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We investigate the existence of positive solutions for a nonlinear higher order differential system, where the differential system is
coupled not only in the differential system but also through the boundary conditions. By constructing a special cone and using
the fixed point theorem of cone expansion and compression of norm type, the existence of single and multiple positive solutions is
established. As an application, we give some examples to demonstrate our results.

1. Introduction

In this paper, we consider the following nonlinear higher
order differential system with coupled integral boundary
conditions:

𝑢
(𝑛)
(𝑡) + 𝑎1 (𝑡) 𝑓1 (𝑡, 𝑢 (𝑡) , V (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

V(𝑛) (𝑡) + 𝑎2 (𝑡) 𝑓2 (𝑡, 𝑢 (𝑡) , V (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑢
(𝑘)
(0) = V(𝑘) (0) = 0, 𝑘 = 0, 1, . . . , 𝑛 − 2,

𝑢 (1) = 𝛼 [V] , V (1) = 𝛽 [𝑢] ,

(1)

where 𝑓𝑖 ∈ 𝐶([0, 1] × [0, +∞) × [0, +∞), [0, +∞)), 𝑎𝑖 ∈
𝐶([0, 1], [0, +∞)), 𝑖 = 1, 2, 𝑛 ≥ 3, 𝛼[V], 𝛽[𝑢] are bounded
linear functions on 𝐶[0, 1] given by

𝛼 [V] = ∫
1

0

V (𝑡) 𝑑𝐴 (𝑡) , 𝛽 [𝑢] = ∫

1

0

𝑢 (𝑡) 𝑑𝐵 (𝑡) , (2)

involving Stieltjes integrals. In particular,𝐴, 𝐵 are functionals
of bounded variation with positive measures.

In recent years, there were many works to be done for
a variety of nonlinear higher order ordinary differential sys-
tem. However, most papers only focus on paying attention to
the differential system with uncoupled boundary conditions
(see [1–5] and the reference therein). Coupled boundary
conditions arise in the study of reaction-diffusion equations

and Sturm-Liouville problems (see [6]) and have wide appli-
cations in various fields of sciences and engineering, for
example, the heat equation [7, 8].

In a recent article [9], by applying a nonlinear alternative
of Leray-Schauder type and Guo-Krasnoselskii’s fixed point
theorem on cone, the authors established the existence of
multiple positive solutions of the following system with four-
point coupled boundary conditions:

𝐷
𝛼

0+𝑢 (𝑡) + 𝜆𝑓 (𝑡, 𝑢 (𝑡) , V (𝑡)) = 0, 𝑡 ∈ (0, 1) , 𝜆 > 0,

𝐷
𝛼

0+𝑢 (𝑡) + 𝜆ℎ (𝑡, 𝑢 (𝑡) , V (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑢
(𝑖)
(0) = V(𝑖) (0) = 0, 0 ≤ 𝑖 ≤ 𝑛 − 2,

𝑢 (1) = 𝑎V (𝜉) , V (1) = 𝑏𝑢 (𝜂) ,

(3)

where𝐷𝛼0+𝑢 is the Riemann-Liouville’s fractional derivative.
In [10], by using fixed point index theory, Yang studied

the following system with uncoupled boundary conditions:

𝑢

(𝑡) + 𝑓1 (𝑡, 𝑢 (𝑡) , V (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

V (𝑡) + 𝑓2 (𝑡, 𝑢 (𝑡) , V (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 0, 𝑢 (1) = 𝛽 [𝑢] ,

V (0) = 0, V (1) = 𝛽 [V] ,

(4)

where 𝛽[⋅] are linear functionals defined by Stieltjes integrals.
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The work of above-mentioned papers and wide appli-
cations of coupled boundary value conditions motivate us
to study the system (1). Further, the system is coupled not
only in the differential system but also through the boundary
conditions. By constructing a special cone and using the
fixed point theorem on cone expansion and compression,
the existence of single and multiple positive solutions is
established.

2. Preliminaries

Let 𝐸 = 𝐶[0, 1]]; we write ‖𝑢‖ = max{|𝑢(𝑡)| : 𝑡 ∈ [0, 1]}.
Clearly, (𝐸, ‖ ⋅ ‖) is a Banach space. For each (𝑢, V) ∈ 𝐸×𝐸, we
write ‖(𝑢, V)‖ = ‖𝑢‖ + ‖V‖. Define

𝑃 = {𝑢 ∈ 𝐸 : 𝑢 (𝑡) ≥ 0, 𝑡 ∈ [0, 1]} ,

𝑄 = {(𝑢, V) ∈ 𝑃 × 𝑃 : min
𝑎≤𝑡≤𝑏

(𝑢, V)

def
= min
𝑎≤𝑡≤𝑏

(𝑢 (𝑡) + V (𝑡)) ≥ 𝛾 ‖(𝑢, V)‖} ,

(5)

where [𝑎, 𝑏] is some subset of (0, 1), 0 < 𝛾 ≤ (𝑎
𝑛−1]/𝜌);

consider

𝜌 = max{
𝛼 [𝑡
𝑛−1
]

𝑘

𝛽 [1] + 1,

𝛽 [𝑡
𝑛−1
]

𝑘

𝛼 [1] + 1,

𝛽 [1]

𝑘

,

𝛼 [1]

