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In this paper, the peristaltic flow of a Jeffrey fluid in an asymmetric channel has been investigated.Mathematical modeling is carried
out by utilizing longwavelength and lowReynolds number assumptions. Closed form expressions for the pressure gradient, pressure
rise, stream function, axial velocity, and shear stress on the channel walls have been computed numerically. Effects of the Hartmann
number, the ratio of relaxation to retardation times, time-mean flow, the phase angle and the gravity field on the pressure gradient,
pressure rise, streamline, axial velocity, and shear stress are discussed in detail and shown graphically. The results indicate that
the effect of Hartmann number, ratio of relaxation to retardation times, time-mean flow, phase angle, and gravity field are very
pronounced in the peristaltic transport phenomena. Comparison was made with the results obtained in the presence and absence
of magnetic field and gravity field.

1. Introduction

Peristaltic pumping has been the object of scientific and
engineering research in recent years. The word peristaltic
comes from a Greek word “Peristaltikos” which means clasp-
ing and compressing. The peristaltic transport is travelling
contraction wave along a tube-like structure, and it results
physiologically from neuron-muscular properties of any
tubular smooth muscle. Peristaltic motion of blood (or other
fluid) in animal or human bodies have been considered by
many authors. It is an important mechanism for transporting
blood, where the cross section of the artery is contracted
or expanded periodically by the propagation of progressive
wave. It plays an indispensable role in transporting many
physiological fluids in the body in various situations such as
urine transport from the kidney to the bladder through the
ureter, transport of spermatozoa in the ducts efferents of the
male reproductive tract, and the movement of the ovum in
the flipping tubes.

A variety of complex theological fluids can easily be
transported from one place to another with a special type

of pumping known as peristaltic pumping. This pump-
ing principle is called peristalsis. The mechanism includes
involuntary periodic contraction followed by relaxation or
expansion of the ducts that the fluidsmove through; this leads
to the rise of pressure gradient that eventually pushes the fluid
forward.

The study of the peristaltic transport of a fluid in the
presence of an external magnetic field and rotation is of great
importance with regard to certain problems involving the
movement of conductive physiological fluids, for example,
blood and saline water. Pandey and Chaube [1] investigated
an analytical study of the MHD flow of a micropolar fluid
through a porous medium induced by sinusoidal peristaltic
waves traveling down the channel wall. The magnetohydro-
dynamic flow of a micropolar fluid in a circular cylindrical
tube has been investigated by Wang et al. [2]. Nadeem and
Akram [3] studied the analytical and numerical treatment
of peristaltic flows in viscous and non-Newtonian fluids.
Vajravelu et al. [4] studied the influence of heat transfer on
peristaltic transport of a Jeffrey fluid in a vertical porous
stratum. Hayat et al. [5] discussed the influence of compliant
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wall properties and heat transfer on the peristaltic flow of an
incompressible viscous fluid in a curved channel. Bhargava
et al. [6] have studied finite element study of nonlinear two-
dimensional deoxygenated biomagnetic micropolar flow. Ali
et al. [7] discussed the peristaltic motion of a non-Newtonian
fluid in a channel having compliant boundaries. Abd-Alla
et al. [8] studied the effects of rotation and magnetic field
on nonlinear peristaltic flow of second-order fluid in an
asymmetric channel through a porous medium. Hayat et al.
[9] analyzed the effect of an induced magnetic field on the
peristaltic flow of an incompressible Carreau fluid in an
asymmetric channel. Pandey et al. [10] were concerned with
the theoretical study of two-dimensional peristaltic flow of
power-law fluids in three layers with different viscosities.
Jiménez-Lozano and Sen [11] investigated the streamline
patterns and their local and global bifurcations in a two-
dimensional planar and axisymmetric peristaltic flow for an
incompressible Newtonian fluid. Hayat et al. [12] analyzed
the effect of an induced magnetic field on the peristaltic
flow of an incompressible Carreau fluid in an asymmetric
channel. Srinivas and Kothandapani [13] investigated the
effects of heat and mass transfer on peristaltic transport in
a porous space with compliant walls. Gad [14] discussed
the effect of hall currents on the interaction of pulsatile
and peristaltic transport induced flows of a particle fluid
suspension. Abd-Alla et al. [15] investigated the peristaltic
flow in a tubewith an endoscope subjected to amagnetic field.
Hayat and Noreen [16] discussed the influence of an induced
magnetic field on the peristaltic flow of an incompressible
fourth grade fluid in a symmetric channel with heat transfer.
Nadeem and Akbar [17] investigated the peristaltic flow of an
incompressible MHD Newtonian fluid in a vertical annulus.
Nadeem and Akbar [18] investigated the deals with the
peristaltic motion of an incompressible non-Newtonian fluid
in a nonuniform tube for long wavelength. Nadeem et al. [19]
studied the concentrates on the heat transfer characteristics
and endoscope effects for the peristaltic flow of a third-
order fluid. Srinivas et al. [20] studied the effects of both
wall slip conditions and heat transfer on the peristaltic flow
of MHD Newtonian fluid in a porous channel with elastic
wall properties. Abd-Alla et al. [21] investigated the effect of
the rotation, magnetic field, and initial stress on peristaltic
motion of micropolar fluid. Mahmoud et al. [22] discussed
the effect of the rotation on wave motion through cylindrical
bore in a micropolar porous medium.The dynamic behavior
of a wet long bone that has been modeled as a piezoelectric
hollow cylinder of crystal class 6 is investigated by Abd-Alla
et al. [23]. Akram and Nadeem [24] discussed the peristaltic
motion of a two-dimensional Jeffrey fluid in an asymmetric
channel under the effects of the induced magnetic field and
heat transfer.

