

𝛼
𝑖
− 𝜀

2
(27)

and (21) holds. We assert that 𝜏
𝑖
(𝑛
∗

𝑖
) ≤ 𝑛 − 1. Otherwise,

𝜏
𝑖
(𝑛
∗

𝑖
) ≥ 𝑛. We also have 𝜏

𝑖
(𝑛
∗

𝑖
) ≤ 𝑛

∗

𝑖
− 1. Hence, in view

of (27), we get

𝑛
∗

𝑖
−1

∑

𝑗=𝜏𝑖(𝑛
∗

𝑖 )

𝑝
𝑖
(𝑗) ≤

𝑛
∗

𝑖
−1

∑

𝑗=𝑛

𝑝
𝑖
(𝑗) <

𝛼
𝑖
− 𝜀

2
. (28)

On the other hand, (23) gives

𝑛
∗

𝑖
−1

∑

𝑗=𝜏𝑖(𝑛
∗

𝑖 )

𝑝
𝑖
(𝑗) ≥ 𝛼

𝑖
− 𝜀 >

𝛼
𝑖
− 𝜀

2
. (29)

Wehave arrived at a contradiction, which shows our assertion
that 𝜏
𝑖
(𝑛
∗

𝑖
) ≤ 𝑛−1. Furthermore, by using (23) (for the integer

𝑛
∗

𝑖
) as well as (27), we obtain

𝑛−1

∑

𝑗=𝜏𝑖(𝑛
∗

𝑖 )

𝑝
𝑖
(𝑗) =

𝑛
∗

𝑖
−1

∑

𝑗=𝜏𝑖(𝑛
∗

𝑖 )

𝑝
𝑖
(𝑗)

−

𝑛
∗

𝑖
−1

∑

𝑗=𝑛

𝑝
𝑖
(𝑗) > (𝛼

𝑖
− 𝜀) −

𝛼
𝑖
− 𝜀

2

=
𝛼
𝑖
− 𝜀

2

(30)

and consequently (22) holds true. Our claim has been proved.
Now, summing up (20) from 𝑛 to 𝑛∗

𝑖
, we find

𝑥 (𝑛
∗

𝑖
+ 1) − 𝑥 (𝑛) +

𝑛
∗

𝑖

∑

𝑗=𝑛

𝑝
𝑖
(𝑗) 𝑥 (𝜏

𝑖
(𝑗)) ≤ 0, ∀𝑛 ≥ 𝑛

3
,

(31)

or

𝑥 (𝑛) ≥ (

𝑛
∗

𝑖

∑

𝑗=𝑛

𝑝
𝑖
(𝑗))𝑥 (𝜏

𝑖
(𝑛
∗

𝑖
)) ≥

𝛼
𝑖
− 𝜀

2
𝑥 (𝜏
𝑖
(𝑛
∗

𝑖
)) ,

∀𝑛 ≥ 𝑛
3
.

(32)

Summing up (20) from 𝜏
𝑖
(𝑛
∗

𝑖
) to 𝑛 − 1, we find

𝑥 (𝑛) − 𝑥 (𝜏
𝑖
(𝑛
∗

𝑖
)) +

𝑛−1

∑

𝑗=𝜏𝑖(𝑛
∗

𝑖 )

𝑝
𝑖
(𝑗) 𝑥 (𝜏

𝑖
(𝑗)) ≤ 0,

∀𝑛 ≥ 𝑛
3
,

(33)

or

𝑥 (𝜏
𝑖
(𝑛
∗

𝑖
)) ≥ (

𝑛−1

∑

𝑗=𝜏𝑖(𝑛
∗

𝑖 )

𝑝
𝑖
(𝑗))𝑥 (𝜏

𝑖
(𝑛 − 1))

≥
𝛼
𝑖
− 𝜀

2
𝑥 (𝜏
𝑖
(𝑛)) , ∀𝑛 ≥ 𝑛

3
.