𝑘

} ,

] = min{
𝛼 [𝑡
𝑛−1
]

𝑘

𝛽 [𝛾𝑛 (𝑡)] ,

𝛽 [𝑡
𝑛−1
]

𝑘

𝛼 [𝛾𝑛 (𝑡)] ,

𝛽 [𝛾𝑛 (𝑡)]

𝑘

,

𝛼 [𝛾𝑛 (𝑡)]

𝑘

} ,

𝛼 [𝑡
𝑛−1
] = ∫

1

0

𝑡
𝑛−1
𝑑𝐴 (𝑡) > 0,

𝛽 [𝑡
𝑛−1
] = ∫

1

0

𝑡
𝑛−1
𝑑𝐵 (𝑡) > 0,

𝑘 = 1 − 𝛼 [𝑡
𝑛−1
] 𝛽 [𝑡
𝑛−1
] > 0,

(6)

where 𝛾𝑛(𝑡) is defined by the following Lemma 2. Clearly, (𝐸×
𝐸, ‖ ⋅ ‖) is a Banach space and 𝑃 is a cone of 𝐸.

Lemma 1. Let 𝑢, V ∈ 𝐸. Then differential system

𝑢
(𝑛)
(𝑡) + 𝑥 (𝑡) = 0, 𝑡 ∈ (0, 1) ,

V(𝑛) (𝑡) + 𝑦 (𝑡) = 0, 𝑡 ∈ (0, 1) ,

𝑢
(𝑘)
(0) = V(𝑘) (0) = 0, 𝑘 = 0, 1, . . . , 𝑛 − 2,

𝑢 (1) = 𝛼 [V] , V (1) = 𝛽 [𝑢] ,

(7)

has the following integral representation

𝑢 (𝑡) = ∫

1

0

𝐹1 (𝑡, 𝑠) 𝑥 (𝑠) d𝑠 + ∫
1

0

𝐺1 (𝑡, 𝑠) 𝑦 (𝑠) d𝑠,

V (𝑡) = ∫
1

0

𝐹2 (𝑡, 𝑠) 𝑦 (𝑠) d𝑠 + ∫
1

0

𝐺2 (𝑡, 𝑠) 𝑥 (𝑠) d𝑠,
(8)

where

𝐹1 (𝑡, 𝑠) =

𝛼 [𝑡
𝑛−1
] 𝑡
𝑛−1

𝑘

∫

1

0

𝐾𝑛 (𝜉, 𝑠) 𝑑𝐵 (𝜉) + 𝐾𝑛 (𝑡, 𝑠) ,

𝐺1 (𝑡, 𝑠) =
𝑡
𝑛−1

𝑘

∫

1

0

𝐾𝑛 (𝜉, 𝑠) 𝑑𝐴 (𝜉) ,

𝐹2 (𝑡, 𝑠) =

𝛽 [𝑡
𝑛−1
] 𝑡
𝑛−1

𝑘

∫

1

0

𝐾𝑛 (𝜉, 𝑠) 𝑑𝐴 (𝜉) + 𝐾𝑛 (𝑡, 𝑠) ,

𝐺2 (𝑡, 𝑠) =
𝑡
𝑛−1

𝑘

∫

1

0

𝐾𝑛 (𝜉, 𝑠) 𝑑𝐵 (𝜉) ,

(9)

𝐾𝑛 (𝑡, 𝑠)

=

1

(𝑛 − 1)!

{
{

{
{

{

𝑡
𝑛−1
(1 − 𝑠)

𝑛−1
− (𝑡 − 𝑠)

𝑛−1
, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑡
𝑛−1
(1 − 𝑠)

𝑛−1
, 0 ≤ t ≤ 𝑠 ≤ 1.

(10)

Proof. By Taylor’s formula, we have

𝑢 (𝑡) = 𝑢 (0) + 𝑡𝑢

(0) + ⋅ ⋅ ⋅ +

𝑡
𝑛−1

(𝑛 − 1)!

𝑢
(𝑛−1)

(0)

+

1

(𝑛 − 1)!

∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1
𝑢
(𝑛)
(𝑠) 𝑑𝑠,

V (𝑡) = V (0) + 𝑡V (0) + ⋅ ⋅ ⋅ +
𝑡
𝑛−1

(𝑛 − 1)!

V(𝑛−1) (0)

+

1

(𝑛 − 1)!

∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1V(𝑛) (𝑠) 𝑑𝑠.

(11)

So, we reduce the equation of problems (7) to the following
equivalent integral equation:

𝑢 (𝑡) = −

1

(𝑛 − 1)!

∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1
𝑥 (𝑠) 𝑑𝑠 +

𝑡
𝑛−1

(𝑛 − 1)!

𝑢
(𝑛−1)

(0) ,

V (𝑡) = −
1

(𝑛 − 1)!

∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1
𝑦 (𝑠) 𝑑𝑠 +

𝑡
𝑛−1

(𝑛 − 1)!

V(𝑛−1) (0) .

(12)

Let 𝑡 = 1; we have

𝑢
(𝑛−1)

(0) = ∫

1

0

(1 − 𝑠)
𝑛−1
𝑥 (𝑠) 𝑑𝑠 + (𝑛 − 1)!𝑢 (1) ,

V(𝑛−1) (0) = ∫
1

0

(1 − 𝑠)
𝑛−1
𝑦 (𝑠) 𝑑𝑠 + (𝑛 − 1)!V (1) .