Recently, Rathod and Mahadev [25] investigated the
effect of heat transfer and magnetic field on the peristaltic
transport of Jeffrey fluid in an inclined channel taking slip
condition into account. S. N. Reddy and G. V. Reddy [26]
studied the effect of sleep on the peristaltic flow of a Jeffrey
fluid through a porous medium in an asymmetric channel
under the assumptions of long wavelength and low Reynolds
number.

The aim of this paper is to study the effect of magnetic
field and gravity field on peristaltic motion of Jeffrey type
and is electrically conducting in asymmetric channel. Here
the governing equations are nonlinear in nature; we used
infinitely long wavelength assumption to obtain linearized
system of coupled differential equations which are then
solved analytically. Results have been discussed for pres-
sure gradient, pressure rise, streamline and axial velocity
to observe the Hartmann number, the ratio of relaxation
to retardation times, time-mean flow, the phase angle, and
the gravity field effect. The numerical result displayed by
figures and the physical meaning is explained.The results and
discussions presented in this study may be helpful to further
understand MHD peristaltic motion for non-Newtonian
fluids in an asymmetric channel.

2. Formulation of the Problem

Let us consider the peristaltic transport of an incompressible
viscous fluid in a two-dimensional channel of width 𝑑

1
+ 𝑑
2
.

The channel walls are inclined at angles 𝛼.The flow is induced
by sinusoidal wave trains propagating with constant speed 𝑐

along the channel walls.
The geometry of the wall surfaces is

ℎ
1
(𝑋, ̄𝑡) = 𝑑

1
+ 𝑎
1
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(1)

where 𝑎
1
and 𝑏
1
are the types of amplitude of the waves, 𝜆 is

thewavelength, 𝑐 is thewave speed,𝜙 (0 ≤ 𝜙 ≤ 𝜋) is the phase
difference, 𝜙 = 0 corresponds to symmetric channel with
waves out of phase, and 𝜙 = 𝜋 indicates that the waves are
in phase, and further 𝑎
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1
, 𝑑
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TheCauchy (𝑇) and extra (𝑆) stress tensors take the following
form

�̄� = −�̄� ̄𝐼 + ̄𝑆,

̄𝑆 =
𝜇

1 + 𝜆
1

( ̄�̇� + 𝜆
2
̄�̈�) ,

(3)

where 𝑝 is the pressure, 𝐼 is the identity tensor, 𝜆
1
is the ratio

of relaxation to retardation times, 𝜆
2
is the retardation time,

and ̇𝛾 is the shear rate.
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In laboratory frame, the following set of pertinent field
equations governing the flow are
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and the continuity equation takes the form

𝜕�̄�

𝜕�̄�
+
𝜕�̄�

𝜕�̄�
= 0, (5)

where𝑈 and𝑉 are the velocity components in the laboratory
frame (𝑋, 𝑌), 𝜌 is the density, 𝑔 is the earth gravity accel-
eration, 𝐵

0
is the magnetic induction, and 𝜎 is the electrical

conductivity of the fluid.
The flow is inherently unsteady in the laboratory frame

(𝑋,𝑌). However, the flow becomes steady in a wave frame
(𝑥, 𝑦) moving away from the laboratory frame with speed
𝑐 in the direction of propagation of the wave. Taking 𝑢

and V the velocity components in 𝑥 and 𝑦 directions, the
transformation from the laboratory frame to the wave frame
is given by

𝑥 = 𝑋 − 𝑐𝑡, 𝑦 = 𝑌, 𝑢 = 𝑈 − 𝑐,

V = 𝑉, 𝑃 (𝑥) = 𝑃 (𝑋, 𝑡) ,

(6)

where 𝑢 and V are the velocity components in the wave frame
(𝑥, 𝑦), 𝑝 and 𝑃 are pressure in wave and fixed frame of
references, respectively.