(34)

Combining (32) and (34), we obtain

𝑥 (𝑛) ≥ (
𝛼
𝑖
− 𝜀

2
)

2

𝑥 (𝜏
𝑖
(𝑛)) , ∀𝑛 ≥ 𝑛

3
, (35)
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or

𝑥 (𝜏
𝑖
(𝑛))

𝑥 (𝑛)
≤ (

2

𝛼
𝑖
− 𝜀
)

2

, ∀𝑛 ≥ 𝑛
3
, (36)

which means that (𝑧
𝑖
(𝑛)) is bounded. This contradicts our

assumption that 𝜑
𝑖
= ∞. Therefore 𝜑

𝑖
< ∞ for every 𝑖 =

1, 2, . . . , 𝑚.
Dividing both sides of (ER) by 𝑥(𝑛), for 𝑛 ≥ 𝑛3, we obtain

Δ𝑥 (𝑛)

𝑥 (𝑛)
+

𝑚

∑

𝑖=1

𝑝
𝑖
(𝑛)
𝑥 (𝜏
𝑖
(𝑛))

𝑥 (𝑛)
= 0, (37)

or

Δ𝑥 (𝑛)

𝑥 (𝑛)
+

𝑚

∑

𝑖=1

𝑝
𝑖
(𝑛) 𝑧
𝑖
(𝑛) = 0. (38)

Summing up (38) from 𝜏
𝜌
(𝑛) to 𝑛 − 1 for 𝜌 = 1, 2, . . . , 𝑚, we

find
𝑛−1

∑

𝑗=𝜏𝜌(𝑛)

Δ𝑥 (𝑗)

𝑥 (𝑗)
+

𝑚

∑

𝑖=1

𝑛−1

∑

𝑗=𝜏𝜌(𝑛)

𝑝
𝑖
(𝑗) 𝑧
𝑖
(𝑗) = 0. (39)

But
𝑛−1

∑

𝑗=𝜏𝜌(𝑛)

Δ𝑥 (𝑗)

𝑥 (𝑗)
=

𝑛−1

∑

𝑗=𝜏𝜌(𝑛)

(
𝑥 (𝑗 + 1)

𝑥 (𝑗)
− 1)

≥

𝑛−1

∑

𝑗=𝜏𝜌(𝑛)

(1 + ln
𝑥 (𝑗 + 1)

𝑥 (𝑗)
− 1)

= ln 𝑥 (𝑛)

𝑥 (𝜏
𝜌
(𝑛))

,

(40)

or
𝑛−1

∑

𝑗=𝜏𝜌(𝑛)

Δ𝑥 (𝑗)

𝑥 (𝑗)
≥ − ln 𝑧

𝜌
(𝑛) , 𝜌 = 1, 2, . . . , 𝑚. (41)

Combining (39) and (41), we obtain

− ln 𝑧
𝜌
(𝑛) +

𝑚

∑

𝑖=1

𝑛−1

∑

𝑗=𝜏𝜌(𝑛)

𝑝
𝑖
(𝑗) 𝑧
𝑖
(𝑗) ≤ 0, 𝜌 = 1, 2, . . . , 𝑚,

(42)

or

ln 𝑧
𝜌
(𝑛) ≥

𝑚

∑

𝑖=1

𝑛−1

∑

𝑗=𝜏𝜌(𝑛)

𝑝
𝑖
(𝑗) 𝑧
𝑖
(𝑗) , 𝜌 = 1, 2, . . . , 𝑚. (43)

Taking limit inferiors on both sides of the above inequalities
(43), we obtain

ln𝜑
𝜌
≥

𝑚

∑

𝑖=1

𝜑
𝑖
(lim inf
𝑛→∞

𝑛−1

∑

𝑘=𝜏𝜌(𝑛)

𝑝
𝑖
(𝑘)) , 𝜌 = 1, 2, . . . , 𝑚

(44)

and by adding we find

𝑚

∑

𝑖=1

ln𝜑
𝑖
≥

𝑚

∑

𝑖=1

𝜑
𝑖
(

𝑚

∑

𝑗=1

lim inf
𝑛→∞

𝑛−1

∑

𝑘=𝜏𝑗(𝑛)

𝑝
𝑖
(𝑘)) . (45)

Set

𝑓 (𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑚
)

≡

𝑚

∑

𝑖=1

ln𝜑
𝑖
−

𝑚

∑

𝑖=1

𝜑
𝑖
(

𝑚

∑

𝑗=1

lim inf
𝑛→∞

𝑛−1

∑

𝑘=𝜏𝑗(𝑛)

𝑝
𝑖
(𝑘)) .