(13)
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By substituting 𝑢(𝑛−1)(0) and V(𝑛−1)(0) into (12), we have

𝑢 (𝑡) = −

1

(𝑛 − 1)!

∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1
𝑥 (𝑠) 𝑑𝑠

+

1

(𝑛 − 1)!

∫

1

0

𝑡
𝑛−1
(1 − 𝑠)

𝑛−1
𝑥 (𝑠) 𝑑𝑠 + 𝑡

𝑛−1
𝑢 (1)

=

1

(𝑛 − 1)!

∫

𝑡

0

[𝑡
𝑛−1
(1 − 𝑠)

𝑛−1
− (𝑡 − 𝑠)

𝑛−1
] 𝑥 (𝑠) 𝑑𝑠

+

1

(𝑛 − 1)!

∫

1

𝑡

𝑡
𝑛−1
(1 − 𝑠)

𝑛−1
𝑥 (𝑠) 𝑑𝑠 + 𝑡

𝑛−1
𝑢 (1)

= ∫

1

0

𝐾𝑛 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠 + 𝑡
𝑛−1
𝑢 (1) ,

V (𝑡) = ∫
1

0

𝐾𝑛 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 + 𝑡
𝑛−1V (1) ;

(14)
that is,

𝑢 (𝑡) = ∫

1

0

𝐾𝑛 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠 + 𝑡
𝑛−1
𝑢 (1) ,

V (𝑡) = ∫
1

0

𝐾𝑛 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 + 𝑡
𝑛−1V (1) .

(15)

By applying 𝛽 and 𝛼 to (15), combined with the conditions
𝑢(1) = 𝛼[V], V(1) = 𝛽[𝑢], respectively, we obtain

𝑢 (1) = ∫

1

0

V (𝑡) 𝑑𝐴 (𝑡) = ∬
1

0

𝐾𝑛 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 𝑑𝐴 (𝑡)

+ 𝑢 (1) ∫

1

0

𝑡
𝑛−1
𝑑𝐴 (𝑡) ,

V (1) = ∫
1

0

𝑢 (𝑡) 𝑑𝐵 (𝑡) = ∬

1

0

𝐾𝑛 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠 𝑑𝐵 (𝑡)

+ 𝑢 (1) ∫

1

0

𝑡
𝑛−1
𝑑𝐵 (𝑡) .

(16)

Therefore

(

−𝛽 [𝑡
𝑛−1
] 1

1 −𝛼 [𝑡
𝑛−1
]

)(

𝑢 (1)

V (1))

= (

∬

1

0

𝐾𝑛 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠 𝑑𝐵 (𝑡)

∬

1

0

𝐾𝑛 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 𝑑𝐴 (𝑡)

) ,

(17)

and so

(

𝑢 (1)

V (1)) =
1

𝑘

(

𝛼 [𝑡
𝑛−1
] 1

1 𝛽 [𝑡
𝑛−1
]

)

×(

∬

1

0

𝐾𝑛 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠 𝑑𝐵 (𝑡)

∬

1

0

𝐾𝑛 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 𝑑𝐴 (𝑡)

) .

(18)

By substituting (18) into (15), we obtain

𝑢 (𝑡) =

𝛼 [𝑡
𝑛−1
] 𝑡
𝑛−1

𝑘

∬

1

0

𝐾𝑛 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠 𝑑𝐵 (𝑡)

+

𝑡
𝑛−1

𝑘

∬

1

0

𝐾𝑛 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 𝑑𝐴 (𝑡)

+ ∫

1

0

𝐾𝑛 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠,

V (𝑡) =
𝑡
𝑛−1

𝑘

∬

1

0

𝐾𝑛 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠 𝑑𝐵 (𝑡)

+

𝛽 [𝑡
𝑛−1
] 𝑡
𝑛−1

𝑘

∬

1

0

𝐾𝑛 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 𝑑𝐴 (𝑡)

+ ∫

1

0

𝐾𝑛 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠.

(19)

Therefore

𝑢 (𝑡) = ∫

1

0

[

𝛼 [𝑡
𝑛−1
] 𝑡
𝑛−1

𝑘

∫

1

0

𝐾𝑛 (𝜉, 𝑠) 𝑑𝐵 (𝜉)] 𝑥 (𝑠) 𝑑𝑠

+ ∫

1

0

[

𝑡
𝑛−1

𝑘

∫

1

0

𝐾𝑛 (𝜉, 𝑠) 𝑑𝐴 (𝜉)] 𝑦 (𝑠) 𝑑𝑠

+ ∫

1

0

𝐾𝑛 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠,

V (𝑡) = ∫
1

0

[

𝑡
𝑛−1

𝑘

∫

1

0

𝐾𝑛 (𝜉, 𝑠) 𝑑𝐵 (𝜉)] 𝑥 (𝑠) 𝑑𝑠

+ ∫

1

0

[

𝛽 [𝑡
𝑛−1
] 𝑡
𝑛−1

𝑘

∫

1

0

𝐾𝑛 (𝜉, 𝑠) 𝑑𝐴 (𝜉)] 𝑦 (𝑠) 𝑑𝑠

+ ∫

1

0

𝐾𝑛 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠.