The appropriate nondimensional variables for the flow are
defined as
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and the stream function is

𝑢 =
𝜕𝜓
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, V = −𝛿
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. (7b)

Using (6), (7a), and (7b) into (3)-(4) and eliminating pressure
by cross differentiation, we get

𝛿Re [(
𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
−
𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
)∇
2
𝜓] = [(

𝜕
2

𝜕y2
− 𝛿
2 𝜕
2

𝜕𝑥2
) 𝑠
𝑥𝑦
]

+ 𝛿[
𝜕
2

𝜕𝑥𝜕𝑦
(𝑠
𝑥𝑥

− 𝑠
𝑥𝑦
)]

+𝑀
2 𝜕
2
𝜓

𝜕𝑦2
+ Re

𝑔𝑑
1

𝑐2
sin𝛼

(8)
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(11)

Using the long wavelength approximation and neglecting the
wave number 𝛿 along with low Reynolds number in our
analysis, the field equations (8) and (10) now give
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The boundary conditions for the stream functions in thewave
frame are
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where 𝑞 is the flux in the wave frame and 𝑎, 𝑏, 𝜙, and 𝑑 satisfy
the relation
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Figure 2: Variation of 𝑑𝑝/𝑑𝑥 with influence of 𝑏 and 𝜙 respect to 𝑥.

3. Solution of the Problem

The solution of (12) satisfying the corresponding boundary
conditions (13) is
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The flux at any axial station in the fixed frame is
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The time-mean flow over a period 𝑇 at a fixed position 𝑋 is
defined as
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The pressure gradient is obtained from the dimensionless
momentum equation for the axial velocity as
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The nondimensional expression for the pressure rise per
wavelength Δ𝑝
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The nondimensional expression of the shear stress at the
upper wall of the channel is reduced to
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4. Numerical Results and Discussion

In order to gain physical insight into the pressure gradient,
pressure rise Δ𝑝

𝜆
, streamline 𝜓, velocity 𝑢, and shear stress

𝑆
𝑥𝑦

have been discussed by assigning numerical values
to the parameter encountered in the problem in which
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the numerical results are displayed with the graphic illustra-
tions. The variations are shown in Figures 1–7, respectively.

Figures 1, 2, and 3 show the variations of the axial
pressure gradient 𝑑𝑝/𝑑𝑥 with respect to the axial 𝑥 which
it has oscillatory behavior in the whole range of the 𝑥-axis
for different values of the Hartmann number 𝑀, the ratio
of relaxation to retardation times 𝜆

1
, time-mean flow Θ,

the phase angle 𝜙, gravity field 𝑔, and the nondimensional
amplitude of wave 𝑏 in asymmetric channel. In both figures,
it is clear that the pressure gradient has a nonzero value only
in a bounded region of space. The effect of the Hartmann
number, the ratio of relaxation to retardation times, time-
mean flow, rotation, gravity field, and the nondimensional

amplitude of wave decreases and increases gradually. It is
observed that the pressure gradient increases with increasing
of the Hartmann number, gravity field, the phase angle,
and the nondimensional amplitude of the wave, while it
decreases with increasing of the time-mean flow and the ratio
of relaxation to retardation times. It is noticed that the axial
pressure gradient when compared to the case of asymmetric
and symmetric channel takes a large values respect to the
small values of 𝑥 and small values with an increasing of 𝑥.
Moreover, it can be noticed that, on the one hand, in the
wider part of the channel 𝑥 ∈ [0, 2] and [3, 5, 6], the pressure
gradient is relatively small; that is, the flow can easily pass
without imposition of a large pressure gradient. On the other
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hand, in a narrow part of the channel 𝑥 ∈ [2, 3.5], a much
pressure gradient is required to maintain the flux to pass it
especially near 𝑥 = 2.7.