(46)

Clearly

𝑓 (𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑚
) ≥ 0, ∀𝜑

1
, 𝜑
2
, . . . , 𝜑

𝑚
≥ 1. (47)

Since

𝜕𝑓

𝜕𝜑
𝑖

=
1

𝜑
𝑖

−

𝑚

∑

𝑗=1

lim inf
𝑛→∞

𝑛−1

∑

𝑘=𝜏𝑗(𝑛)

𝑝
𝑖
(𝑘) = 0, (48)

for

𝜑
𝑖
=

1

∑
𝑚

𝑗=1
lim inf

𝑛→∞
∑
𝑛−1

𝑘=𝜏𝑗(𝑛)
𝑝
𝑖
(𝑘)

, 𝑖 = 1, 2, . . . , 𝑚,

(49)

the function 𝑓 has a maximum at the critical point

(
1

∑
𝑚

𝑗=1
lim inf

𝑛→∞
∑
𝑛−1

𝑘=𝜏𝑗(𝑛)
𝑝
1
(𝑘)

,

. . . ,
1

∑
𝑚

𝑗=1
lim inf

𝑛→∞
∑
𝑛−1

𝑘=𝜏𝑗(𝑛)
𝑝
𝑚
(𝑘)

)

(50)

since the quadratic form
𝑚

∑

𝑖,𝑗=1

𝜕
2

𝑓

𝜕𝜑
𝑖
𝜕𝜑
𝑗

𝑏
𝑖
𝑏
𝑗
= −

𝑚

∑

𝑖=1

𝑏
2

𝑖

𝜑
2

𝑖

< 0. (51)

Since 𝑓(𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑚
) ≥ 0, the maximum of 𝑓 at the critical

point should be nonnegative. Thus,

𝑚

∑

𝑖=1

[

[

− ln(
𝑚

∑

𝑗=1

lim inf
𝑛→∞

𝑛−1

∑

𝑘=𝜏𝑗(𝑛)

𝑝
𝑖
(𝑘))]

]

− 𝑚 ≥ 0, (52)

that is,

max
𝜑𝑖≥1

𝑓 (𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑚
)

= − ln
𝑚

∏

𝑖=1

(

𝑚

∑

𝑗=1

lim inf
𝑛→∞

𝑛−1

∑

𝑘=𝜏𝑗(𝑛)

𝑝
𝑖
(𝑘)) − 𝑚.

(53)

Hence
𝑚

∏

𝑖=1

(

𝑚

∑

𝑗=1

lim inf
𝑛→∞

𝑛−1

∑

𝑘=𝜏𝑗(𝑛)

𝑝
𝑖
(𝑘)) ≤

1

𝑒𝑚
, (54)
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or

[

[

𝑚

∏

𝑖=1

(𝛼
𝑖
+

𝑚

∑

𝑗=1,𝑗 ̸=𝑖

lim inf
𝑛→∞

𝑛−1

∑

𝑘=𝜏𝑗(𝑛)

𝑝
𝑖
(𝑘))]

]

1/𝑚

≤
1

𝑒
, (55)

which contradicts (14).
The proof of the theorem is complete.

Theorem 4. Assume that (𝜏
𝑖
(𝑛)), 1 ≤ 𝑖 ≤ 𝑚, are increasing

sequences of integers such that (1) holds and (𝑝
𝑖
(𝑛)), 1 ≤ 𝑖 ≤ 𝑚,

are sequences of positive real numbers and define 𝛼
𝑖
, 1 ≤ 𝑖 ≤ 𝑚,

by (11). If 𝛼
𝑖
> 0, 1 ≤ 𝑖 ≤ 𝑚, and

1

𝑚

𝑚

∑

𝑖=1

𝛼
𝑖
+
2

𝑚

𝑚

∑

𝑖<𝑗

𝑖,𝑗=1

(lim inf
𝑛→∞

𝑛−1

∑

𝑘=𝜏𝑗(𝑛)

𝑝
𝑖
(𝑘)

× lim inf
𝑛→∞

𝑛−1

∑

𝑘=𝜏𝑖(𝑛)

𝑝
𝑗
(𝑘))

1/2

>
1

𝑒
,

(56)

then all solutions of (ER) oscillate.