(20)

which is equivalent to system (8).

Lemma 2 (see [11]). The continuous function 𝐾𝑛(𝑡, 𝑠) has the
following properties:

(i) 0 ≤ 𝐾𝑛(𝑡, 𝑠) ≤ 𝐾𝑛(𝑠), for all 𝑡, 𝑠 ∈ [0, 1], where𝐾𝑛(𝑠) =
𝑠(1 − 𝑠)

𝑛−1
/(𝑛 − 2)!;

(ii) 𝐾𝑛(𝑡, 𝑠) ≥ 𝛾𝑛(𝑡)𝐾𝑛(𝑠), for all 𝑡, 𝑠 ∈ [0, 1], where 𝛾𝑛(𝑡) =
(1/(𝑛 − 1))min{𝑡𝑛−1, (1 − 𝑡)𝑡𝑛−2}.

Remark 3. By combining (i) and (ii), we can easily see

𝐾𝑛 (𝑠) ≥ 𝐾𝑛 (𝑡, 𝑠) ≥ 𝛾𝑛 (𝑡) 𝐾𝑛 (𝑠) , ∀𝑡, 𝑠 ∈ [0, 1] . (21)

Remark 4. From Remark 3, and (9), for 𝑡, 𝑠 ∈ [0, 1], we have

𝐹𝑖 (𝑡, 𝑠) ≤ 𝜌𝐾𝑛 (𝑠) , 𝐺𝑖 (𝑡, 𝑠) ≤ 𝜌𝐾𝑛 (𝑠) , 𝑖 = 1, 2,

𝐹𝑖 (𝑡, 𝑠) ≥ ]𝑡𝑛−1𝐾𝑛 (𝑠) , 𝐺𝑖 (𝑡, 𝑠) ≥ ]𝑡𝑛−1𝐾𝑛 (𝑠) , 𝑖 = 1, 2.

(22)
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Define the operator 𝑇 : 𝑄 → 𝑃 × 𝑃 by

𝑇 (𝑢, V) = (𝑇1 (𝑢, V) , 𝑇2 (𝑢, V)) , (23)

where operators 𝑇1, 𝑇2 : 𝑄 → 𝑃 are defined by

𝑇1 (𝑢, V) (𝑡) = ∫
1

0

𝐹1 (𝑡, 𝑠) 𝑎1 (𝑠) 𝑓1 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠

+ ∫

1

0

𝐺1 (𝑡, 𝑠) 𝑎2 (𝑠) 𝑓2 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠,

𝑡 ∈ [0, 1] ,

(24)

𝑇2 (𝑢, V) (𝑡) = ∫
1

0

𝐹2 (𝑡, 𝑠) 𝑎2 (𝑠) 𝑓2 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠

+ ∫

1

0

𝐺2 (𝑡, 𝑠) 𝑎1 (𝑠) 𝑓1 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠,

𝑡 ∈ [0, 1] .

(25)

Moreover, by Lemma 1, if (𝑢, V) ∈ 𝑄 is a fixed point of the
operator 𝑇, then (𝑢, V) is a solution of the system (1).

Lemma 5. The operator 𝑇 : 𝑄 → 𝑄 is completely continuous.

Proof. By Remark 4, for 𝑠 ∈ [0, 1], we obtain

min
𝑡∈[𝑎,𝑏]

𝐹𝑖 (𝑡, 𝑠) ≥ ]𝑎𝑛−1𝐾𝑛 (𝑠) ,

min
𝑡∈[𝑎,𝑏]

𝐺𝑖 (𝑡, 𝑠) ≥ ]𝑎𝑛−1𝐾𝑛 (𝑠) , 𝑖 = 1, 2.

(26)

Therefore, By Lemma 2 and Remark 3, for (𝑢, V) ∈ 𝑃, we have





𝑇1 (𝑢, V)





≤ 𝜌∫

1

0

𝐾𝑛 (𝑠) 𝑎1 (𝑠) 𝑓1 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠

+ 𝜌∫

1

0

𝐾𝑛 (𝑠) 𝑎2 (𝑠) 𝑓2 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠.

(27)

Moreover, we have

min
𝑡∈[𝑎,𝑏]

𝑇1 (𝑢, V) (𝑡)

= min
𝑡∈[𝑎,𝑏]

[∫

1

0

𝐹1 (𝑡, 𝑠) 𝑎1 (𝑠) 𝑓1 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠

+∫

1

0

𝐺1 (𝑡, 𝑠) 𝑎2 (𝑠) 𝑓2 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠]

≥ ]𝑎𝑛−1 [∫
1

0

𝐾𝑛 (𝑠) 𝑎1 (𝑠) 𝑓1 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠

+ ∫

1

0

𝐾𝑛 (𝑠) 𝑎2 (𝑠) 𝑓2 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠]

≥ 𝛾




𝑇1 (𝑢, V)





.

(28)

In the same way, we can prove that

min
𝑡∈[𝑎,𝑏]

𝑇2 (𝑢, V) (𝑡) ≥ 𝛾




𝑇2 (𝑢, V)





. (29)

Thus

min
𝑡∈[𝑎,𝑏]

𝑇 (𝑢, V) = min
𝑡∈[𝑎,𝑏]

(𝑇1 (𝑢, V) (𝑡) + 𝑇2 (𝑢, V) (𝑡))

≥ 𝛾




𝑇1 (𝑢, V)





+ 𝛾





𝑇2 (𝑢, V)





= 𝛾 ‖𝑇 (𝑢, V)‖ .