Figure 4 shows the variations of the pressure riseΔ𝑝
𝜆
with

respect to the time-mean flow Θ for different values of the
Hartmann number 𝑀, the ratio of relaxation to retardation
times 𝜆

1
, the phase difference 𝜙, and the nondimensional

amplitude of wave 𝑏. In both figures, it is clear that the
pressure rise has a nonzero value only in a bounded region
of space. It is observed that the pressure rise increases with
increasing of theHartmann number and the nondimensional
amplitude of the wave, while it decreases with increasing

the time-mean flow, the ratio of relaxation to retardation
times, and the phase difference. The graph is sectored so that
the upper right-hand quadrant (I) denotes the region of the
peristaltic pumping (Θ > 0, Δ𝑝

𝜆
> 0). Quadrant (II) is

designated as an augmented flow when Θ > 0, Δ𝑝
𝜆

< 0.
Quadrant (IV) such that Θ < 0, Δ𝑝

𝜆
> 0 is called retrograde

or backward pumping.
Figure 5 shows the variations of the streamlines 𝜓 with

respect to the axial 𝑥 which has oscillatory behavior in
the whole range of the 𝑥-axis for different values of the
Hartmann number 𝑀, the ratio of relaxation to retardation
times 𝜆

1
, time-mean flow Θ, the phase difference 𝜙, and
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the nondimensional amplitude of wave 𝑏 in asymmetric
channel. In both figures, it is clear that the streamlines have
a nonzero value only in a bounded region of space. The
effect of the Hartmann number, the ratio of relaxation to
retardation times, time-mean flow, the phase angle, and the
nondimensional amplitude of wave decreases and increases
gradually. It is observed that the streamlines increase with
the increasing of the phase angle, the Hartmann number, the
time-mean flow, and the ratio of relaxation to retardation
times. The streamlines near the channel walls do nearly
strictly follow the wall waves, which are mainly engendered
by the relative movement of the walls.

Figure 6 shows the variations of the axial velocity 𝑢 with
respect to the axial 𝑦 which has oscillatory behavior in the
whole range of the𝑦-axis for different values of theHartmann
number 𝑀, the ratio of relaxation to retardation times 𝜆

1
,

time-mean flow Θ, and the phase angle 𝜙 in asymmetric
channel. In both figures, it is clear that the axial velocity
has a nonzero value only in a bounded region of space.
The effect of the Hartmann number, the ratio of relaxation
to retardation times, time-mean flow, and the phase angle
decreases and increases gradually. It is observed that the axial
velocity increases with increasing of the time-mean flow, the
Hartmann number, and the ratio of relaxation to retardation,
while it decreases with increasing of the phase angle.

Figure 7 displays that the variations of the value of axial
shear stress 𝑆

𝑥𝑦
with respect to the axial 𝑥 has oscillatory

behavior may be due to peristalsis in the whole range of
the 𝑥-axis for different values of the Hartmann number
𝑀, the ratio of relaxation to retardation times 𝜆

1
, time-

mean flow Θ, the phase angle 𝜙, and the gravity field 𝑔

in asymmetric channel. In both figures, it is clear that the
value of shear stress has a nonzero value only in a bounded
region of space. The effect of the Hartmann number, the
ratio of relaxation to retardation times, time-mean flow,
rotation, the phase difference, and the phase angle decreases
and increases gradually. It is observed that the shear stress
increases with increasing of the Hartmann number, gravity
field, and the phase angle, while it decreases with increasing
of the ratio of relaxation to retardation times and time-mean
flow. Moreover the values of shear stress are larger in case of
a Jeffery fluid when compared with Newtonian fluid.

5. Conclusion

Due to the complicated nature of the governing equations
of the pertinent field equations governing the peristaltic
transport of Jeffery fluid, the work done in this field is
unfortunately limited in number. The method used in this
study is quite successful in dealing with such problems.
This method gives exact solutions in the peristaltic transport
without any assumed restrictions on the actual physical
quantities that appear in the governing equations of the
problem considered. Important phenomena are observed in
all these computations.

(i) It was found that, for large values of the Hartmann
number𝑀, the ratio of relaxation to retardation times
𝜆
1
, time-mean flow Θ, the phase angle 𝜙, and the

gravity field𝑔 in asymmetric channel, the solution has
been obtained in the context of the peristaltic trans-
port of fluid.

(ii) By comparing Figures 1–7 for the peristaltic transport
of fluid with figures without magnetic field and
gravity field, it was found that it has the same behavior
in the same field.

(iii) The results presented in this paper should prove
useful for researchers in science and engineering,
as well as for those working on the development
of fluid mechanics. The study of the phenomenon
of the Hartmann number, the ratio of relaxation to
retardation times, time-mean flow, the phase angle,
and the gravity field in asymmetric channel influence
and operations is also used to improve the conditions
of peristaltic motion.
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