Proof. Assume, for the sake of contradiction, that (𝑥(𝑛))
𝑛≥−𝑤

is a nonoscillatory solution of (ER).Then it is either eventually
positive or eventually negative. As (−𝑥(𝑛))

𝑛≥−𝑤
is also a

solution of (ER), we may restrict ourselves only to the case
where 𝑥(𝑛) > 0 for all large 𝑛. Let 𝑛

1
≥ −𝑤 be an integer such

that 𝑥(𝑛) > 0 for all 𝑛 ≥ 𝑛
1
. Then, there exists 𝑛

2
≥ 𝑛
1
such

that
𝑥 (𝜏
𝑖
(𝑛)) > 0, ∀𝑛 ≥ 𝑛

2
, 1 ≤ 𝑖 ≤ 𝑚. (57)

In view of this, (ER) becomes

Δ𝑥 (𝑛) = −

𝑚

∑

𝑖=1

𝑝
𝑖
(𝑛) 𝑥 (𝜏

𝑖
(𝑛)) ≤ 0, ∀𝑛 ≥ 𝑛

2
, (58)

which means that the sequence (𝑥(𝑛)) is eventually decrea-
sing.

Taking into account the fact that 𝜑
𝑖
< ∞ for 𝑖 =

1, 2, . . . , 𝑚 (see proof of Theorem 3), by using (44) and the
fact that

1

𝑒
>

ln𝜑
𝜌

𝜑
𝜌

, 𝜌 = 1, 2, . . . , 𝑚, (59)

we obtain

1

𝑒
>

𝑚

∑

𝑖=1

(lim inf
𝑛→∞

𝑛−1

∑

𝑘=𝜏𝑗(𝑛)

𝑝
𝑖
(𝑘))

𝜑
𝑖

𝜑
𝑗

, 𝑗 = 1, 2, . . . , 𝑚. (60)

Adding these inequalities we have

𝑚

𝑒
≥

𝑚

∑

𝑖=1

(lim inf
𝑛→∞

𝑛−1

∑

𝑘=𝜏𝑖(𝑛)

𝑝
𝑖
(𝑘))

+

𝑚

∑

𝑖<𝑗

𝑖,𝑗=1

[

[

(lim inf
𝑛→∞

𝑛−1

∑

𝑘=𝜏𝑗(𝑛)

𝑝
𝑖
(𝑘))

𝜑
𝑖

𝜑
𝑗

+ (lim inf
𝑛→∞

𝑛−1

∑

𝑘=𝜏𝑖(𝑛)

𝑝
𝑗
(𝑘))

𝜑
𝑗

𝜑
𝑖

]

]

≥

𝑚

∑

𝑖=1

(lim inf
𝑛→∞

𝑛−1

∑

𝑘=𝜏𝑖(𝑛)

𝑝
𝑖
(𝑘))

+ 2

𝑚

∑

𝑖<𝑗

𝑖,𝑗=1

[

[

(lim inf
𝑛→∞

𝑛−1

∑

𝑘=𝜏𝑗(𝑛)

𝑝
𝑖
(𝑘))

×(lim inf
𝑛→∞

𝑛−1

∑

𝑘=𝜏𝑖(𝑛)

𝑝
𝑗
(𝑘))]

]

1/2

,

(61)

or

1

𝑚

𝑚

∑

𝑖=1

𝛼
𝑖
+
2

𝑚

𝑚

∑

𝑖<𝑗

𝑖,𝑗=1

(lim inf
𝑛→∞

𝑛−1

∑

𝑘=𝜏𝑗(𝑛)

𝑝
𝑖
(𝑘)

× lim inf
𝑛→∞

𝑛−1

∑

𝑘=𝜏𝑖(𝑛)

𝑝
𝑗
(𝑘))

1/2

≤
1

𝑒
,

(62)

which contradicts (56).
The proof of the theorem is complete.

2.2. Advanced Difference Equations. Similar oscillation theo-
rems for the (dual) advanced difference equation (EA) can be
derived easily.The proofs of these theorems are omitted, since
they follow a similar procedure as in Section 2.1.