(30)

Then operator 𝑇 : 𝑄 → 𝑄 is continuous since 𝐾𝑛(𝑡, 𝑠),
𝑓1(𝑡, 𝑢, V), 𝑓2(𝑡, 𝑢, V), 𝑎1(𝑡), 𝑎2(𝑡) are continuous. Standard
applications of Arzelà-Ascoli theorem; it is easy to prove that
operator 𝑇 : 𝑄 → 𝑄 is completely continuous.

Lemma 6 (see [12]). Suppose 𝐸 is a real Banach space and 𝑃
is cone in 𝐸, and letΩ1,Ω2 be bounded open sets in 𝐸 such that
𝜃 ∈ Ω1, Ω1 ⊂ Ω2. Let operator 𝑇 : 𝑃 ∩ (Ω2 \ Ω1) → 𝑃 be
completely continuous. Suppose that one of the following two
conditions holds:

(i) ‖𝑇𝑢‖ ≤ ‖𝑢‖, for all 𝑢 ∈ 𝑃 ∩ 𝜕Ω1; ‖𝑇𝑢‖ ≥ ‖𝑢‖, for all
𝑢 ∈ 𝑃 ∩ 𝜕Ω2,

(ii) ‖𝑇𝑢‖ ≥ ‖𝑢‖, for all 𝑢 ∈ 𝑃 ∩ 𝜕Ω1; ‖𝑇𝑢‖ ≤ ‖𝑢‖, for all
𝑢 ∈ 𝑃 ∩ 𝜕Ω2,

then operator 𝑇 has at least one fixed point in 𝑃 ∩ (Ω2 \ Ω1).

3. Main Results

In this section, we show the existence of positive solutions
to the system (1). For convenience, we first introduce the
following notations:

𝑓1𝜆 = lim inf
𝑢+V→𝜆

min
𝑡∈[0,1]

𝑓1 (𝑡, 𝑢, V)
𝑢 + V

,

𝑓
1𝜆
= lim sup
𝑢+V→𝜆

max
𝑡∈[0,1]

𝑓1 (𝑡, 𝑢, V)
𝑢 + V

,

𝑓2𝜆 = lim inf
𝑢+V→𝜆

min
𝑡∈[0,1]

𝑓2 (𝑡, 𝑢, V)
𝑢 + V

,

𝑓
2𝜆
= lim sup
𝑢+V→𝜆

max
𝑡∈[0,1]

𝑓2 (𝑡, 𝑢, V)
𝑢 + V

,

(31)

where 𝜆 = 0 or ∞. Let 𝑟 = min{𝑟1, 𝑟2}, 𝑅 = max{𝑅1, 𝑅2},
where

𝑟𝑖 = (4𝜌∫

1

0

𝑎𝑖(𝑠)𝐾𝑛(𝑠)𝑑𝑠)

−1

,

𝑅𝑖 = (4𝛾]𝑎
𝑛−1
∫

𝑏

𝑎

𝑎𝑖 (𝑠) 𝐾𝑛 (𝑠) 𝑑𝑠)

−1

,

𝑖 = 1, 2.

(32)

Theorem7. If𝑓10, 𝑓20 ∈ [0, 𝑟) and𝑓1∞, 𝑓2∞ ∈ (𝑅, +∞], then
system (1) has at least one positive solution.
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Proof. At first, it follows from the assumption𝑓10, 𝑓20 ∈ [0, 𝑟)
that there exists 𝜇1 > 0 and a sufficiently small 𝜀1 > 0 such
that

𝑓1 (𝑡, 𝑢, V) ≤ (𝑓
10
+ 𝜀1) (𝑢 + V) , ∀𝑡 ∈ [0, 1] , 𝑢 + V ≤ 𝜇1,

𝑓2 (𝑡, 𝑢, V) ≤ (𝑓
20
+ 𝜀1) (𝑢 + V) , ∀𝑡 ∈ [0, 1] , 𝑢 + V ≤ 𝜇1,

(33)

where 𝜀1 satisfies 𝑓
10
+ 𝜀1 ≤ 𝑟 and 𝑓

20
+ 𝜀1 ≤ 𝑟.

Set Ω1 = {(𝑢, V) ∈ 𝑃 × 𝑃 : ‖(𝑢, V)‖ < 𝜇1}. For any (𝑢, V) ∈
𝜕Ω1 ∩ 𝑄, by (24), (25), and (33), we have





𝑇1 (𝑢, V)





≤ 𝜌∫

1

0

𝐾𝑛 (𝑠) 𝑎1 (𝑠) 𝑓1 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠

+ 𝜌∫

1

0

𝐾𝑛 (𝑠) 𝑎2 (𝑠) 𝑓2 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠

≤ 𝜌 [(𝑓
10
+ 𝜀1)∫

1

0

𝐾𝑛 (𝑠) 𝑎1 (𝑠) 𝑑𝑠

+ (𝑓
20
+ 𝜀1)∫

1

0

𝐾𝑛 (𝑠) 𝑎2 (𝑠) 𝑑𝑠] ⋅ ‖(𝑢, V)‖

≤ 𝜌 [

1

4𝜌

+

1

4𝜌

] ‖(𝑢, V)‖ ≤
1

2

‖(𝑢, V)‖ ,





𝑇2 (𝑢, V)





≤ 𝜌∫

1

0

𝐾𝑛 (𝑠) 𝑎2 (𝑠) 𝑓2 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠

+ 𝜌∫

1

0

𝐾𝑛 (𝑠) 𝑎1 (𝑠) 𝑓1 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠

≤ 𝜌 [(𝑓
20
+ 𝜀1)∫

1

0

𝐾𝑛 (𝑠) 𝑎2 (𝑠) 𝑑𝑠

+ (𝑓
10
+ 𝜀1)∫

1

0

𝐾𝑛 (𝑠) 𝑎1 (𝑠) 𝑑𝑠] ⋅ ‖(𝑢, V)‖

≤ 𝜌 [

1

4𝜌

+

1

4𝜌

] ‖(𝑢, V)‖ ≤
1

2

‖(𝑢, V)‖ .

(34)

Therefore

‖𝑇 (𝑢, V)‖ = 

𝑇1 (𝑢, V)





+




𝑇2 (𝑢, V)





≤ ‖(𝑢, V)‖ ,

for (𝑢, V) ∈ 𝜕Ω1 ∩ 𝑄.
(35)

Further, it follows from the the assumption 𝑓1∞, 𝑓2∞ ∈

(𝑅, +∞] that there exists 𝑙 > 𝜇1 > 0 and a sufficiently small
𝜀2 > 0 such that

𝑓1 (𝑡, 𝑢, V) ≥ (𝑓1∞ − 𝜀2) (𝑢 + V) , ∀𝑡 ∈ [0, 1] , 𝑢 + V ≥ 𝑙,

𝑓2 (𝑡, 𝑢, V) ≥ (𝑓2∞ − 𝜀2) (𝑢 + V) , ∀𝑡 ∈ [0, 1] , 𝑢 + V ≥ 𝑙,
(36)

where 𝜀2 satisfies 𝑓1∞ − 𝜀2 ≥ 𝑅 and 𝑓2∞ − 𝜀2 ≥ 𝑅. Let 𝜇2 =
max{2𝜇1, 𝑙/𝛾}}; setΩ2 = {(𝑢, V) ∈ 𝑃 × 𝑃 : ‖(𝑢, V)‖ < 𝜇2}. Then

(𝑢, V) ∈ 𝜕Ω2 ∩ 𝑄 implies that min𝑡∈[𝑎,𝑏](𝑢, V) ≥ 𝛾‖(𝑢, V)‖ =
𝛾𝜇2 ≥ 𝑙. So, by (24), (25), and (36), we have

min
𝑡∈[𝑎,𝑏]

𝑇1 (𝑢, V) (𝑡)

≥ ]𝑎𝑛−1 [∫
𝑏

𝑎

𝐾𝑛 (𝑠) 𝑎1 (𝑠) 𝑓1 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠

+∫

𝑏

𝑎

𝐾𝑛 (𝑠) 𝑎2 (𝑠) 𝑓2 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠]

≥ 𝛾]𝑎𝑛−1 [(𝑓1∞ − 𝜀2) ∫
𝑏

𝑎

𝐾𝑛 (𝑠) 𝑎1 (𝑠) 𝑑𝑠

+ (𝑓2∞ − 𝜀2) ∫

𝑏

𝑎

𝐾𝑛 (𝑠) 𝑎2 (𝑠) 𝑑𝑠] ⋅ ‖(𝑢, V)‖

≥ 𝛾]𝑎𝑛−1 [
1

4𝛾]𝑎𝑛−1
+

1

4𝛾]𝑎𝑛−1
] ‖(𝑢, V)‖

≥

1

2

‖(𝑢, V)‖ ,

min
𝑡∈[𝑎,𝑏]

𝑇2 (𝑢, V) (𝑡)

≥ ]𝑎𝑛−1 [∫
𝑏

𝑎

𝐾𝑛 (𝑠) 𝑎2 (𝑠) 𝑓2 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠

+∫

𝑏

𝑎

𝐾𝑛 (𝑠) 𝑎1 (𝑠) 𝑓1 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠]

≥ 𝛾]𝑎𝑛−1 [(𝑓2∞ − 𝜀2) ∫
𝑏

𝑎

𝐾𝑛 (𝑠) 𝑎2 (𝑠) 𝑑𝑠

+ (𝑓1∞ − 𝜀1) ∫

𝑏

𝑎

𝐾𝑛 (𝑠) 𝑎1 (𝑠) 𝑑𝑠] ⋅ ‖(𝑢, V)‖

≥

1

2

‖(𝑢, V)‖ .
(37)

Therefore,

‖𝑇 (𝑢, V)‖ = 

𝑇1 (𝑢, V)





+




𝑇2 (𝑢, V)






≥ min
𝑡∈[𝑎,𝑏]

𝑇1 (𝑢, V) (𝑡) + min
𝑡∈[𝑎,𝑏]

𝑇2 (𝑢, V) (𝑡)

≥ ‖ (𝑢, V) ‖, (𝑢, V) ∈ 𝜕Ω2 ∩ 𝑄.