Theorem 5. Assume that (𝜎
𝑖
(𝑛)), 1 ≤ 𝑖 ≤ 𝑚, are increasing

sequences of integers such that (2) holds and (𝑝
𝑖
(𝑛)), 1 ≤ 𝑖 ≤ 𝑚,

are sequences of positive real numbers and define 𝛼
𝑖
, 1 ≤ 𝑖 ≤ 𝑚,

by (11). If 𝛼
𝑖
> 0, 1 ≤ 𝑖 ≤ 𝑚, and

[

[

𝑚

∏

𝑖=1

(𝛼
𝑖
+

𝑚

∑

𝑗=1, 𝑗 ̸=𝑖

lim inf
𝑛→∞

𝜎𝑗(𝑛)

∑

𝑘=𝑛+1

𝑝
𝑖
(𝑘))]

]

1/𝑚

>
1

𝑒
, (63)

then all solutions of (EA) oscillate.

Theorem 6. Assume that (𝜎
𝑖
(𝑛)), 1 ≤ 𝑖 ≤ 𝑚, are increasing

sequences of integers such that (2) holds and (𝑝
𝑖
(𝑛)), 1 ≤ 𝑖 ≤ 𝑚,

are sequences of positive real numbers and define 𝛼
𝑖
, 1 ≤ 𝑖 ≤ 𝑚,

by (11). If 𝛼
𝑖
> 0, 1 ≤ 𝑖 ≤ 𝑚, and

1

𝑚

𝑚

∑

𝑖=1

𝛼
𝑖
+
2

𝑚

𝑚

∑

𝑖<𝑗

𝑖,𝑗=1

(lim inf
𝑛→∞

𝜎𝑗(𝑛)

∑

𝑘=𝑛+1

𝑝
𝑖
(𝑘)

× lim inf
𝑛→∞

𝜎𝑖(𝑛)

∑

𝑘=𝑛+1

𝑝
𝑗
(𝑘))

1/2

>
1

𝑒
,

(64)

then all solutions of (EA) oscillate.

2.3. Special Cases. In the case where 𝑝
𝑖
, 𝑖 = 1, 2, . . . , 𝑚, are

positive real constants and 𝜏
𝑖
are constant retarded arguments

of the form 𝜏
𝑖
(𝑛) = 𝑛−𝑘

𝑖
, [𝜎
𝑖
are constant advanced arguments
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of the form 𝜎
𝑖
(𝑛) = 𝑛 + 𝑘

𝑖
], 𝑘
𝑖
∈ N, 𝑖 = 1, 2, . . . , 𝑚, equation

(ER) [(EA)] takes the form

Δ𝑥 (𝑛) +

𝑚

∑

𝑖=1

𝑝
𝑖
𝑥 (𝑛 − 𝑘

𝑖
) = 0, 𝑛 ∈ N

0
,

[∇𝑥 (𝑛) −

𝑚

∑

𝑖=1

𝑝
𝑖
𝑥 (𝑛 + 𝑘

𝑖
) = 0, 𝑛 ∈ N] .

(E)

For this equation, as a consequence of Theorems 3 [5] and
4 [6], we have the following corollary.

Corollary 7. Assume that

[

𝑚

∏

𝑖=1

𝑝
𝑖
]

1/𝑚

(

𝑚

∑

𝑖=1

𝑘
𝑖
) >

1

𝑒
, (65)

or

1

𝑚
(

𝑚

∑

𝑖=1

√𝑝
𝑖
𝑘
𝑖
)

2

>
1

𝑒
. (66)

Then all solutions of (E) oscillate.

Remark 8. A research question that arises is whether Theo-
rems 3–6 are valid, even in the casewhere the coefficients𝑝(𝑛)
oscillate (see [15, 16]). Then our results would be comparable
to those in [15, 16]. This is a question that we currently study
and expect to have some results soon.

3. Examples

The following two examples illustrate that the conditions for
oscillations (65) and (66) are independent. They are chosen
in such a way that only one of them is satisfied.

Example 1. Consider the retarded difference equation

Δ𝑥 (𝑛) +
1

5𝑒
𝑥 (𝑛 − 1) +

1

6𝑒
𝑥 (𝑛 − 2)

+
1000

7198𝑒
𝑥 (𝑛 − 3) = 0, 𝑛 ∈ N

0
.