(38)

By applying Lemmas 5 and 6 to (35) and (38), it follows that
operator 𝑇 has at least one fixed point (𝑢, V) in𝑄∩ (Ω2 \ Ω1).
This means that system (1) has at least one positive solution
(𝑢, V).

Using similar arguments as those used in the proof of
Theorem 7, we can also obtain the following result.

Theorem8. If𝑓1∞, 𝑓2∞ ∈ [0, 𝑟) and𝑓10, 𝑓20 ∈ (𝑅, +∞], then
system (1) has at least one positive solution.
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Next we discuss the multiplicity of positive solutions for
system (1).

Theorem 9. If 𝑓10, 𝑓2∞ ∈ (4𝑅, +∞], and there exist an 𝑚 >

0 such that 𝑓1(𝑡, 𝑢, V), 𝑓2(𝑡, 𝑢, V) ∈ (0,𝑚𝑟), for for all 𝑡 ∈
[0, 1], (𝑢, V) ∈ 𝜕Ω3 ∩ 𝑄, whereΩ3 = {(𝑢, V) ∈ 𝑃 × 𝑃, ‖(𝑢, V)‖ <
𝑚}, then system (1) has at least two positive solutions.

Proof. At first, it follows from the assumption 𝑓10 ∈

(4𝑅, +∞], +∞] that there exists an 0 < 𝑚1 < 𝑚 and a
sufficiently small 𝜀4 > 0 such that

𝑓1 (𝑡, 𝑢, V) ≥ (𝑓10 − 𝜀4) (𝑢 + V) , ∀𝑡 ∈ [0, 1] , 𝑢 + V ≤ 𝑚1,
(39)

where 𝜀4 satisfies 𝑓10 − 𝜀4 ≥ 4𝑅.
Set Ω4 = {(𝑢, V) ∈ 𝑃 × 𝑃 : ‖(𝑢, V)‖ < 𝑚1} and (𝑢, V) ∈

𝜕Ω4 ∩ 𝑄. By (24), we have

‖𝑇 (𝑢, V)‖ ≥ min
𝑡∈[𝑎,𝑏]

𝑇 (𝑢, V) (𝑡) ≥ min
𝑡∈[𝑎,𝑏]

𝑇1 (𝑢, V) (𝑡)

≥ ]𝑎𝑛−1 ∫
𝑏

𝑎

𝐾𝑛 (𝑠) 𝑎1 (𝑠) 𝑓1 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠

≥ 𝛾]𝑎𝑛−1 (𝑓10 − 𝜀4) ∫
𝑏

𝑎

𝐾𝑛 (𝑠) 𝑎1 (𝑠) 𝑑𝑠 ⋅ ‖(𝑢, V)‖

≥ ‖(𝑢, V)‖ .
(40)

Further, by using 𝑓2∞ ∈ (4𝑅, +∞], there exists 𝑚2 > 𝑚 > 0

and a sufficiently small 𝜀5 > 0 such that

𝑓2 (𝑡, 𝑢, V) ≥ (𝑓2∞ − 𝜀5) (𝑢 + V) , ∀𝑡 ∈ [0, 1] , 𝑢 + V ≥ 𝑚2,
(41)

where 𝜀5 satisfies 𝑓2∞ − 𝜀5 ≥ 4𝑅. Set Ω5 = {(𝑢, V) ∈ 𝑃 × 𝑃 :
‖(𝑢, V)‖ < 𝑚3}, where 𝑚3 > 𝑚2. For all (𝑢, V) ∈ 𝜕Ω5 ∩ 𝑄, by
(24), we have

‖𝑇 (𝑢, V)‖ ≥ min
𝑡∈[𝑎,𝑏]

𝑇 (𝑢, V) (𝑡) ≥ min
𝑡∈[𝑎,𝑏]

𝑇1 (𝑢, V) (𝑡)

≥ ]𝑎𝑛−1 ∫
𝑏

𝑎

𝐾𝑛 (𝑠) 𝑎2 (𝑠) 𝑓2 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠

≥ 𝛾]𝑎𝑛−1 (𝑓2∞ − 𝜀5) ∫
𝑏

𝑎

𝐾𝑛 (𝑠) 𝑎2 (𝑠) 𝑑𝑠 ⋅ ‖(𝑢, V)‖

≥ ‖(𝑢, V)‖ .
(42)

By assumption, for for all (𝑢, V) ∈ 𝜕Ω3 ∩ 𝑄, we have

‖𝑇 (𝑢, V)‖ = 

𝑇1 (𝑢, V)





+




𝑇2 (𝑢, V)






≤ 2𝑟𝑚𝜌 [∫

1

0

𝐾𝑛 (𝑠) 𝑎1 (𝑠) 𝑑𝑠 + ∫

1

0

𝐾𝑛 (𝑠) 𝑎2 (𝑠) 𝑑𝑠]

≤ 𝑚 = ‖(𝑢, V)‖ .
(43)

From (40)–(43), it is easy to know that two conditions of
Lemma 6 are both satisfied. By applying Lemmas 5 and 6
to (40)–(43), it follows that operator 𝑇 has at least a fixed
point (𝑢1, V1) ∈ 𝑄 ∩ (Ω3 \ Ω4) and a fixed point (𝑢2, V2) ∈
𝑄 ∩ (Ω5 \ Ω3). Both are positive solutions of system (1) and
satisfy 𝑚1 ≤ ‖(𝑢1, V1)‖ < 𝑚 < ‖(𝑢2, V2)‖ ≤ 𝑚3. This means
system (1) has at least two positive solutions.

Similarly, we have the following results.

Theorem 10. If 𝑓10, 𝑓1∞ ∈ (4𝑅, +∞], and there exist an
𝑚 > 0 such that 𝑓1(𝑡, 𝑢, V), 𝑓2(𝑡, 𝑢, V) ∈ (0,𝑚𝑟), for for all 𝑡 ∈
[0, 1], (𝑢, V) ∈ 𝜕Ω6 ∩ 𝑄, whereΩ6 = {(𝑢, V) ∈ 𝑃 × 𝑃, ‖(𝑢, V)‖ <
𝑚}, then system (1) has at least two positive solutions.

Theorem 11. If 𝑓20, 𝑓1∞ ∈ (4𝑅, +∞], and there exist an
𝑚 > 0 such that 𝑓1(𝑡, 𝑢, V), 𝑓2(𝑡, 𝑢, V) ∈ (0,𝑚𝑟), for all 𝑡 ∈
[0, 1], (𝑢, V) ∈ 𝜕Ω7 ∩ 𝑄, whereΩ7 = {(𝑢, V) ∈ 𝑃 × 𝑃, ‖(𝑢, V)‖ <
𝑚}. Then system (1) has at least two positive solutions.

Theorem 12. If 𝑓20, 𝑓2∞ ∈ (4𝑅, +∞], and there exist an
𝑚 > 0 such that 𝑓1(𝑡, 𝑢, V), 𝑓2(𝑡, 𝑢, V) ∈ (0,𝑚𝑟), for all 𝑡 ∈
[0, 1], (𝑢, V) ∈ 𝜕Ω8 ∩ 𝑄, whereΩ8 = {(𝑢, V) ∈ 𝑃 × 𝑃, ‖(𝑢, V)‖ <
𝑚}. Then system (1) has at least two positive solutions.

4. Some Examples

In order to illustrate our result, we consider some examples.

Example 1. Consider the following system

− 𝑢
(3)
(𝑡) =

1 + 𝑡

8

[(𝑢
2
+ V2) + 𝜆 sin (𝑢 + V)] , 𝑡 ∈ (0, 1) ,

− V(3) (𝑡) =
1

4

[(𝑢
2
+ V2)
2
+ 𝑒
−(𝑢
2
+V2)
] , 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢

(0) = 0, 𝑢 (1) = 2∫

1

0

V (𝑡) 𝑑𝑡,

V (0) = V (0) = 0, V (1) = ∫
1

0

𝑢 (𝑡) 𝑑𝑡,

(44)

where 𝑛 = 3, 𝑎1(𝑡) = (1 + 𝑡)/8, 𝑎2(𝑡) = 1/4, 𝑓1(𝑡, 𝑢, V) =
(𝑢
2
+ V2) + 𝜆 sin(𝑢 + V), 𝑓2(𝑡, 𝑢, V) = (𝑢

2
+ V2)2 + 𝑒−(𝑢

2
+V2),

𝐴(𝑡) = 2𝑡,𝐵(𝑡) = 𝑡,𝐾𝑛(𝑠) = 𝑠(1−𝑠)
2, 𝛾𝑛(𝑡) = (1/2)min{𝑡2, (1−

𝑡)𝑡}. By direct calculation, we can obtain that 𝜌 = 18/7, ] =
3/56, 𝑟 = 14/15. Choose 𝜆 ∈ [0, 14/15)); then conditions
of Theorem 7 are satisfied. This means that system (44) has
at least one position solution.

Example 2. Consider the following system

− 𝑢
(3)
(𝑡) =

1 + 𝑡

16

(𝑢
2
+ V2)
(1/3)

, 𝑡 ∈ (0, 1) ,

− V(3) (𝑡) =
1

32

(𝑢
2
+ V2) , 𝑡 ∈ (0, 1) ,
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𝑢 (0) = 𝑢

(0) = 0, 𝑢 (1) = 2∫

1

0

V (𝑡) 𝑑𝑡,

V (0) = V (0) = 0, V (1) = ∫
1

0

𝑢 (𝑡) 𝑑𝑡,

(45)

where 𝑛 = 3, 𝑎1(𝑡) = (1 + 𝑡)/16, 𝑎2(𝑡) = 1/32, 𝑓1(𝑡, 𝑢, V) =
(𝑢
2
+ V2)1/3, 𝑓2(𝑡, 𝑢, V) = (𝑢

2
+ V2), 𝐴(𝑡) = 2𝑡, 𝐵(𝑡) =

𝑡, 𝐾𝑛(𝑠) = 𝑠(1 − 𝑠)
2, 𝛾𝑛(𝑡) = (1/2)min{𝑡2, (1 − 𝑡)𝑡}. By direct

calculation, we can obtain that 𝜌 = (18/7), 𝜐 = (3/56), \, 𝑟 =
(112/15). Choose 𝑚 = 2; then conditions of Theorem 9 are
satisfied.Thismeans that system (45) has at least two position
solutions.
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