(67)

Here𝑚 = 3, 𝜏
1
(𝑛) = 𝑛 − 1, 𝜏

2
(𝑛) = 𝑛 − 2, 𝜏

3
(𝑛) = 𝑛 − 3, and

𝜏 (𝑛) = max
1≤𝑖≤3

𝜏
𝑖
(𝑛) = 𝑛 − 1. (68)

It is easy to see that

[

3

∏

𝑖=1

𝑝
𝑖
]

1/3

(

3

∑

𝑖=1

𝑘
𝑖
)

=
3
√
1

5𝑒
⋅
1

6𝑒
⋅
1000

7198𝑒
⋅ (1 + 2 + 3) ≃ 0.3679135

>
1

𝑒
.

(69)

That is, condition (65) of Corollary 7 is satisfied and therefore
all solutions of equation (67) oscillate.

However,

1

3
(

3

∑

𝑖=1

√𝑝
𝑖
𝑘
𝑖
)

2

=
1

3
(√

1

5𝑒
⋅ 1 + √

1

6𝑒
⋅ 2 + √

1000

7198𝑒
⋅ 3)

2

≃ 0.3420547

<
1

𝑒
.

(70)

That is, condition (66) of Corollary 7 is not satisfied.
Observe that

𝛼
1
= lim inf
𝑛→∞

𝑛−1

∑

𝑗=𝑛−1

𝑝
1
=
1

5𝑒
≃ 0.0735758,

𝛼
2
= lim inf
𝑛→∞

𝑛−1

∑

𝑗=𝑛−2

𝑝
2
=
2

6𝑒
≃ 0.1226264,

𝛼
3
= lim inf
𝑛→∞

𝑛−1

∑

𝑗=𝑛−3

𝑝
3
=
3000

7198𝑒
≃ 0.1533256.

(71)

Thus

𝛼 = min {𝛼
𝑖
: 1 ≤ 𝑖 ≤ 3} ≃ 0.0735758 <

1

𝑒
. (72)

Also,

lim sup
𝑛→∞

3

∑

𝑖=1

𝑛

∑

𝑗=𝑛−1

𝑝
𝑖

= lim sup
𝑛→∞

[2 ⋅
1

5𝑒
+ 2 ⋅

1

6𝑒
+ 2 ⋅

1000

7198𝑒
] ≃ 0.3719953

< 1,

0.3719953 < 1 − (1 − √1 − 𝛼)
2

≃ 0.9985944,

0.3719953 < 1 −
1 − 𝛼 − √1 − 2𝛼 − 𝛼2

2
≃ 0.997069,

lim inf
𝑛→∞

3

∑

𝑖=1

𝑛−1

∑

𝑗=𝑛−1

𝑝
𝑖 = lim inf
𝑛→∞

[
1

5𝑒
+
1

6𝑒
+
1000

7198𝑒
]

≃ 0.1859976 <
1

𝑒
,

lim inf
𝑛→∞

3

∑

𝑖=1

𝑛−1

∑

𝑗=𝜏𝑖(𝑛)

𝑝
𝑖
(𝑗) = lim inf

𝑛→∞

[
1

5𝑒
+
2

6𝑒
+
3000

7198𝑒
]

≃ 0.349528 <
1

𝑒

(73)

and therefore none of the conditions (9), (12), (13), (8), and
(10) are satisfied.
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Example 2. Consider the advanced difference equation

∇𝑥 (𝑛) −
5

100
𝑥 (𝑛 + 1) −

22

100
𝑥 (𝑛 + 2) = 0, 𝑛 ∈ N. (74)

Here𝑚 = 2, 𝜎
1
(𝑛) = 𝑛 + 1, 𝜎

2
(𝑛) = 𝑛 + 2, and

𝜎 (𝑛) = min
1≤𝑖≤2

𝜎
𝑖
(𝑛) = 𝑛 + 1. (75)

It is easy to see that

1

2
(

2

∑

𝑖=1

√𝑝
𝑖
𝑘
𝑖
)

2

=
1

2
(√

5

100
⋅ 1 + √

22

100
⋅ 2)

2

≃ 0.393323969 >
1

𝑒
.

(76)

That is, condition (66) of Corollary 7 is satisfied and therefore
all solutions of (74) oscillate.

However,

[

2

∏

𝑖=1

𝑝
𝑖
]

1/2

(

2

∑

𝑖=1

𝑘
𝑖
) = √

5

100
⋅
22

100
⋅ (1 + 2)

≃ 0.314642654 <
1

𝑒
.

(77)

That is, condition (65) of Corollary 7 is not satisfied.
Observe that

𝛼
1
= lim inf
𝑛→∞

𝑛+1

∑

𝑗=𝑛+1

𝑝
1
=
5

100
= 0.05,

𝛼
2
= lim inf
𝑛→∞

𝑛+2

∑

𝑗=𝑛+1

𝑝
2
= 2 ⋅

22

100
= 0.44.

(78)

Thus

𝛼 = min {𝛼
𝑖
: 1 ≤ 𝑖 ≤ 2} = 0.05 <

1

𝑒
. (79)

Also,

lim sup
𝑛→∞

2

∑

𝑖=1

𝑛+1

∑

𝑗=𝑛

𝑝
𝑖
= lim sup
𝑛→∞

[2 ⋅
5

100
+ 2 ⋅

22

100
] = 0.54 < 1,

0.54 < 1 − (1 − √1 − 𝛼)
2

≃ 0.999358869,

0.54 < 1 −
1 − 𝛼 − √1 − 2𝛼 − 𝛼2

2
≃ 0.998682383

(80)

and therefore none of the conditions (9), (12), and (13) are
satisfied.

At this point, we give an example with general retarded
arguments illustrating the main result of Theorem 3. Simi-
larly, one can construct examples to illustrate Theorems 4–6.

Example 3. Consider the delay difference equation

Δ𝑥 (𝑛) +
𝑐

3𝑛
𝑥 ([0.5𝑛]) +

2𝑐

3𝑛
𝑥 ([0.2𝑛]) = 0, 𝑛 ≥ 10, (81)

with 𝑐 = 17/50.
Here 𝜏

1
(𝑛) = [0.5𝑛] and 𝜏

2
(𝑛) = [0.2𝑛] denote the integer

parts of 0.5𝑛 and 0.2𝑛. Observe that the sequences 𝜏
1
(𝑛) and

𝜏
2
(𝑛) are increasing, lim

𝑛→∞
𝜏
1
(𝑛) = +∞, lim

𝑛→∞
𝜏
2
(𝑛) =

+∞, and

𝜏
1
(𝑛) = [0.5𝑛] ≤ 0.5𝑛 < 𝑛 or 𝜏

1
(𝑛) ≤ 𝑛 − 1,

𝜏
2
(𝑛) = [0.2𝑛] ≤ 0.2𝑛 < 𝑛 or 𝜏

2
(𝑛) ≤ 𝑛 − 1,

∀𝑛 ≥ 10.

(82)

Observe that, for a positive decreasing function 𝑓(𝑥), the
following inequality holds:

∫

𝑏

𝑏−1

𝑓 (𝑥) 𝑑𝑥 ≥ 𝑓 (𝑏) ≥ ∫

𝑏+1

𝑏

𝑓 (𝑥) 𝑑𝑥. (83)

Based on the above inequality, we will show that

lim inf
𝑛→∞

𝑛−1

∑

𝑘=[(𝑎/𝑏)𝑛]

𝑄

𝑘
= 𝑄 ⋅ ln 𝑏

𝑎
(84)

for any 𝑎, 𝑏 ∈ N, 𝑎 < 𝑏, and any real number 𝑄. Indeed,

𝑛−1

∑

𝑘=[(𝑎/𝑏)𝑛]

𝑄

𝑘
≥ 𝑄

𝑛−1

∑

𝑘=[(𝑎/𝑏)𝑛]

∫

𝑘+1

𝑘

𝑑𝑠

𝑠

= 𝑄∫

𝑛

[(𝑎/𝑏)𝑛]

𝑑𝑠

𝑠
= 𝑄 ⋅ ln 𝑛

[(𝑎/𝑏) 𝑛]
,

𝑛−1

∑

𝑘=[(𝑎/𝑏)𝑛]

𝑄

𝑘
≤ 𝑄

𝑛−1

∑

𝑘=[(𝑎/𝑏)𝑛]

∫

𝑘

𝑘−1

𝑑𝑠

𝑠

= 𝑄∫

𝑛−1

[(𝑎/𝑏)𝑛]−1

𝑑𝑠

𝑠
= 𝑄 ⋅ ln 𝑛 − 1

[(𝑎/𝑏) 𝑛] − 1
.

(85)

It is easy to see that

lim
𝑛→∞

𝑄 ⋅ ln 𝑛

[(𝑎/𝑏) 𝑛]
= lim
𝑛→∞

𝑄 ⋅ ln 𝑛 − 1

[(𝑎/𝑏) 𝑛] − 1
= 𝑄 ⋅ ln 𝑏

𝑎
.

(86)

From the above, it follows that

lim inf
𝑛→∞

𝑛−1

∑

𝑘=[(𝑎/𝑏)𝑛]

𝑄

𝑘
= 𝑄 ⋅ ln 𝑏

𝑎
. (87)
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Therefore

𝛼
1
= lim inf
𝑛→∞

𝑛−1

∑

𝑘=[0.5𝑛]

𝑐

3𝑘
=
𝑐

3
ln 2 > 0,

𝛼
2
= lim inf
𝑛→∞

𝑛−1

∑

𝑘=[0.2𝑛]

2𝑐

3𝑘
=
2𝑐

3
ln 5 > 0,

lim inf
𝑛→∞

𝑛−1

∑

𝑘=[0.2𝑛]

𝑐

3𝑘
=
𝑐

3
ln 5,

lim inf
𝑛→∞

𝑛−1

∑

𝑘=[0.5𝑛]

2𝑐

3𝑘
=
2𝑐

3
ln 2.

(88)

Hence

[

[

2

∏

𝑖=1

(𝛼
𝑖
+

2

∑

𝑗=1, 𝑗 ̸=𝑖

lim inf
𝑛→∞

𝑛−1

∑

𝑘=𝜏𝑗(𝑛)

𝑝
𝑖
(𝑘))]

]

1/2

= √[
𝑐

3
ln 2 + 𝑐

3
ln 5] ⋅ [2𝑐

3
ln 2 + 2𝑐

3
ln 5]

=
𝑐√2 ln 10

3
≃ 0.369052667 >

1

𝑒
.

(89)

That is, condition (14) of Theorem 3 is satisfied and therefore
all solutions of (81) oscillate.

Observe, however, that
2

∑

𝑖=1

𝑛−1

∑

𝑗=𝜏(𝑛)

𝑝
𝑖
(𝑗) =

𝑛−1

∑

𝑗=[0.5𝑛]

𝑐

3𝑗
+

𝑛−1

∑

𝑗=[0.5𝑛]

2𝑐

3𝑗

=

𝑛−1

∑

𝑗=[0.5𝑛]

𝑐

𝑗
→ 𝑐 ln 2 ≃ 0.235670041

as 𝑛 → ∞,

2

∑

𝑖=1

𝑛

∑

𝑗=𝜏(𝑛)

𝑝
𝑖
(𝑗) =

𝑛

∑

𝑗=[0.5𝑛]

𝑐

3𝑗
+

𝑛

∑

𝑗=[0.5𝑛]

2𝑐

3𝑗

=

𝑛

∑

𝑗=[0.5𝑛]

𝑐

𝑗
→ 𝑐 ln 2 ≃ 0.235670041

as 𝑛 → ∞.

(90)

Thus

lim inf
𝑛→∞

2

∑

𝑖=1

𝑛−1

∑

𝑗=𝜏(𝑛)

𝑝
𝑖
(𝑗)

= lim sup
𝑛→∞

𝑚

∑

𝑖=1

𝑛

∑

𝑗=𝜏(𝑛)

𝑝
𝑖
(𝑗) ≃ 0.235670041 <

1

𝑒
.

(91)

Also,

𝛼 = min {𝛼
𝑖
: 1 ≤ 𝑖 ≤ 2} = 𝛼

1
=
𝑐

3
ln 2 ≃ 0.07855668,

0.235670041 < 1 − (1 − √1 − 𝛼)
2

≃ 0.998393464,

0.235670041 < 1 −
1 − 𝛼 − √1 − 2𝛼 − 𝛼2

2
≃ 0.996639107

(92)

and therefore none of the conditions (8), (9), (12), and (13) are
satisfied.
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